一维波动方程的达郎贝尔公式
- 格式:doc
- 大小:186.50 KB
- 文档页数:7
一维波动方程的达郎贝尔公式1达郎贝尔公式在常微分方程的定解问题中,通常是先求方程的通解,然后利用定解条件确定通解所含的任意常数,从而得到定解问题的解。
考虑无限长弦的自由振动问题⎪⎪⎩⎪⎪⎨⎧=∂∂=>+∞<<∞-∂∂=∂∂==)(|),(|0, ,0022222x tu x u t x xu a t u t t φϕ ① 作自变量的代换⎩⎨⎧-=+=atx atx ηξ 利用复合函数的微分法有:ηξ∂∂-∂∂=∂∂uau a t u )2(22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u a t u 同理有:22222222ηηξξ∂∂+∂∂∂+∂∂=∂∂uu u x u 将①化为:02=∂∂∂ηξu并将它两端对η进行积分得:)(0ξξf u=∂∂ 其中)(0ξf 是ξ的任意函数,再将此式对ξ积分)()()()(),(2120ηξηξξf f f d f t x u +=+=⎰=)()(21at x f at x f -++ ②其中21f f 、是任意两次连线可微函数,式②即为方程①的含有两个任意函数的通解。
由初始条件可得:)()()(21x x f x f ϕ=+)()()(2''1x x f x af φ=+通过积分可得:⎰+-+-++=atx at x d aat x at x t x u ξξϕφϕ)(21)]()([21),(称此式为一维波动方程的达郎贝尔公式。
2解的物理意义由于波动方程的通解是两部分)(1at x f +与)(2at x f -。
)(22at x f u -=表示了以速度a 向x 轴正方向传播的行波,称为右行波。
同理,)(11at x f u +=表示了以速度a 向x 轴负方向传播的行波,称为左行波。
由达郎贝尔公式,解在点),(t x 的值由初始条件在区间],[at x at x +-内的值决定,称区间],[at x at x +-为点),(t x 的依赖区域,在t x-平面上,它可看作是过点),(t x ,斜率分别a1± 为的两条直线在x 轴上截得的区间。
常微分方程的达朗贝尔公式和Green公式常微分方程(Ordinary Differential Equations, ODEs)是数学的一个分支,研究的是只依赖于一维自变量的函数和它们的导数。
常微分方程是各个领域中最重要的数学工具之一,广泛应用于物理、工程、经济和生物等领域。
在解常微分方程时,达朗贝尔公式和Green公式是两个非常重要的公式。
本文将对它们的定义、性质和应用进行详细介绍。
达朗贝尔公式达朗贝尔公式(D'Alembert's formula)是解一维波动方程(Wave Equation)的经典公式。
一维波动方程是描述一维波动传播的方程,形式为:$$\frac{\partial^2 u}{\partial t^2}=c^2\frac{\partial^2 u}{\partial x^2}$$其中,$u(x,t)$是波函数,$c$是波速,$x$和$t$分别表示空间和时间。
由于常微分方程只有一个自变量,因此我们需要对时间或空间变量进行临时的剖分才能解决这类方程。
达朗贝尔公式给出了波函数在任意时刻和任意位置的解析表达式,形式为:$$u(x,t)=\frac{1}{2}[f(x+ct)+f(x-ct)]+\frac{1}{2c}\int_{x-ct}^{x+ct}g(y)dy$$其中,$f(x)$是初始波形(Initial Waveform),$g(x)$是初始速度(Initial Velocity),$c$是波速。
这个公式的第一项表示波源在$t=0$时刻释放的波形在$x$处的振幅随时间的变化,第二项表示波源在$t=0$时刻释放的波速在$x$处的振幅随时间的变化。
达朗贝尔公式的一个重要性质是线性叠加性。
