4.1.1圆的标准方程
- 格式:docx
- 大小:47.19 KB
- 文档页数:3
第四章 圆 与 方 程 4.1 圆 的 方 程 4.1.1 圆的标准方程圆的标准方程圆心为C(x 0,y 0),半径为r 的圆的标准方程为(x -x 0)2+(y -y 0)2=r 2,特别地,圆心在原点时,圆的标准方程为x 2+y 2=r 2.(1)如果圆的标准方程为(x +x 0)2+(y +y 0)2=a 2(a ≠0),那么圆的圆心、半径分别是什么? 提示:圆心为(-x 0,-y 0),半径为|a|.(2)如果点P(x 0,y 0)在圆x 2+y 2=r 2上,那么x 20 +y 20 =r 2,若点P 在圆内呢?圆外呢?提示:若点P 在圆内,则x 20 +y 20 <r 2;若点P 在圆外,则x 20 +y 20 >r 2.1.辨析记忆(对的打“√”,错的打“×”) (1)圆的标准方程由圆心、半径确定.( √ ) (2)方程(x -a)2+(y -b)2=m 2一定表示圆.( × )(3)原点在圆(x -x 0)2+(y -y 0)2=r 2上,则x 20 +y 20 =r 2.( √ ) 提示:(1)如果圆的圆心位置、半径确定,圆的标准方程是确定的. (2)当m =0时,表示点(a ,b).(3)原点在圆上,则(0-x 0)2+(0-y 0)2=r 2,即x 20 +y 20 =r 2. 2.圆(x -1)2+y 2=3的圆心坐标和半径分别是( ) A .(-1,0),3B .(1,0),3C .()-1,0, 3D .()1,0 , 3【解析】选D.根据圆的标准方程可得,(x -1)2+y 2=3的圆心坐标为(1,0),半径为 3 . 3.到原点的距离等于 3 的点的坐标所满足的方程是________.【解析】设点的坐标为(x ,y),根据到原点的距离等于 3 以及两点间的距离公式,得(x -0)2+(y -0)2= 3 ,两边平方得x 2+y 2=3,是半径为 3 的圆. 答案:x 2+y 2=3类型一 圆的标准方程的定义及求法(数学抽象、数学运算)1.以点(2,-1)为圆心,以 2 为半径的圆的标准方程是( ) A .(x +2)2+(y -1)2= 2 B .(x +2)2+(y -1)2=2 C .(x -2)2+(y +1)2=2D .(x -2)2+(y +1)2= 2【解析】选C.由题意,圆的标准方程是(x -2)2+(y +1)2=2. 2.圆心在y 轴上,半径为1,且过点(1,3)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .x 2+(y -3)2=1D .x 2+(y +3)2=1【解析】选C.由题意,设圆的标准方程为x 2+(y -b)2=1,由于圆过点(1,3),可得1+(3-b)2=1,解得b =3,所以所求圆的方程为x 2+(y -3)2=1.3.已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y -4)2=25D .(x +3)2+(y -4)2=25【解析】选C.圆C 的圆心坐标C(6,8),则OC 的中点坐标为E(3,4),半径|OE|=32+42=5,则以OC 为直径的圆的方程为(x -3)2+(y -4)2=25.4.圆心在直线x -2y -3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程为________. 【解析】方法一(几何性质法):设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a). 因为该圆经过A ,B 两点,所以|CA|=|CB|,所以(2a +3-2)2+(a +3)2 =(2a +3+2)2+(a +5)2 , 解得a =-2,所以圆心为C(-1,-2),半径长r =10 . 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法二(待定系数法):设所求圆的标准方程为(x -a)2+(y -b)2=r 2,由题设条件知,⎩⎨⎧a -2b -3=0,(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,解得a =-1,b =-2,r =10 (负值舍去), 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法三(几何性质法):线段AB 的中点的坐标为(0,-4), 直线AB 的斜率k AB =-3+52+2 =12, 所以弦AB 的垂直平分线的斜率为k =-2,所以弦AB 的垂直平分线的方程为y +4=-2x ,即2x +y +4=0. 