华理概率论习题4答案-2012
- 格式:pdf
- 大小:169.02 KB
- 文档页数:9
1第四章随机变量的数字特征I 教学基本要求1、理解随机变量的数学期望与方差的概念,掌握它们的性质与计算,会求随机变量函数的数学期望;2、掌握两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望与方差;3、了解切比雪夫不等式及应用;4、掌握协方差、相关系数的概念与性质,了解矩和协方差矩阵的概念;5、了解伯努利大数定理、切比雪夫大数定律、辛钦大数定理;6、了解林德伯格-列维中心极限定理、棣莫弗―拉普拉斯中心极限定理,掌握它们在实际问题中的应用.II 习题解答A 组1、离散型随机变量X 的概率分布为X -2 0 2 p0.400.300.30求()E X 、(35)E X +、2()E X ?解:()(2)0.4000.3020.300.2E X =-⨯+⨯+⨯=-;(35)3()5 4.4E X E X +=+=;2222()(2)0.4000.3020.30 1.8E X =-⨯+⨯+⨯=.2、某产品表面瑕疵点数服从参数0.8λ=的泊松分布,规定若瑕疵点数不超过1个为一等品,每个价值10元,多于4个为废品,不值钱,其它情况为二等品,每个价值8元求产品的平均价值?解:设X 为产品价格,则0X =、8、10.通过查泊松分布表可知其相应概率分布为X 0 8 10 p0.00140.80880.1898则()80.1898100.80889.61E X =⨯+⨯≈(元).3、设随机变量X 的分布函数为00()/40414x F x x x x ≤⎧⎪=<≤⎨⎪>⎩.求()E X ?解:由分布函数知X 的密度函数为1/404()0x f x <≤⎧=⎨⎩其它则4()()24x E X xf x dx dx +∞-∞===⎰⎰.4、设随机变量X 服从几何分布,即1()(1)k p X k p p -==-(1,2,)k = ,其中01p <<是常数.求()E X ?解:1111()(1)(1)k k k k E X kp p pk p +∞+∞--===-=-∑∑由级数2121123(1)k x x kx x -=+++++- (||1)x <,知 211()[1(1)]E X p p p =⨯=--.5、若随机变量X 服从参数为λ的泊松分布,即的泊松分布,即()!kp X k e k λλ-== (0,1,2,)k =求()E X 、2()E X ?解:1()!(1)!kk k k E X k ee ee k k λλλλλλλλλ-+∞+∞---======-∑∑;12201(1)()[]!(1)!!kk kk k k k k E X keee k k k λλλλλλλλ-+∞+∞+∞---===+===-∑∑∑1210[]()(1)!!k kk k e e e e k k λλλλλλλλλλλλ-+∞+∞--===+=+=+-∑∑. 6、某工程队完成某项工程的时间X (单位:月)服从下述分布X 10 11 12 13 p0.40.30.20.1(1) 求该工程队完成此项工程的平均时间;(2) 设该工程队获利50(13)Y X =-(万元).求平均利润? 解:(1)()100.4110.3120.2130.111E X =⨯+⨯+⨯+⨯=(月);(2) ()[50(13)]65050()100E Y E X E X =-=-⨯=(万元). 7、若随机变量X 服从区间[,]a b 上的均匀分布,即1()a x b f x b a ⎧≤≤⎪=-⎨⎪⎩其它求()E X 、2()E X ?解:()()2bax a b E X xf x dx dx b a +∞-∞+===-⎰⎰;22222()()3baxa ab b E X x f x dx dx b a +∞-∞++===-⎰⎰. 8、若随机变量X 服从参数为λ的指数分布,即的指数分布,即0()0x ex f x x λλ-⎧>=⎨≤⎩0求()E X 、2()E X ?解:0()()xxE X xf x dx x edxxdeλλλ+∞+∞+∞---∞===-⎰⎰⎰1xxxeedxλλλ+∞+∞--=-+=⎰;2222202()()2xxxE X x f x dxx edxx exedxλλλλλ+∞+∞+∞+∞----∞-∞===-+=⎰⎰⎰.9、离散型随机变量X 的概率分布为X 0 2 6 p3/12 4/12 5/12求()E X 、[ln(2)]E X +?解:34519()0261212126E X =⨯+⨯+⨯=;34513[ln(2)]ln(02)ln(22)ln(62)ln 21212126E X +=+⨯++⨯++⨯=.10、设2~(,)X N μσ,求(||)E X μ-?