如果有多个波源在不同位置、不同时刻释放波形和波速,那么它们的叠加波形可以通过将它们对应的达朗贝尔公式相加而得到。
这样,我们就可以用达朗贝尔公式求解复杂的波动问题。
Green公式Green公式(Green's formula)是解各种常微分方程的一个通用技巧。
第四章 行波法
一 一维波动方程的达郎贝尔公式 1达郎贝尔公式
在常微分方程的定解问题中,通常是先求方程的通解,然后利用定解条件确定通解所含的任意常数,从而得到定解问题的解。
考虑无限长弦的自由振动问题
⎪⎪⎩⎪⎪⎨
⎧=∂∂=>+∞<<∞-∂∂=∂∂==)
(|),(|0, ,0
022
2
22x t
u x u t x x
u a t u t t φϕ ① 作自变量的代换
⎩⎨
⎧-=+=at
x at
x ηξ 利用复合函数的微分法有:
η
ξ∂∂-∂∂=∂∂u
a
u a t u )2(22
2222
22η
ηξξ∂∂+∂∂∂-∂∂=∂∂u u u a t u
同理有:2
2222222ηηξξ∂∂+∂∂∂+∂∂=∂∂u
u u x u 将①化为:02=∂∂∂η
ξu
并将它两端对η进行积分得:
)(0ξξ
f u
=∂∂ 其中)(0ξf 是ξ的任意函数,再将此式对ξ积分
)()()()(),(2120ηξηξξf f f d f t x u +=+=⎰
=
)()(21at x f at x f -++ ②
其中21f f 、是任意两次连线可微函数,式②即为方程①的含有两个任意函数的通解。
由初始条件可得:
)()()(21x x f x f ϕ=+ )()()(2''
1x x f x af φ=+
通过积分可得:
⎰+-+-++=at
x at x d a
at x at x t x u ξξϕφϕ)(21)]()([21),(
称此式为一维波动方程的达郎贝尔公式。
2解的物理意义
由于波动方程的通解是两部分)(1at x f +与)(2at x f -。
)(22at x f u -=表示了以速度a 向x 轴正方向传播的行波,称
为右行波。
同理,)(11at x f u +=表示了以速度a 向x 轴负方向传播的行波,称为左行波。
由达郎贝尔公式,解在点),(t x 的值由初始条件在区间],[at x at x +-内的值决定,称区间],[at x at x +-为点),(t x 的
依赖区域,在t x -平面上,它可看作是过点),(t x ,斜率分
别a
1
± 为的两条直线在x 轴上截得的区间。
这里要掌握半无限长弦的自由振动问题和一维非齐次波动方程的柯西问题的解。
3 半限长弦的自由振动问题 定解问题
⎪⎪⎩
⎪
⎪⎨⎧=∂∂==>>∂∂=∂∂===)
10.4()(|),(|)9.4(0|)8.40,000022
2
22
(
, x t u
x u u x t x u a t u t x x φϕ 用延拓法求解,注意边界条件(4.9),采用奇延拓。
令
⎩⎨⎧<--≥=Φ 0),(0,)()(x x x x x ϕϕ
⎩⎨⎧<--≥=ψ
0),(0,)()(x x x x x φφ
考虑定解问题
⎪⎪⎩⎪⎪⎨
⎧ψ=∂∂Φ=>+∞<<∞-∂∂=∂∂== , )(|),(|0,0022
2
22x t
u x u t x x
u a t u t x 它的解可由达郎贝尔公式得:
⎰+-ψ+-Φ++Φ=at
x at x d a
at x at x t x U ξξ)(21)]()([21),(。
4 一维非齐次波动方程的柯西问题
定解问题
⎪⎪⎩⎪⎪⎨
⎧=∂∂=>+∞<<∞-+∂∂=∂∂==)12.4()(|),(|)11.4(0,),(0022
2
22 , x t
u x u t x t x f x
u a t u t x φϕ 令),(),(),(t x V t x U t x u +=,可将此定解分解成下面两个定解问题:
