PID控制算法的matlab仿真
- 格式:doc
- 大小:178.50 KB
- 文档页数:10
这篇文章是关于基于Matlab的PID控制仿真课程设计的,主要内容包括PID控制的基本原理、Matlab的应用、课程设计的目的和意义、课程设计的具体步骤和具体操作步骤。
文章采用客观正式的语气,结构合理,旨在解释基于Matlab的PID控制仿真课程设计的重要性和实施方法。
1. 简介PID控制是一种常见的控制算法,由比例项(P)、积分项(I)和微分项(D)组成,可以根据被控对象的实际输出与期望输出的偏差来调整控制器的输出,从而实现对被控对象的精确控制。
Matlab是一种强大的数学建模与仿真软件,广泛应用于工程领域,尤其在控制系统设计和仿真方面具有独特优势。
2. PID控制的基本原理PID控制算法根据被控对象的实际输出与期望输出的偏差来调整控制器的输出。
具体来说,比例项根据偏差的大小直接调整输出,积分项根据偏差的积累情况调整输出,微分项根据偏差的变化速度调整输出。
三者综合起来,可以实现对被控对象的精确控制。
3. Matlab在PID控制中的应用Matlab提供了丰富的工具箱,其中包括控制系统工具箱,可以方便地进行PID控制算法的设计、仿真和调试。
利用Matlab,可以快速建立被控对象的数学模型,设计PID控制器,并进行系统的仿真和性能分析,为工程实践提供重要支持。
4. 课程设计的目的和意义基于Matlab的PID控制仿真课程设计,旨在帮助学生深入理解PID控制算法的原理和实现方法,掌握Matlab在控制系统设计中的应用技能,提高学生的工程实践能力和创新思维。
5. 课程设计的具体步骤(1)理论学习:学生首先需要学习PID控制算法的基本原理和Matlab在控制系统设计中的应用知识,包括控制系统的建模、PID控制器的设计原理、Matlab的控制系统工具箱的基本使用方法等。
(2)案例分析:学生根据教师提供的PID控制实例,在Matlab环境下进行仿真分析,了解PID控制算法的具体应用场景和性能指标。
(3)课程设计任务:学生根据所学知识,选择一个具体的控制对象,如温度控制系统、水位控制系统等,利用Matlab建立其数学模型,设计PID控制器,并进行系统的仿真和性能分析。
题目:以PID控制进行系统仿真学院自动化学院专业班级工业自动化111班学生姓名黄熙晴目录1 引言 (1)1.1本论文研究内容 (1)2 PID控制算法 (1)2.1模拟PID控制算法 (1)2.2数字式PID控制算法 (3)2.3PID控制算法的改进 (5)2.3.1微分项的改进 (5)2.3.2积分项的改进 (9)2.4模糊PID控制算法 (11)2.4.1模糊推理的系统结构 (12)2.4.2 PID参数在线整定原则 (12)2.5PID控制器研究面临的主要问题 .................................. 错误!未定义书签。
3 MATLAB编程和仿真 (13)3.1PID控制算法分析 (13)3.2MATLAB仿真 (15)4结语 (20)参考文献...................................................................................... 错误!未定义书签。
1 引言PID控制器以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
光学表面等离子共振生物传感技术受温度影响很大,因此设计高精度的温度控制器对于生物分析仪十分重要。
研究PID的控制算法是PID控制器整定参数优化和设定的关键技术之一。
在工业过程控制中,目前采用最多的控制方式依然是PID方式。
它具有容易实现、控制效果好、鲁棒性强等特点,同时它原理简单,参数物理意义明确,理论分析体系完整,并为工程界所熟悉,因而在工业过程控制中得到了广泛应用。
在实际的应用中,许多被控过程机理复杂,具有高度非线性、时变不确定性和纯滞后等特点,特别是在噪声、负载扰动等因素的影响下,参数复杂烦琐的整定过程一直困扰着工程技术人员。
为了减少参数整定的工作量,克服因环境变化或扰动作用造成系统性能的降低,就要提出一种PID控制参数的自动整定。