又圆心是直线2x +y +4=0与直线x -2y -3=0的交点, 所以圆心坐标为(-1,-2),所以圆的半径长r =(2+1)2+(-3+2)2 =10 , 故所求圆的标准方程为(x +1)2+(y +2)2=10. 答案:(x +1)2+(y +2)2=101.直接法求圆的方程圆的方程由圆心、半径决定,因此求出圆心和半径即可写出圆的标准方程. 2.待定系数法求圆的方程(圆心(a ,b)、半径为r)特殊位置 标准方程 圆心在x 轴上 (x -a)2+y 2=r 2 圆心在y 轴上 x 2+(y -b)2=r 2 与x 轴相切 (x -a)2+(y -b)2=b 2 与y 轴相切(x -a)2+(y -b)2=a 23.利用圆的性质求方程求圆的方程时,可以利用圆的性质求圆心、半径,如弦的垂直平分线过圆心,过切点垂直于切线的直线过圆心等.类型二点与圆的位置关系的判断(数学抽象、数学运算)1.点P(m,5)与圆x2+y2=24的位置关系是( )A.在圆外 B.在圆内C.在圆上 D.不确定【解析】选A.把P(m,5)代入x2+y2=24,得m2+25>24,所以点P在圆外.2.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足( )A.是圆心B.在圆上C.在圆内D.在圆外【解析】选C.因为(3-2)2+(2-3)2=2<4,所以点P(3,2)在圆内.3.点(1,1)在圆(x+2)2+y2=m上,则圆的方程是________.【解析】因为点(1,1)在圆(x+2)2+y2=m上,故(1+2)2+12=m,所以m=10.则圆的方程为(x+2)2+y2=10.答案:(x+2)2+y2=10.4.已知点A(1,2)不在圆C:(x-a)2+(y+a)2=2a2的内部,求实数a的取值范围.【解析】由题意知,点A在圆C上或圆C的外部,所以(1-a)2+(2+a)2≥2a2,所以2a+5≥0,所以a≥-52.因为a≠0,所以a的取值范围为⎣⎢⎡⎭⎪⎫-52,0∪(0,+∞).【思路导引】1.将点P的坐标代入圆的方程,看方程的等于号变成了什么符号,然后进行判断.2.验证点P与圆心的距离与半径之间的关系.3.将点的坐标代入圆的方程,解方程即可得出m的值,进而得方程.4.不在圆的内部,即在圆上或圆外.点与圆位置关系的判断与应用(1)位置关系的判断:①几何法:判断点到圆心的距离与半径的大小;②代数法:将点的坐标代入圆的方程左边,判断与r 2的大小. (2)位置关系的应用:代入点的坐标,利用不等式求参数的范围.【补偿训练】1.若点(3,a)在圆x 2+y 2=16的内部,则a 2的取值范围是( ) A .[0,7) B .(-∞,7) C .{7}D .(7,+∞)【解析】选A.由点在圆的内部,得9+a 2<16得a 2<7,又a 2≥0,所以0≤a 2<7. 2.若点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( ) A .(-1,1) B .(0,1) C .⎝ ⎛⎭⎪⎫-1,15 D .⎝ ⎛⎭⎪⎫-15,1【解析】选D.因为点(2a ,a -1)在圆的内部,所以d =(2a )2+(a -2)2 =4a 2+a 2-4a +4 =5a 2-4a +4 < 5 , 解得-15 <a <1,所以a 的取值范围是⎝ ⎛⎭⎪⎫-15,1 .3.若点A(a +1,3)在圆C :(x -a)2+(y -1)2=m 外,则实数m 的取值范围是( ) A .(0,+∞) B .(-∞,5) C .(0,5)D .[0,5]【解析】选C.由题意,得(a +1-a)2+(3-1)2>m ,即m<5, 又由圆的方程知m>0,所以0<m<5.类型三 与圆有关的最值问题(数学抽象、数学运算)角度1 与几何意义有关的最值问题【典例】已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.【思路导引】首先由条件观察x 、y 满足的条件,然后分析x 2+y 2的几何意义,求出其最值. 【解析】由题意知,x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取得最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12 =32 ,最小距离为1-12 =12.因此x2+y2的最大值和最小值分别为94,14.1.本例条件不变,试求yx的取值范围.【解析】设k=yx,变形为k=y-0x-0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k=yx,可得y=kx,此直线与圆有公共点,圆心到直线的距离d≤r,即|-k|k2+1≤12,解得-33≤k≤33.即yx的取值范围是⎣⎢⎡⎦⎥⎤-33,33.2.本例条件不变,试求x+y的最值.