解:22()21(||)||2x E X x e dx μσμμπσ--+∞-∞-=-⎰令x t μσ-=,由偶函数性质有222022(||)()2t t E X e d μσσππ+∞--==⎰.11、设某商品需求量(10,30)X U ,销售商进货量n 在(10,30)之间,是一个整数.每销售一件商品获利500(元),若供小于求,每件产品亏损100(元).若供大于求,则从外地调运,每件商品可获利300(元).为使利润期望值不少于9280(元),进货量最少应为多少?解:按题意利润Y 与X 、n 的关系为500300()1030500100()1030n X n n X Y X n X X n +-≤<≤⎧=⎨--≤<≤⎩则利润平均值为10101()[[500100()][500300()]20n n E Y X n X dx n X n dx =--++-⎰⎰ 27.53505250n n =-++由题意知27.535052509280n n -++≥解得62263n ≤≤,则最少进货量为21.12、某保险公司规定,如果一年内顾客投保事件A 发生,则赔偿顾客a 元.以往资料表明事件A 发生的概率为p .为使公司收益期望值为0.1a ,则应向顾客收取都少保费?解:设应向顾客收取x 元保费,公司的收益为Y 元则Yx x a - p1p -p按题意()(1)()0.1E Y x p x a p a =-+-= 解得0.1x ap a =+.13、设随机变量X 的密度函数为1cos0()220x x f x π⎧≤≤⎪=⎨⎪⎩其它.对X 进行独立重复观测4次,Y 表示观测值大于/3π的次数,求2Y 的数学期望?解:显然~(4,)Y b p ,其中p 是(/3)X π>的概率,故31()cos 0.5322xp p Xdx πππ=>==⎰所以44()0.50.5kkkp Y k C -==⨯ (0,1,2,3,4)k =则有42244()0.50.55k kkk E Y k C -==⨯=∑.14、设随机变量X 、Y 相互独立,且都服从标准正态分布求22Z X Y =+的数学期望?解:由题意知X 、Y 的联合密度函数为2221(,)2x y f x y eπ+-=于是22222221()(,)2x y E Z x y f x y dxdy x y edxdy π++∞+∞+∞+∞--∞-∞-∞-∞=+=+⎰⎰⎰⎰令cos x r θ=、sin y r θ=得222222201()22r r E Z r e drd r e drππθπ+∞+∞--===⎰⎰⎰.15、已知(,)X Y 的分布如下,令max{,}Z X Y =,求()E Z ?YX0 5 10 15 0 0.02 0.06 0.02 0.10 5 0.04 0.15 0.20 0.10 100.010.150.140.01解:由题设可得Z 的分布为Z 0 510 15 p 0.020.25 0.52 0.21()00.0250.25100.52150.219.6E Z =⨯+⨯+⨯+⨯=.16、设(,)X Y 的联合密度函数为21201(,)0yy x f x y ⎧≤≤≤=⎨⎩其它求()E X 、()E Y 、()E XY 、22()E X Y +?解:12004()(,)125xE X xf x y dxdydx xy dy+∞+∞-∞-∞-∞===⎰⎰⎰⎰; 1303()(,)125x E Y yf x y dxdy dx y dy +∞+∞-∞-∞===⎰⎰⎰⎰;;131()(,)122xE XY xyf x y dxdy dx xy dy +∞+∞-∞-∞-∞===⎰⎰⎰⎰; 122222220016()()(,)()15xE XY xy f x y dxdydx xy y dy+∞+∞-∞-∞-∞+=+=+=⎰⎰⎰⎰. 17、设随机变量(,)X Y 的密度函数为1()02,02(,)8x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()E X ?解:22007()(,)()88xE X xf x y dxdyxy dxdy+∞+∞-∞-∞==+=⎰⎰⎰⎰. 18、甲乙二人相约在12:00~13:00之间会面,设X 、Y 分别表示甲乙到达时间,且相互独立已知X 、Y 的密度函数为2301()0x x f x ⎧<<=⎨⎩其它、201()0y y f y <<⎧=⎨⎩其它求先到达者需要等待时间的数学期望?解:等待时间可以表示为||X Y -,由于X 、Y 的联合密度函数为2601,01(,)0x y x y f x y ⎧<<<<=⎨⎩其它11200(||)||6E X Y x y x ydxdy ⇒-=-⎰⎰112200001()6()|64xyx y x ydydx y xx ydxdy =-+-=⎰⎰⎰⎰.19、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求数学期望()E X 、()E Y ?