1.2本论文研究内容本文在介绍传统的PID控制算法,并对传统算法改进后,在学习的基础上提出一种模糊参数自整定方法,这种模糊控制的PID算法必须精确地确定对象模型。
控制系统PID参数整定方法的MATLAB仿真1. 引言PID控制器是一种常见的控制算法,广泛应用于自动控制系统中。
其通过调节三个参数:比例增益(Proportional gain)、积分时间常数(Integral time constant)和微分时间常数(Derivative time constant),实现对被控对象的稳态误差、响应速度和稳定性等性能指标的调节。
PID参数的合理选择对控制系统的性能至关重要。
本文将介绍PID控制器的经典整定方法,并通过MATLAB软件进行仿真,验证整定方法的有效性。
2. PID控制器的整定方法2.1 手动整定法手动整定法是根据经验和试错法来选择PID参数的方法。
具体步骤如下:1.将积分时间常数和微分时间常数设为零,仅保留比例增益,将比例增益逐渐增大直至系统产生较大的超调现象。
2.根据超调响应的情况,调整比例增益,以使系统的超调量接近所需的范围。
3.逐步增加微分时间常数,观察系统的响应速度和稳定性。
4.增加积分时间常数,以减小系统的稳态误差。
手动整定法的优点是简单易行,但需要经验和反复试验,对控制系统要求较高。
2.2 Ziegler-Nichols整定法Ziegler-Nichols整定法是一种基于试探和试错法的自整定方法,该方法通过调整系统的输入信号,观察系统的输出响应,从而确定PID参数。
具体步骤如下:1.将I和D参数设为零,仅保留P参数。
2.逐步增大P参数,直到系统的输出出现大幅度的振荡。
3.记录下此时的P参数值,记为Ku。
4.根据振荡的周期Tp,计算出系统的临界增益Kc = 0.6 * Ku。
5.根据系统的类型选择相应的整定法则:–P型系统:Kp = 0.5 * Kc,Ti = ∞,Td = 0–PI型系统:Kp = 0.45 * Kc,Ti = Tp / 1.2,Td = 0–PID型系统:Kp = 0.6 * Kc,Ti = Tp / 2,Td = Tp / 82.3 Cohen-Coon整定法Cohen-Coon整定法是基于频域曲线拟合的方法,主要应用于一阶和二阶系统的整定。
⽤MATLAB 对PID 控制做简单的仿真PID 控制是⽬前⼯程上应⽤最⼴的⼀种控制⽅法,其结构简单,且不依赖被控对象模型,控制所需的信息量也很少,因⽽易于⼯程实现,同时也可获得较好的控制效果。
PID 控制是将误差信号e(t)的⽐例(P),积分(I)和微分(D)通过线性组合构成控制量进⾏控制,其输出信号为:下⾯⽤MATLAB 软件对PID 控制做简单的仿真描述。
1. 建⽴⼆阶负反馈控制系统,其开环传递函数为:clc; clear all; close all;Go = tf(1,conv([2,1],[5,1]));2. ⽐例控制,输出与输⼊偏差成⽐例,即直接将误差信号放⼤或缩⼩。
⽐例控制的传递函数为:取不同的⽐例系数,绘制系统的单位阶跃响应曲线:Kp = [0.5,2,5,10];for m = 1:4 sys = feedback(Kp(m)*Go,1); step(sys); hold on;end随着K P 值的增⼤,系统响应速度加快,但系统的超调也随着增加,调节时间也随着增长。
当K P 增⼤到⼀定值后,闭环系统将趋于不稳定。
⽐例控制具有抗⼲扰能⼒强、控制及时、过渡时间短的优点,但存在稳态误差,增⼤⽐例系数可提⾼系统的开环增益,减⼩系统的稳态误差,从⽽提⾼系统的控制精度,但这会降低系统的相对稳定性,甚⾄可能造成闭环系统的不稳定,因此,在系统校正和设计中,⽐例控制⼀般不单独使⽤。
3. 微分控制,输出与输⼊偏差的微分成⽐例,即与偏差的变化速度成⽐例。
微分控制(与⽐例控制同时使⽤)的传递函数为:取不同的微分系数,绘制系统的单位阶跃响应曲线:Kp = 10;u(t)=[e(t)+e(t)dt +]K P 1T I ∫t 0T D de(t)dt(s)=G O 1(2s +1)(5s +1)(s)=G C K P(s)=(1+s)G C K P T DTd = [0,0.4,1,4];for m = 1:4 G1 = tf([Kp*Td(m),Kp],[0,1]); sys = feedback(G1*Go,1); step(sys); hold on;end随着T D 值的增⼤,系统超调量逐渐减⼩,动态特征有改善。