【解析】令y+x=b并将其变形为y=-x+b,问题转化为斜率为-1的直线在经过圆上的点时在y轴上的截距的最值.当直线和圆相切时,在y轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b=±22-1,即最大值为22-1,最小值为-22-1.角度2 距离的最值问题【典例】1.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( )A.6 B.4 C.3 D.2【解析】选B.|PQ|的最小值为圆心到直线的距离减去半径长.因为圆的圆心为(3,-1),半径长为2,所以|PQ|的最小值为3-(-3)-2=4.2.已知圆O的方程为(x-3)2+(y-4)2=25,则点M(2,3)到圆上的点的距离的最大值为________.【解析】由题意知,点M在圆O内,O为圆心,MO的延长线与圆O的交点到点M(2,3)的距离最大,最大距离为(2-3)2+(3-4)2+5=5+ 2 .答案:5+ 2【思路导引】1.转化为圆心到直线x=-3的距离减去半径;2.转化为M到圆心的距离加半径.1.与圆有关的最值问题的常见类型及解法(1)形如u=y-bx-a形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l=ax+by形式的最值问题,可转化为动直线y=-abx+lb在y轴上的截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.2.求圆外一点到圆的最大距离和最小距离的方法采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值或最小值.1.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是( )A.2 B.1+ 2 C.2+22D.1+2【解析】选B.圆(x-1)2+(y-1)2=1的圆心为(1,1),圆心到直线x-y=2的距离为 2 ,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+ 2 .2.若实数x,y满足(x+5)2+(y-12)2=142,则x2+y2的最小值为( )A.2 B.1 C.0 D.-1【解析】选B.x2+y2表示圆上的点(x,y)与(0,0)间距离的平方,由几何意义可知最小值为(14-13)2=1.3.如果实数x,y满足(x-2)2+y2=3,求yx的最大值和最小值.【解析】方法一:如图,当过原点的直线l与圆(x-2)2+y2=3相切于上方时yx最大,过圆心A(2,0)作切线l的垂线交于B,在Rt△ABO中,OA=2,AB= 3 .所以切线l的倾斜角为60°,所以yx的最大值为 3 .同理可得yx的最小值为- 3 .方法二:令yx=n,则y=nx与(x-2)2+y2=3联立,消去y得(1+n2)x2-4x+1=0,Δ=(-4)2-4(1+n2)≥0,即n2≤3,所以- 3 ≤n≤ 3 ,即yx的最大值和最小值分别为 3 ,- 3 .【补偿训练】1.已知圆C的圆心为C(x0,x),且过定点P(4,2).(1)求圆C的标准方程.(2)当x为何值时,圆C的面积最小?求出此时圆C的标准方程.【解析】(1)设圆C的标准方程为(x-x0)2+(y-x)2=r2(r≠0).因为圆C过定点P(4,2),所以(4-x0)2+(2-x)2=r2(r≠0).所以r2=2x2-12x+20.所以圆C的标准方程为(x-x0)2+(y-x)2=2x2-12x+20.(2)因为(x-x0)2+(y-x)2=2x2-12x+20=2(x-3)2+2,所以当x=3时圆C的半径最小,则圆C的面积最小.此时圆C的标准方程为(x-3)2+(y-3)2=2.2.已知实数x,y满足方程x2+(y-1)2=14,求(x-2)2+(y-3)2的取值范围.【解析】(x-2)2+(y-3)2可以看成圆上的点P(x,y)到A(2,3)的距离.圆心C(0,1)到A(2,3)的距离为d=(0-2)2+(1-3)2=2 2 ,由图可知,圆上的点P(x ,y)到A(2,3)的距离的范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .即(x -2)2+(y -3)2 的取值范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .。