解:设(,)X Y 的联合密度函数为(,)(,)0(,)c x y G f x y x y G∈⎧=⎨∉⎩,由密度函数性质解出9/2c =下面分别求出边沿密度函数当12x -≤≤时,有22222()(2)99x X xf x dy x x +==+-⎰,故此 22(2)12()90X x x x f x ⎧+--≤≤⎪=⎨⎪⎩其它 当01y ≤≤时,有24()99y Y y f y dx y--==⎰当14y <≤时,有222()(2)99y Y y f y dx y y --==+-⎰,所以 40192()(2)1490Y y y f y y y y ⎧≤≤⎪⎪⎪=+-<≤⎨⎪⎪⎪⎩其它从而22121()()(2)92XE X xfx dx x x x dx +∞-∞--==+-=⎰⎰; 1401428()()(2)995Y E Y yf y dy y yd y y y dy +∞-∞-∞==++-=⎰⎰⎰. 20、离散型随机变量X 的概率分布为X -2 0 2 p0.40 0.30 0.30求()D X ?解:由题意易知()0.2E X =-、2() 1.8E X =,所以22()()[()] 1.80.04 1.76D X E X E X =-=-=.21、设随机变量X 的分布函数为00()/40414x F x x x x ≤⎧⎪=<≤⎨⎪>⎩.求()D X解:由题意易知X 的密度函数为1/404()0x f x <≤⎧=⎨⎩其它,且()2E X=,则242(2)4()(())()43x D X x E X f x dx dx +∞-∞-=-==⎰⎰. 22、若随机变量X 服从参数为λ的泊松分布,求()D X ? 解:由题意易知()E X λ=、22()E X λλ=+,故22()()[()]D X E X E X λ=-=.23、设随机变量(,)X Y 的密度函数为1()02,02(,)80x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()D X ?解:由题意易知7()8E X =,故2222001711()[()](,)()()8636D X x E X f x y dxdy x x y dxdy +∞+∞-∞-∞-∞=-=-+=⎰⎰⎰⎰. 24、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求方差()D X 、()D Y ?解:由题意易知22(2)12()90X x x x f x ⎧+--≤≤⎪=⎨⎪⎩其它、40192()(2)1490Y yy f y y y y ⎧≤≤⎪⎪=+-<≤⎨⎪⎪⎪⎩其它1()2E X =、8()5E Y =22222127()()(2)910X E X x f x dx x x x dx+∞-∞--==+-=⎰⎰14222214247()()(2)9914Y E Yy f y dyy ydyy y dy +∞-∞-∞==++-=⎰⎰⎰229()()[()]20D X E X E X =-=;22279()()[()]350D YE Y E Y =-=.25、设10只同种元件中由2只是坏的,装配仪器时,从中任取1只,如果是不合格品,则扔掉后重取1只,求取出合格品前取出次品数的方差?只,求取出合格品前取出次品数的方差?解:设X 表示取出合格品前已取出次品的数目,则X0 1 2 p8/10 16/90 2/90故2()9E X =、24()15E X =所以2288()()[()]405D XE X E X =-=.26、设随机变量X 的密度函数为||1()2x f x e -=.求()E X 、()D X ?解:||1()()02x E X xf x dx x e dx+∞+∞--∞-∞===⎰⎰; 222||2011()(())()222x xD XE X E X x f x dx x e dx x e dx +∞+∞+∞---∞-∞=-====⎰⎰⎰.27、设X 为随机变量,证明:对任意常数C ,有2()()D X E X C ≤-,当()C E X =时等号成立.证明:22222()(2)()2()E X C E X CX C E X CE X C -=-+=-+22222()[()]{[()]2())}()[()]E X E X E X CE X C D X E X C =-+-+=+-由于2[()]E X C -非负,从而有2()()D X E X C ≤-,且当()C E X =时2()()D X E X C =-.28、设U 服从(-2,2)上的均匀分布,定义X 、Y 如下1111U X U -<-⎧=⎨>-⎩、1111U Y U -<⎧=⎨>⎩求()D X Y +?