PID控制算法的MATLAB仿真应用首先,我们需要了解PID控制算法的原理。
PID控制算法由比例控制、积分控制和微分控制三部分组成。
比例控制是根据误差信号的大小与输出信号的差异来调节控制器输出信号的增益。
积分控制是根据误差信号的累积值来调节控制器输出信号的增益。
微分控制是根据误差信号的变化率来调节控制器输出信号的增益。
PID控制算法的输出信号可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t) dt + Kd * de(t)/dt其中,e(t)是系统输入与目标值之间的误差信号,u(t)是控制器的输出信号,Kp、Ki和Kd分别是比例增益、积分增益和微分增益。
在MATLAB中使用PID控制算法进行仿真应用,可以按照以下步骤进行:1. 创建一个Simulink模型,可以通过在命令窗口中输入simulink打开Simulink库,然后从库中选择合适的模块进行建模。
在模型中,需要包括被控对象、PID控制器和反馈信号。
2. 配置PID控制器的参数。
在Simulink模型中,可以使用PID Controller模块配置PID控制器的参数,包括比例增益、积分增益和微分增益。
3. 配置被控对象的模型。
在Simulink模型中,可以使用Transfer Fcn模块来建立被控对象的传递函数模型,包括系统的输入和输出端口,以及系统的传递函数。
4. 配置反馈信号。
在Simulink模型中,可以使用Sum模块将被控对象的输出信号和控制器的输出信号相加,作为反馈信号传递给PID控制器。
5. 运行Simulink模型进行仿真。
在Simulink中,可以选择仿真的时间范围和时间步长,然后点击运行按钮开始仿真。
仿真结果可以在模型中的Scope或To Workspace模块中查看和分析。
6.通过调整PID控制器的参数来优化系统的稳定性和响应速度。
根据仿真结果,可以逐步调整PID控制器的比例增益、积分增益和微分增益,以达到期望的控制效果。
《MATLAB控制系统仿真》PID控制系统校正设计引言1.PID校正装置PID校正装置也称为PID控制器或PID调节器。
这里P,I,D分别表示比例、积分、微分,它是最早发展起来的控制方式之一。
2.PID校正装置的主要优点原理简单,应用方便,参数整定灵活。
适用性强,在不同生产行业或领域都有广泛应用。
鲁棒性强,控制品质对受控对象的变化不太敏感,如受控对象受外界扰动时,无需经常改变控制器的参数或结构。
在科学技术迅速发展的今天,出现了许多新的控制方法,但PID由于其自身的的优点仍然在工业过程控制中得到最广泛的应用。
PID控制系统校正设计1.设计目的1.1 熟悉常规PID控制器的设计方法1.2掌握PID参数的调节规律1.3学习编写程序求系统的动态性能指标2.实验内容2.1在SIMULINK窗口建立方框图结构模型。
2.2设计PID控制器,传递函数模型如下。
()⎪⎭⎫⎝⎛++=s T s T k s G d i p c 112.3修改PID 参数p K 、i T 和d T ,讨论参数对系统的影响。
3.4利用稳定边界法对PID 参数p K 、i T 和d T 校正设计。
2.5根据PID 参数p K 、i T 和d T 对系统的影响,调节PID 参数实现系统的超调量小于10%。
3. 实验操作过程3.1在SIMULINK 窗口建立模型图1 设计模型方框图3.2设计PID 控制器图2 PID控制器模型3.3利用稳定边界法对PID参数p K、i T和d T校正设计: 表1 PID稳定边界参数值校正后的响应曲线图3(a)校正后的响应曲线图3(b)校正后的响应曲线3.4调节PID参数实现系统的超调量小于10%:表2 PID 参数图4 响应曲线图4.规律总结1.P控制规律控制及时但不能消除余差,I控制规律能消除余差但控制不及时且一般不单独使用,D控制规律控制很及时但存在余差且不能单独使用。