(I) ⎪⎪⎩⎪⎪⎨⎧=∂∂=>+∞<<∞-∂∂=∂∂== , )(|),(|0,00222
22x t u x u t x x
u a t u t x φϕ
(II) ⎪⎪⎩⎪⎪⎨⎧=∂∂=>+∞<<∞-+∂∂=∂∂== , 0|,0|0,),(0022
2
22t x t
u u t x t x f x
u a t u
其中问题(I)的解可由达朗贝尔公式给出: ⎰+-+-++=at
x at x d a
at x at x t x U ξξϕϕϕ)(21)]()([21),(。
对于问题(II),有下面重要的定理。
定理(齐次化原理)设),,(τωt x 是柯西问题
⎪⎪⎩⎪⎪⎨
⎧=∂∂=>∂∂=∂∂== , ),(|,0|22
2
22τωωτωωττx f t
t x
a t t x 的解)0(≥τ,则⎰=t
d t x t x V 0),,(),(ττω是问题(II)的解。
二 三维波动方程的柯西问题 1 三维波动方程的泊松公式 考
虑
三
维
波
动
方
程
的
柯
西
问
题
⎪⎪⎩⎪⎪⎨
⎧=∂∂=>+∞<<∞-∂∂+∂∂+∂∂=∂∂==)18.4(),,(|),,,(| 4.17(0,,, )(0022
22222
22 ) z y x t
u z y x u t z y x z u y u x u a t
u t t φϕ (1)三维波动方程的球对称解
如果将三维波动方程的空间坐标用球坐标表示,则波动方程化为:
2222
222sin 1)(sin sin 1)(1ϕ
θθθθ∂∂+∂∂+∂∂∂∂u
r u r r u r r r = ) (19.412
22t
u
a ∂∂ 如果波函数u 与θ,ϕ变量无关,而只与变量t r ,有关,即
u 是所谓球对称的,这时式可简化为:
)(122
r u r r r ∂∂∂∂=2221t
u
a ∂∂ )2(222
2
2r u r u r a t u ∂∂+∂∂=∂∂ 即有:2
2
2
22)()(r
ru a t ru ∂∂=∂∂。
这是关于的一维波动方程,其通解为:
)()(),(21at r f at r f t r ru -++=
从而)]()([1
),(21at r f at r f r
t r ru -++=即得到三维波动方程
关于原点为球对称的解。
(2)三维波动方程的泊松公式
⎪⎪⎩⎪⎪⎨
⎧=∂∂=>+∞<<∞-∂∂+∂∂+∂∂=∂∂==)18.4(),,(|),,,(| 4.17(0,,, )(00222222
222 ) z y x t
u z y x u t z y x z u y u x u a t
u t t φϕ 的解为:
=),,,(t z y x u t a ∂∂π41ds at M
at
S ⎰⎰),,(ζηξϕ+a π41ds at M at
S
⎰⎰
),,(ζηξϕ,称它为三维波动方程柯西问题的泊松公式。
这里要求掌握三维波动方程柯西问题的泊松公式的推导过程。
2降维法
利用三维波动方程柯西问题的泊松公式来导出二维波动方程柯西问题的解。
这种利用高维问题的解推导低维问题的方法称之为降维法。
二维波动方程的柯西的问题:
⎪⎪⎩⎪⎪⎨
⎧=∂∂=>+∞<<∞-∂∂+∂∂=∂∂==)
,(|),,(|0,,, )(0
022
222
22y x t
u y x u t z y x y u x u a t
u t t φϕ
令),,(),,(_
z y x u z y x u =,将上式的解视为特殊的三维问题,最后得到问题的解为:
⎰⎰
----∂∂
=M at
C
d d y x at t a t y x u ηξηξηξϕπ2
22)
()()()
,(21),,(+ +⎰⎰----∂∂M at
C
d d y x at t
a ηξηξηξφπ2
22)
()()()
,(21 称此式为二维波动方程柯西问题的泊松公式。
随了掌握这个公式,还要掌握这个公式的物理意义。