解:先求X Y +的分布(2)(1,1)(1,1)(1)1/4p X Y p X Y p U U p U +=-==-=-=<-<=<-= (2)(1,1)(1,1)(1)1/4p X Y p X Y p U U p U +=====≥-≥=≥= (0)1(2)(2)1/2p X Y p X Y p X Y +==-+=-+=-=所以()0E X Y +=,从而2()()2D X Y E X Y +=+=.29、已知()750E X =、2()15D X =.请估计概率(700800)p X <<? 解:由切比雪夫不等式有2215(700800)(|750|50)10.9150p X p X <<=-<≥-≈.30、设()2E X =-、()1D X =、()2E Y =、()4D Y =、0.5XY ρ=-,利用由切比雪夫不等式估计概率(||6)p X Y +≥的上限?解:因为()0E X Y +=、()()()2(,)3D X Y D X D Y Cov X Y +=++=,所以,所以2()1(||6)(|()()|6)612D X Y p X Y p X YE X Y ++≥=+-+≥≤=. 31、设()4D X =、()9D Y =、0.5XY ρ=,求(23)D X Y -? 解:(,)()()3XY Cov X Y D X D Y ρ==(23)4()9()2(2,3)16813661D X Y D X D Y Cov X Y -=++-=+-=.32、设(,)X Y 的联合密度函数为21201(,)0yy x f x y ⎧≤≤≤=⎨⎩其它求(,)Cov X Y ?解:由题意易知4()5E X =、3()5E Y =、1()2E XY =,故 1431(,)()()()25550Cov X Y E XY E X E Y ⨯=-=-=⨯. 33、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求协方差(,)Cov X Y 与相关系数XY ρ?解:由题意易知1()2E X =、8()5E Y =、9()20D X =、279()350D Y =2221225()994x x G E XY xy dxdy xdx ydy +-===⎰⎰⎰⎰所以9(,)()()()20Cov X Y E XY E X E Y =-=; (,)0.751()()XYCov X Y D X D Y ρ=≈.34、设二维随机变量(,)X Y 的联合分布为YX-1 0 1 00.07 0.18 0.15 100.080.320.20求22(,)Cov X Y解:先求2X 、2Y 、22X Y 的分布2(0)0.4p X ==、2(1)0.6p X == 2(0)0.5p Y ==、2(1)0.5p Y == 22(0)0.72p X Y ==、22(1)0.28p X Y ==所以2()0.6E X =、2()0.5E Y =、22()0.28E X Y =,由此得222222(,)()()()0.02Cov X Y E X Y E X E Y =-=-.35、随机变量(,)X Y 的密度函数为201,11(,)0x x y f x y ≤≤-≤≤⎧=⎨⎩其它求()D X Y +?解:当01x <<时,有11()22X x f x d y x -==⎰;当01y <<时,有11()22Y y f y d x y -==⎰,故2()()3E X E Y ==、1()()18D X D Y == 由于(,)()()X Y f x y f x f y ≠,即X 与Y 不独立.所以11015()212xE XY xydxdy -==⎰⎰541(,)()()()12936Cov X Y E XY E X E Y =-=-=- 1()()()2ov(,)18D X Y D X D Y C X Y +=++=.36、将1枚硬币抛n 次,以X 、Y 分别表示正面向上与反面向上的次数,求(,)Cov X Y 、XY ρ解:由于X Y n+=,即Y n X=-,于是1XYρ=-;又因~(,0.5)X b n 、~(,,0.5)Y b n ,所以()()/4D X D Y n ==,故(,)(,)(,)()/4Cov X Y Cov X n X Cov X X D X n =-=-==.37、设X 与Y 独立,且都服从参数为λ的泊松分布,令2U X Y =+、2V X Y =-求U 与V 的相关系数?解:由于()(2)4()()5D U D X Y D X D Y λ=+=+= ()(2)4()()5D V D X Y D X D Y λ=-=+=所以(,)(2,2)Cov U V Cov X Y X Y =+-4()(,2)(2,)()3D X Cov Y X Cov X Y D Y λ=+--=由此得(,)35(),()XYCov X Y D X D Y ρ==. 38、设二维随机变量(,)X Y 的联合密度函数为1||0,01(,)0y x f x y <<<⎧=⎨⎩其它判断X 与Y 之间的相关性与独立性.