4.1.1圆的标准方程1.圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的基本要素是圆心和半径,如图所示.(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以圆点O为圆心、半径为r的圆.思考:平面内确定圆的要素是什么?2. 点与圆的位置关系圆的标准方程为(x-a)2+(y-b)2=r2,圆心A(a,b),半径为r.设所给点为M(x0,y0),则位置关系判断方法几何法代数法点在圆上│MA│=r⇔点M在圆A上点M(x0,y0)在圆上⇔(x0-a)2+(y0-b)2=r2点在圆内│MA│<r⇔点M在圆A内点M(x0,y0)在圆内⇔(x0-a)2+(y0-b)2<r2点在圆外│MA│>r⇔点M在圆A外点M(x0,y0)在圆外⇔(x0-a)2+(y0-b)2>r21.圆(x-2)2+(y+3)2=2的圆心和半径分别是()A.(-2,3),1 B.(2,-3),3 C.(-2,3), 2 D.(2,-3), 22.以原点为圆心,2为半径的圆的标准方程是()A.x2+y2=2 B.x2+y2=4 C.(x-2)2+(y-2)2=8 D.x2+y2= 23.点P(m,5)与圆x2+y2=24的位置关系是()A.在圆外B.在圆内C.在圆上D.不确定4.点(1,1)在圆(x+2)2+y2=m上,则圆的方程是________.求圆的标准方程【例1】求过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程.确定圆的方程的方法:确定圆的标准方程就是设法确定圆心C(a,b)及半径r,其求解的方法:一是待定系数法,如法一,建立关于a,b,r的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如法二、法三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.1.求下列圆的标准方程:(1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4);(3)过点P (2,-1)和直线x -y =1相切,并且圆心在直线y =-2x 上.命题角度1 直接法求圆的标准方程例1 (1)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(2)与y 轴相切,且圆心坐标为(-5,-3)的圆的标准方程为________.反思与感悟 (1)确定圆的标准方程只需确定圆心坐标和半径,因此用直接法求圆的标准方程时,要首先求出圆心坐标和半径,然后直接写出圆的标准方程.(2)确定圆心和半径时,常用到中点坐标公式、两点间距离公式,有时还用到平面几何知识,如“弦的中垂线必过圆心”“两条弦的中垂线的交点必为圆心”等.跟踪训练1 以两点A (-3,-1)和B (5,5)为直径端点的圆的方程是( )A .(x +1)2+(y +2)2=10B .(x -1)2+(y -2)2=100C .(x +1)2+(y +2)2=25D .(x -1)2+(y -2)2=25命题角度2 待定系数法求圆的标准方程例2 求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的方程.反思与感悟 待定系数法求圆的标准方程的一般步骤跟踪训练2 已知△ABC 的三个顶点坐标分别为A (0,5),B (1,-2),C (-3,-4),求该三角形的外接圆的方程.点与圆的位置关系【例2】 已知圆心为点C (-3,-4),且经过原点,求该圆的标准方程,并判断点P 1(-1,0),P 2(1,-1),P 3(3,-4)和圆的位置关系.例3 (1)点P (m 2,5)与圆x 2+y 2=24的位置关系是( )A .点P 在圆内B .点P 在圆外C .点P 在圆上D .不确定(2)已知点M (5a +1,a )在圆(x -1)2+y 2=26的内部,则a 的取值范围是_________.1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断.2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.2.已知点A (1,2)不在圆C :(x -a )2+(y +a )2=2a 2的内部,求实数a 的取值范围.跟踪训练3 已知点(1,1)在圆(x -a )2+(y +a )2=4的外部,则a 的取值范围是________.与圆有关的最值问题[探究问题]1.怎样求圆外一点到圆的最大距离和最小距离?2.若点P (x , y )是圆C :(x -2)2+(y +2)2=1上的任一点,如何求点P 到直线x -y =0的距离的最大值和最小值?【例3】 已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.1.本例条件不变,试求y x的取值范围.2.本例条件不变,试求x +y 的最值.