2.比例系数越小,过渡过程越平缓,稳态误差越大;反之,过渡过程振荡越激烈,稳态误差越小;若p K过大,则可能导致发散振荡。
pid控制器matlab仿真PID控制是最早发展的自动控制策略之一,PID控制系统由比例单元(P)、积分单元(I)和微分单元(D)组成。
具有简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
PID控制的参数自动调整是通过智能化调整或自校正、自适应算法来实现。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
本文首先从PID理论出发,建立模型,讨论系统的稳定性,快速性,准确性。
利用MATLAB对PID控制的参数进行仿真,设计不同的参数,以使系统满足所要求的性能指标。
2、控制领域有一个很重要的概念是反馈,它通过各种输出值和它们各自所需值的实时比较的度量―各种误差,再以这些误差进行反馈控制来减少误差。
这样形成的因果链是输入、动态系统、输出、测量、比较、误差、输入构成的一个环路,因而也构成了包含原动态系统在内的一个新的动态闭环系统。
采用反馈的基本原因是要在不确定性存在的条件下达到性能目标。
许多情况下,对于系统的了解是不全面的,或者可用的模型是基于许多简化的假设而使它们变得不透彻。
系统也可能承受外界干扰,输出的观测常受噪声干扰。
有效的反馈能减少这些不确定性的影响,因为它们可以补偿任何原因引起的误差。
反馈概括了很广泛的概念,包括当前系统中的许多回路、非线性和自适应反馈,以及将来的智能反馈。
广义的讲,反馈可以作为描述和理解许多复杂物理系统中发生的循环交互作用的方式。
在实际的过程控制和运动控制系统中,PID占有相当的地位,据统计,工业控制中PID 类控制器占有90%以上。
基于MATLAB的PID控制器参数整定及仿真PID控制器是一种经典的控制器,在工业自动化控制系统中广泛应用。
其主要功能是根据系统的误差信号,通过调整输出信号的比例、积分和微分部分来减小误差,并达到系统的稳定控制。
PID控制器参数整定是指确定合适的比例常数Kp、积分常数Ki和微分常数Kd的过程。
本文将介绍基于MATLAB的PID控制器参数整定及仿真的方法。
首先,在MATLAB中建立一个包含PID控制器的模型。
可以通过使用MATLAB的控制系统工具箱来实现这一过程。
在工具箱中,可以选择合适的建模方法,如直接设计模型、积分节点模型或传输函数模型。
通过这些工具,可以方便地建立控制系统的数学模型。
其次,进行PID控制器参数整定。
PID控制器参数整定的目标是通过调整比例常数Kp、积分常数Ki和微分常数Kd,使系统的响应特性达到最佳状态。
常用的PID参数整定方法有经验法、试误法、Ziegler-Nichols方法等。
1.经验法:根据系统的特性和经验,选择合适的PID参数。
这种方法常用于初步整定,但可能需要根据实际情况调整参数。
2.试误法:通过逐步试验和调整PID参数,使系统的输出响应逐渐接近期望值,从而达到最佳控制效果。
3. Ziegler-Nichols方法:该方法是一种经典的系统辨识方法,通过测试系统的临界稳定性,得到系统的传递函数参数,并据此计算出合适的PID参数。
最后,进行PID控制器参数整定的仿真。
在MATLAB中,可以通过使用PID模块进行仿真。
可以输入相应的输入信号和初始参数,观察系统的输出响应,并通过调整参数,得到最佳的控制效果。
总结起来,基于MATLAB的PID控制器参数整定及仿真的过程包括:建立控制系统模型、选择PID参数整定方法、进行PID参数整定、进行仿真实验。
PID控制器参数整定的好坏直接影响控制系统的工作性能。
通过基于MATLAB的仿真实验,可以方便地调整和优化控制系统的PID参数,提高系统的响应速度、稳定性和抗干扰性能。
控制系统pid参数整定方法的matlab仿真实验报告一、引言PID控制器是广泛应用于工业控制系统中的一种常见控制算法。
PID 控制器通过对系统的误差、误差积分和误差变化率进行调节,实现对系统的稳定性和动态性能的控制。
而PID参数的整定是保证系统控制性能良好的关键。
本实验旨在利用Matlab仿真,研究控制系统PID参数整定的方法,探讨不同整定策略对系统稳定性和动态性能的影响,为工程实际应用提供理论依据。