解:由于12()3x xE X xdydx -==⎰⎰、、10()0x xE Y ydydx -==⎰⎰、10()0xxE XY xydydx -==⎰⎰,则(,)()()()0Cov X Y E X E Y E XY =-=故X 与Y 之间不相关;又因当01x <<时,有()2xXxf x dy x-==⎰,即201()0X x x f x <<⎧=⎨⎩其它同理可以求出110()1010X y y f x y y +-<<⎧⎪=-<<⎨⎪⎩其它由于(,)()()X Y f x y f x f y ≠,故X 与Y 之间不独立.39、设a 为区间(0,1)上一定点,随机变量(0,1)X U ,Y 是X 到a 的距离.问a 为何值时X 与Y 是不相关?解:由题设知()0.5E X =、||Y X a =-,所以11201()||()()2aaE Y x a dx a x dx x a dx a a =-=-+-=-+⎰⎰⎰3101()()()323a a a a E XY x a x dx x x a dx =-+-=-+⎰⎰31(,)3212a aCov X Y =-+令31(,)03212a a Cov X Y =-+=,可得方程2(21)(221)0a a a ---=在(0,1)内解得0.5a =,即0.5a =时,X 与Y 不相关. 40、设计算器进行加法计算时,所有舍入误差相互独立且在(0.5,0.5)-上服从均匀分布.(1) 将1500个数相加,问误差总和的绝对值超过15的概率是多少;(2) 最多可以有几个数相加,其误差总和的绝对值小于10的概率不小于0.90? 解:设第i 个数的舍入误差为i X (1,,)i n = ,故()0i E X =、()1/12i D X = (1,,)i n =记1ni i X X ==∑(1) 由林德伯格-列维中心极限定理有15001150001515000(||15)(||)15001/1215001/12i i x p X p =-⨯-⨯>=>∑151[2()1]0.180215001/12≈-Φ-=;(2) 由林德伯格-列维中心极限定理有1100100.90(||10)(||)2()11/121/121/12ni i x n n p X p n n n =-⨯-⨯≤<=≤≈Φ-∑即10()0.951/12n Φ≥,由于(1.645)0.95Φ=,则101.6451/12n ≥因此443.45n £,再由n 为整数得满足题意的个数为443.41、一批木材中有80%的长度不小于3m ,从中任取100根,求其中至少有30根长度短于3m 的概率?解:以X 表示100根木材中长度短于3m 的数目,则~(100,0.2)X b ,于是()20E X =,()16D X =.由于100n =较大,则由中心极限定理,近似有2~(20,4)X N ,由此有20302010(30)1(30)1()1()0.0062444X p X p X p --≥=-<=-<≈-Φ-=. 42、某商店出售价格分别为1(元)、1.2(元)、1.5(元)的3种蛋糕,种蛋糕,每种蛋糕被购买的概每种蛋糕被购买的概率分别为0.3、0.2、0.5.若某天售出300只蛋糕,(1) 求这天收入为400(元)的概率;(2) 求这天售出价格为1.2(元)蛋糕多于60只的概率?解:(1) 设第i 只蛋糕价格为iX (1,,300)i = .则i X的分布为i X1 1.2 1.5 p0.30.20.5于是可得() 1.29i E X =、2() 1.713iE X =、()0.0489i D X =令3001i i X X ==∑表示总收入,则由林德伯格-列维中心极限定理有300 1.29400300 1.29(400)()1(3.39)0.00033000.04893000.0489X p X p -⨯-⨯≥=>≈-Φ=⨯⨯;(2) 记Y 为300只蛋糕中售价为1.2(元)的蛋糕数目,则~(300,0.2)Y b ,于是()60E Y =、()48D Y =,由中心极限定理,近似有~(60,48)X N ,由此有606060(60)1()1(0)0.54848Y p Y p --≥=-<≈-Φ=.43、进行独立重复试验,每次试验中事件A 发生的概率为0.25.问能以95%的把握保证1000次试验中事件A 发生的频率与概率相差多少?此时A 发生的次数在什么范围内?解:设X 为1000次试验中事件A 发生的次数,则~(1000,0.25)X b ,由二项分布的性质知()250E X =、()187.5D X =,而事件A 发生的频率为/1000X .