与圆有关的最值问题的常见类型及解法: (1)形如u =y -b x -a形式的最值问题,可转化为过点(x , y )和(a , b )的动直线斜率的最值问题. (2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +l b截距的最值问题. (3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点(x , y )到定点(a , b )的距离的平方的最值问题.例4 已知实数x ,y 满足方程(x -2)2+y 2=3,求y x的最大值和最小值.引申探究1.若本例条件不变,求y -x 的最大值和最小值.2.若本例条件不变,求x 2+y 2的最大值和最小值.反思与感悟 与圆有关的最值问题,常见的有以下几种类型(1)形如u =y -b x -a形式的最值问题,可转化为过点(x ,y )和(a ,b )的动直线斜率的最值问题. (2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +l b截距的最值问题. (3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点(x ,y )到定点(a ,b )的距离的平方的最值问题.跟踪训练4 已知x 和y 满足(x +1)2+y 2=14,试求: (1)x 2+y 2的最值;(2)x +y 的最值.1.判断点与圆位置关系的两种方法(1)几何法:主要利用点到圆心的距离与半径比较大小.(2)代数法:主要是把点的坐标代入圆的标准方程来判断:点P (x 0,y 0)在圆C 上⇔(x 0-a )2+(y 0-b )2=r 2;点P (x 0,y 0)在圆C 内⇔(x 0-a )2+(y 0-b )2<r 2;点P (x 0,y 0)在圆C 外⇔(x 0-a )2+(y 0-b )2>r 2.2.求圆的标准方程时常用的几何性质求圆的标准方程,关键是确定圆心坐标和半径,为此常用到圆的以下几何性质:(1)弦的垂直平分线必过圆心.(2)圆内的任意两条弦的垂直平分线的交点一定是圆心.(3)圆心与切点的连线长是半径长.(4)圆心与切点的连线必与切线垂直.3.求圆的标准方程常用方法(1)待定系数法.(2)直接法.一、选择题1.圆(x +1)2+(y -2)2=4的圆心与半径分别为( )A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),42.已知一圆的圆心为点A (2,-3),一条直径的端点分别在x 轴和y 轴上,则圆的标准方程为( )A .(x +2)2+(y -3)2=13B .(x -2)2+(y +3)2=13C .(x -2)2+(y +3)2=52D .(x +2)2+(y -3)2=523.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的标准方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=44.点(5a +1,12a )在圆(x -1)2+y 2=1的内部,则实数a 的取值范围是( )A .|a |<1B .a <13C .|a |<15D .|a |<1135.若圆心在x 轴上,半径为5的圆C 位于y 轴左侧,且与直线x +2y =0相切,则圆C 的标准方程为( )A .(x -5)2+y 2=5B .(x +5)2+y 2=5C .(x -5)2+y 2=5D .(x +5)2+y 2=56.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的标准方程为( )A .(x +1)2+y 2=1B .x 2+y 2=1C .x 2+(y +1)2=1D .x 2+(y -1)2=18.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( )A .6B .4C .3D .2二、填空题9.若圆C 与圆M :(x +2)2+(y -1)2=1关于原点对称,则圆C 的标准方程为________.10.圆O 的方程为(x -3)2+(y -4)2=25,则点(2,3)到圆上的最大距离为________.11.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________________________.12.若实数x ,y 满足x 2+y 2=1,则y -2x -1的最小值是______. 三、解答题13.求过点A (1,2)和B (1,10)且与直线x -2y -1=0相切的圆的标准方程.四、探究与拓展14.设P(x,y)是圆C:(x-2)2+y2=1上任意一点,则(x-5)2+(y+4)2的最大值为() A.6 B.25 C.26 D.3615.已知x,y满足x2+(y+4)2=4,求(x+1)2+(y+1)2的最大值与最小值.。