二、控制系统模型本实验采用了以二阶惯性环节为例的控制系统模型,其传递函数为:G(s) = K / (s^2 + 2ξω_ns + ω_n^2)其中,K为系统增益,ξ为阻尼比,ω_n为自然频率。
三、PID参数整定方法实验中我们探讨了几种典型的PID参数整定方法,包括经验法、Ziegler-Nichols方法和遗传算法。
1. 经验法经验法是一种简单粗糙的PID参数整定方法,根据实际系统的性质进行经验性调试。
常见的经验法包括手动调整法和试探法。
在手动调整法中,我们通过调整PID参数的大小,观察系统的响应曲线,从而找到满足系统性能要求的参数。
这种方法需要操作者有一定的经验和直觉,且对系统有一定的了解。
试探法是通过试验和试验的结果来确定PID参数的值。
在试探过程中,我们可以逐渐逼近最佳参数,直到满足系统性能要求。
2. Ziegler-Nichols方法Ziegler-Nichols方法是一种广泛应用的PID参数整定方法。
该方法通过系统的临界增益和临界周期来确定PID参数。
首先,在开环状态下,逐渐增加系统增益,当系统开始出现振荡时,记录下此时的增益值和周期。
然后根据临界增益和临界周期的数值关系,计算出PID参数。
3. 遗传算法遗传算法是一种基于生物进化原理的优化算法,可以用于自动化调整PID参数。
该方法通过对参数的种群进行进化迭代,逐渐找到最优的PID参数。
四、实验结果与分析我们利用Matlab进行了控制系统的PID参数整定仿真实验,并得到了不同整定方法下的系统响应曲线。
PID的MATLAB仿真程序:%PID Controler 不完全微分clear all;close all;ts=20;sys=tf([1],[60,1],'inputdelay',80);dsys=c2d(sys,ts,'zoh');[num,den]=tfdata(dsys,'v');u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;ud_1=0;y_1=0;y_2=0;y_3=0;error_1=0;ei=0;for k=1:1:100time(k)=k*ts;rin(k)=1.0;%Linear modelyout(k)=-den(2)*y_1+num(2)*u_5;D(k)=0.01*rands(1);yout(k)=yout(k)+D(k);error(k)=rin(k)-yout(k);%PID Controller with partly differential ei=ei+error(k)*ts;kc=0.30;ki=0.0055;TD=140;kd=kc*TD/ts; Tf=180;Q=tf([1],[Tf,1]); %Low Freq Signal FilterM=2; %M=1不完全微分,%M=2普通Pid控制!!if M==1%Using PID with Partial differentialalfa=Tf/(ts+Tf);ud(k)=kd*(1-alfa)*(error(k)-error_1)+alf a*ud_1;u(k)=kc*error(k)+ud(k)+ki*ei;ud_1=ud(k);elseif M==2 %Using Simple PIDu(k)=kc*error(k)+kd*(error(k)-error_1)+ ki*ei;end%Restricting the output of controllerif u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endu_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);error_1=error(k);endfigure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout');由仿真结果可以看出,采用不完全微分型PID算法,引入不完全微分后能有效克服普通PID的不足,尽管不完全微分算法比普通PID控制算法要复杂的多,但由于其良好的控制特性,近年来越来越广泛的应用。