根据题意,可得如下不等式(|0.25|)0.951000X p ε-≤≥即(|250|1000)0.95p X ε-≤≥,由棣莫弗―拉普拉斯定理有25010001000(||)2()10.95187.5187.5187.5X p εε-≤≈Φ-≥即1000()0.975(1.96)187.5εΦ≥=Φ解得0.026ε³,这表明1000次试验中事件A 发生的频率与概率相差不超过0.026,相应的有1000次试验中事件A 发生的次数在224到276之间.44、某车间有同型号车床150台,在1小时内每台车床约有60%的时间在工作.假定各车床工作相互独立,工作时每台车床要消耗电能15kw.问至少要多少电能,才可以有99.5%的可能性保证此车间正常工作?解:以X 表示同时工作的车床数,则~(150,0.6)X b ,于是()90E X =、()36D X =,由题意知x 应使得下式成立(0)0.995p X x ≤≤≥由中心极限定理,近似有~(90,36)X N ,故有090909090(0)()()(15)0.9956666X x x p X x p ----≤≤=<<≈Φ-Φ-≥ 查标准正态分布表得90 2.586x -≥,即105.28x ≥,取整得106x =.故要保证车间有99.5%的可能性正常工作,需供电能151061590⨯=()kw .B 组1、将n 只球(1n 号)随机的装入n 只盒子(1n 号),一只盒子装一只球.若一只球装入的盒子与球同号,称为一个配对.记X 为配对数,求()D X ?解:引入随机变量i X (1,)i n = ,1i X =表示第i 号配对,0i X =表示第i 号不配对,则1n X X X =++ ,且1(1)i p X n ==(1,)i n = 即1()i E X n = (1,)i n =于是1()()1n E X E X X =++=因为i X 之间不独立,所以11111()()2(,)nn ni i i i j ii ij D X D X Cov X X -=====+∑∑∑∑下面考虑i j X X 的分布,由于i j X X 的取值只能是0、1,且1(1)(1,1)(1)i j i j p X X p X X n n =====- 所以1()(1)i j E X X n n =-,因此 21()()()()(1)i j i j i j Cov X X E X X E X E X n n =-=- 2211()21(1)nn D X Cnn n -⇒=+=-.2、设随机变量X 的分布函数为()F x ,其数学期望存在,证明()[1()]()E X F x dx F x dx +∞-∞=--⎰⎰.证明:00()()()()E X xf x dxxf x dxxf x dx +∞+∞-∞-∞==-⎰⎰⎰由于00()()()xxf x dxxdy f x dx +∞-∞=-⎰⎰⎰改变积分次序有00()(())()yxf x dxf x dx dyF y dy +∞-∞-∞-∞=-=-⎰⎰⎰⎰同理有()[1()]xf x dx F y dy +∞+∞=-⎰⎰ 0()[1()]()E X F x dxF x dx +∞-∞⇒=--⎰⎰.3、设随机变量X 的分布函数为0111()arcsin 11211x F x x x x π⎧<-⎪⎪=+-≤<⎨≥⎪⎩求()E X ?解:由上一题结论有()[1()]()E X F x dxF x dx +∞-∞=--⎰⎰111111[1arcsin ](arcsin )022x dx x dx ππ--=---+=⎰⎰.4、设连续随机变量X 的密度函数为()f x 若对任意常数c 有()()f c x f c x +=- (0)x >且()E X 存在.证明()E X c =.证明:令x t c =-则有()()()()()()E X xf x dxc t f c t dtcf c t dttf c t dt +∞+∞+∞+∞-∞-∞-∞-∞==++=+++⎰⎰⎰⎰由密度函数性质有()()cf c t dt cf c t dt c +∞+∞-∞-∞+=+=⎰⎰令u t =-,有()()()()tf c t dttf c t dtuf c u duuf c u du +∞+∞-∞-∞+=-=+=-+⎰⎰⎰⎰故()0tf c t dt +∞-∞+=⎰所以()E X c =.5、证明事件A 在一次试验中发生次数的方差不超过0.25.证明:设X 表示事件A 在一次试验中发生的次数,则(1,)X b p ,其中p 是事件A 发生的概率,则()(1)0D X p p =-≥由均值不等式得,当0.5p =时,()D X 有最大值0.25. 6、设随机变量X 服从几何分布,即1()(1)k p X k p p -==-(1,2,)k = ,其中01p <<是常数.