基于matlab的pid控制仿真课程设计PID(比例-积分-微分)控制器是一种常见的控制算法,被广泛应用于工业控制系统中。
在本文中,我们将介绍基于MATLAB的PID控制仿真课程设计。
首先,我们将简要介绍PID控制器的原理和特点,然后介绍如何使用MATLAB进行PID控制的仿真。
PID控制器是一种反馈控制器,可以通过比例、积分和微分三部分来调节控制系统的输出。
比例部分根据误差的大小进行调节,积分部分用于消除稳态误差,微分部分用于抑制系统振荡。
通过调节PID控制器的参数,可以使系统的稳定性、响应速度和稳态误差达到预期的要求。
在MATLAB中,可以使用控制系统工具箱来进行PID控制的仿真。
首先,我们需要定义一个系统模型,可以是连续时间系统或离散时间系统。
然后,我们可以使用PID控制器对象来创建一个PID控制器。
PID控制器的参数可以通过试错法、模型辨识等方法进行调节。
一旦系统模型和PID控制器被定义,我们可以使用MATLAB中的仿真工具来进行PID控制器的仿真。
通常,我们将输入信号作为控制器的参考信号,将输出信号作为系统的输出,并将控制器的输出作为系统的输入。
然后,我们可以观察系统的响应,并根据需要调整控制器的参数。
在进行PID控制仿真实验时,我们可以通过选择不同的控制器参数、改变控制器的结构、调整参考信号等方式来研究控制系统的性能。
例如,我们可以改变比例增益来改变系统的稳定性和响应速度,增加积分时间常数来减小稳态误差,增加微分时间常数来抑制系统振荡等。
在课程设计中,我们可以设计不同的控制实验,并分析不同参数对系统性能的影响。
例如,可以研究比例增益对系统稳定性和响应速度的影响,或者研究积分时间常数对稳态误差的影响等。
同时,我们还可以通过比较PID控制和其他控制算法(如PI控制、PD控制等)来评估PID控制的优势和局限性。
在进行PID控制仿真实验时,我们应该注意以下几点。
首先,选择合适的系统模型,确保模型能够准确地描述实际系统的行为。
控制系统pid参数整定方法的matlab仿真
控制系统PID参数整定方法的MATLAB仿真,可以分为以下几个步骤:
1. 建立模型。
在MATLAB中建立你要进行PID参数整定的模型,比如电机速度控制系统或温度控制系统。
2. 设计控制器。
根据建立的模型,设计出对应的PID控制器,并将其加入到系统中。
3. 确定初始参数。
在进行PID参数整定前,需要确定PID控制器的初始参数。
通常可以选择Ziegler-Nichols方法、Chien-Hrones-Reswick方法等经典的PID参数整定法则来确定初始参数。
4. 仿真模拟。
使用MATLAB中的仿真工具,对整定后的PID控制器进行仿真模拟,并记录下系统的响应曲线和各项性能指标。
5. 调整参数。
根据仿真结果,对PID控制器的参数进行适当的调整,以达到更理想的控制效果。
6. 再次仿真模拟。
调整完参数后,再次使用MATLAB中的仿真工具,对整定后的PID控制器进行仿真模拟,并比较其与上一次仿真的差异,以确认调整是否合理。
7. 实现控制。
最后,将优化后的PID控制器应用到实际控制系统中,进行控制。
总的来说,PID参数整定是一个相对复杂的过程,需要根据具体情况选择合适的方法和工具。
MATLAB作为一种强大的数学计算软件,可以提供丰富的工具和函数,方便进行控制系统的建模和仿
真,也可以帮助我们更好地进行PID参数整定。
PID控制算法的MATLAB仿真假设我们现在要设计一个PID控制器来控制一个被控对象,该对象的传递函数为G(s)。
首先,我们需要确定PID控制器的参数。
这些参数包括比例增益Kp、积分时间Ti和微分时间Td。
在Simulink中,我们可以使用以下步骤来进行PID控制的仿真:1. 打开MATLAB,并在工具栏上选择Simulink模块。
2. 在Simulink模块中,选择一个PID控制器模块,并将其拖放到工作区域中。
4.将被控对象的传递函数G(s)添加到工作区域中,并将其与PID控制器模块连接起来。
5.添加一个把期望值作为输入的信号源,并将其连接到PID控制器模块的输入端口上。
6.添加一个作为输出的信号源,并将其与被控对象的输出端口连接起来。