求()D X解:1111()(1)(1)k k k k E X kp p p k p +∞+∞--===-=-∑∑由级数2121123(1)k x x kx x -=+++++- (||1)x <,知211()[1(1)]E X p p p =⨯=--又111[(1)](1)()(1)(1)k k k E X Xk k p Xk pk k p +∞+∞-==+=+==+-∑∑将21(1)x -的展开式两端求导得 1321223(1)(1)k x k kx x -=⋅+⋅++-+- 3222[(1)][1(1)]E X X pp p ⇒+==--222()()[()][(1)][()]D X E X E X E X X X E X ⇒=-=+-- 221[(1)]()[()]p E X X E X E X p-=+--=. 7、一只昆虫所生虫卵X 服从参数为λ的泊松分布,而每个虫卵发育成幼虫的概率为p ,且每个虫卵是否发育成幼虫相互独立,求一只昆虫所生幼虫数Y 的期望与方差?解:由题意知()!np X n en λλ-==(0,1,2,)λ= ,而n 个虫卵发育成k ()k n ≤个幼虫的概率为(|)(1)k kn knp Y k X n C p p -===- (0,1,,)k n =由全概率公式,对任意0,1,,k n = 有()()(|)(1)!nkkn kn n k n k p Y k p X n p Y k X n e C p p n λλ+∞+∞--========-∑∑(1)()[(1)]()()!()!!!k n kk kp pn k p p p p e e e e k n k k k λλλλλλλλ-+∞----=-===-∑即Y服从参数为pλ的泊松分布所以()()E Y D Y p λ==.8、设随机变量X 的密度函数()f x 是偶函数,且2(||)E X <+∞,证明X 与2X 不相关,但不独立.证明:因()f x 是偶函数,所以()xf x 、3()x f x 是奇函数,故此3()()0E X E X ==222(,)()()()0Cov X X E X X E X E X ⇒=⋅-=因而,X 与2X 不相关;选取0a >使得()1p X a ≤<,考察如下特定事件概率22(,)()()()p X a X a p a X a p X a p a X a ≤≤=-≤≤>≤-≤≤ 22()()p X a p X a =≤≤即2222(,)()()p X a X a p X a p X a ≤≤≠≤≤ 故X 与2X 不独立.9、设1X 、…、n X 中任意两个的相关系数都是ρ,试证:11n ρ≥--. 证明:因为111110()()2(,)nnni iiiji i i j D X D X Cov X X-====≤=+∑∑∑∑1111()2()()nni i i j i ij D X D X D X ρ-====+∑∑∑11111()[()()]()[1(1)]n ni ni i j i i i j i D X D X D X D X n ρρ-====≤++=+-∑∑∑∑11n ρ⇒≥--.。
华南理工大学概率论与数理统计期末考试试题及答案2004-2005学年第一学期一.单项选择题(每小题3分,共15分)1.设事件A和B的概率为则可能为()(A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为()(A) ; (B) ; (C) ; (D)以上都不对3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为()(A) ; (B) ; (C) ; (D)以上都不对4.某一随机变量的分布函数为,则F(0)的值为()(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为()(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A、B是相互独立的随机事件,P(A)=0.5, P(B)=0.7, 则=_____.2.设随机变量,则n=______.3.随机变量ξ的期望为,标准差为,则=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为_________.5.设连续型随机变量ξ的概率分布密度为,a为常数,则P(ξ≥0)=_______.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率(1) 4个球全在一个盒子里;(2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为(1) 求常数A; (2) 求P(ξ<1);(3) 求ξ的数学期望.五.(本题10分) 设二维随机变量(ξ,η)的联合分布是(1) ξ与η是否相互独立? (2) 求的分布及;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?(注:,)九.(本题6分)设事件A、B、C相互独立,试证明与C相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________.