7. 在Simulink模块中运行仿真。
下面以一个简单的例子来说明PID控制的仿真过程。
假设我们要控制一个小车的速度,将其速度控制在一个期望值上。
小车的动力学方程可以表示为:m * V_dot = F - B * V其中,m为小车的质量,V为小车的速度,F为施加在小车上的力,B 为摩擦系数。
首先,我们需要将动力学方程转化为传递函数的形式。
假设小车的传递函数为:G(s)=1/(m*s+B)在Simulink中,可以通过使用Transfer Fcn模块来表示传递函数。
在工作区域中添加该模块,并设置其参数为1 / (m * s + B)。
接下来,我们需要添加PID控制器模块,并设置其参数。
假设我们选择Kp=1,Ti=0.5,Td=0.1作为PID控制器的参数。
将信号源(期望值)和输出信号(小车速度)连接到PID控制器模块。
然后,将PID控制器的输出连接到小车动力学方程的输入端口。
最后,点击Simulink模块中的“运行”按钮,即可开始仿真。
在进行仿真时,可以观察小车速度是否能够达到期望值,并调整PID控制器的参数以获得更好的控制效果。
通过以上步骤,在MATLAB中可以很方便地进行PID控制的仿真。
PID 控制算法的matlab 仿真
PID 控制算法就是实际工业控制中应用最为广泛的控制算法,它具有控制器设计简单,控制效果好等优点。
PID 控制器参数的设置就是否合适对其控制效果具有很大的影响,在本课程设计中一具有较大惯性时间常数与纯滞后的一阶惯性环节作为被控对象的模型对PID 控制算法进行研究。
被控对象的传递函数如下:
()1d s
f Ke G s T s
τ-=
+ 其中各参数分别为30,630,60f d K T τ===。
MATLAB 仿真框图如图1所示。
图1
2 具体内容及实现功能
2、1 PID 参数整定
PID 控制器的控制参数对其控制效果起着决定性的作用,合理设置控制参数就是取得较好的控制效果的先决条件。
常用的PID 参数整定方法有理论整定法与实验整定法两类,其中常用的实验整定法由扩充临界比例度法、试凑法等。
在此处选用扩充临界比例度法对PID 进行整定,其过程如下:
1) 选择采样周期 由于被控对象中含有纯滞后,且其滞后时间常数为
60d τ=,故可选择采样周期1s T =。
2) 令积分时间常数i T =∞,微分时间常数0d T =,从小到大调节比例系数K ,
使得系统发生等幅震荡,记下此时的比例系数k K 与振荡周期k T 。
3) 选择控制度为 1.05Q =,按下面公式计算各参数:
0.630.490.140.014p k i k d k s k
K K T T T T T T ====
通过仿真可得在1s T =时,0.567,233k k K T ==,故可得:
0.357,114.17,32.62, 3.262p i d s K T T T ====
0.0053.57
p s i i p d d s
K T K T K T K T ===
=
按此组控制参数得到的系统阶跃响应曲线如图2所示。
01002003004005006007008009001000
0.20.40.60.811.21.41.6
1.8
图2
由响应曲线可知,此时系统虽然稳定,但就是暂态性能较差,超调量过大,且响应曲线不平滑。
根据以下原则对控制器参数进行调整以改善系统的暂态过程:
1) 通过减小采样周期,使响应曲线平滑。
2) 减小采样周期后,通过增大积分时间常数来保证系统稳定。
3) 减小比例系数与微分时间常数,以减小系统的超调。
改变控制器参数后得到系统的阶跃响应曲线如图3所示,系统的暂态性能得到明显改善、
01002003004005006007008009001000
0.2
0.4
0.6
0.8
1
1.2
1.4
图3
最终,选择采样周期为1s T =,PID 控制器的控制参数为:
0.25,0.001,3p i d K K K ===
此时,系统的超调量为27.7%p M =,上升时间为135r t =,调整时间为
445s t =。
稳态误差为0ss e =。
2、2 模型失配对PID 控制器控制效果的影响
实际中,由于建模误差以及被控对象的参数变化,都会使得被控对象传递函数参数不准确。
一个性能优良的控制器应该在系统参数发生变化时依然具有良好的控制性能,既具有较强的鲁棒性。
PID 控制器的鲁棒性强弱就是由控制器参数确定后系统的稳定裕度决定的。
下面通过仿真分析被控对象参数变化时PID 控制器的控制效果。
当被控对象的比例系数增大5%时,系统的单位阶跃响应曲线如图4所示,此时系统的个暂态性能指标为:
29.9%,129,410p r s M t t ===
相对参数未变时单位阶跃响应而言,系统的超调量增大,上升时间与调整时间都减小,但就是,各性能指标的变化量都比较小。
这就是因为,被控对象的比例系数增大使得系统的开环增益变大,故而系统响应的快速性得到提高,但超调量
也随之增大。
从被控对象的比例系数变化时系统的单位阶跃响应可知,当被控对象的比例系数在一定范围内变化时,对PID 控制器的控制效果不会产生太大影响。
01002003004005006007008009001000
0.2
0.4
0.6
0.8
1
1.2
1.4
图4
当被控对象的惯性时间常数增大5%时,系统的单位阶跃响应曲线如图5所示,此时系统的个暂态性能指标为:
26.4%,175,475p r s M t t ===
01002003004005006007008009001000
0.2
0.4
0.6
0.8
1
1.2
1.4
图5
相对参数未变时单位阶跃响应而言,被控对象的惯性时间常数增大使得系统的响应速度变慢,故而,使得系统的超调量减小,上升时间与调整时间都增大。
又各性能指标的变化量都比较小,故可知,当被控对象的惯性时间常数在一定范围内变化时,对PID 控制器的控制效果不会产生太大影响。
当被控对象的纯滞后时间常数增大5%时,系统的单位阶跃响应曲线如图6所示,此时系统的个暂态性能指标为:
31.5%,135,415p r s M t t ===
01002003004005006007008009001000
0.2
0.4
0.6
0.8
1
1.2
1.4
图6
2.3 非线性对PID 控制器控制效果的影响
图7
实际的控制系统中往往存在非线性,如执行机构的非线性。
系统的非线性将会对控制器的控制效果产生影响,下面通过仿真研究非线性对PID 控制器控制效果的影响。
在原控制系统仿真框图中控制器输出后加饱与非线性环节,得到图7所示的框图。
在保持其它参数不变的情况下得到其阶跃响应曲线如图8所示。
从响应曲线可知,加入非线性环节后,系统的超调量、上升时间、调整时间均增大,控制效
果变坏。
01002003004005006007008009001000
0.2
0.4
0.6
0.8
1
1.2
1.4
图8
2、4 扰动对PID 控制器控制效果的影响
实际的控制系统中,被控对象与检测通道往往会受到多种因素的影响,从而对控制效果产生影响,下面分别以加在前向通道与反馈通道上的脉冲扰动与阶跃扰动为例探讨扰动对控制系统的影响。
1) 前向通道上的扰动对控制效果的影响:
在前向通道上控制器输出之后加脉冲扰动与阶跃扰动信号时系统的响应曲线分别如图9与图10所示。
由响应曲线可知,系统达到稳态后,前向通道上的扰动信号将使得控制系统的输出产生波动,但通过控制器的作用,控制系统经过一个过渡过程后将会恢复原来的稳定状态。
0100200300400500600700800900
10000
0.2
0.4
0.6
0.8
1
1.2
1.4
图9
02004006008001000
0.2
0.4
0.6
0.8
1
1.2
1.4
图10
2) 反馈通道上的扰动对控制效果的影响:
在反馈通道上加脉冲扰动与阶跃扰动信号时,控制系统的响应曲线分别如图11与图12所示、由响应曲线可知,控制系统输出随着反馈通道上的扰动变化而变化,且由反馈通道上的扰动引起的误差不能被消除。
但就是当扰动消失时,控制系统也恢复原来的稳定状态。
0100200300400500600700800900
10000
0.2
0.4
0.6
0.8
1
1.2
1.4
图11
0100200300400500600700800900
10000
0.2
0.4
0.6
0.8
1
1.2
1.4
图12
3 分析与总结。