十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824假定重复测量所得温度.估计,求总体温度真值μ的0.95的置信区间. (注:,)解答与评分标准一.1.(D)、2.(D)、3.(A)、4.(C)、5.(C)二.1.0.85、2. n=5、3. =29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分(1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A)=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故--------------------------------------------------10分四.解:(1)---------------------3分(2)-------------------------------6分(3)------------------------------------10分五.解:(1)ξ的边缘分布为--------------------------------2分η的边缘分布为---------------------------4分因,故ξ与η不相互独立-------5分(2)的分布列为因此,-------10分另解:若ξ与η相互独立,则应有P(ξ=0,η=1)=P(ξ=0)P(η=1); P(ξ=0,η=2)=P(ξ=0)P(η=2);P(ξ=1,η=1)=P(ξ=1)P(η=1); P(ξ=1,η=2)=P(ξ=1)P(η=2);因此,但,故ξ与η不相互独立。
概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合; (3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB = (3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有1,2,3,4,5.从中任取3只,A —“最小为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验?解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、总机为300个用户服务.在一小时每一用户使用的概率等于0.01,求在一小时有4个用户使用的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------= 16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(xx F +=,则1)(0<<x F 因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P (3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率. 解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA = (2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-., 00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00030006),()(3032y y ex x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰C x x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 第九章 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx edy e dx dxdy y x f X Y P x xyxyxy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e e x二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y i n i in X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]服从均匀分布,Y 在区间[0,2]服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是zy x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为2X0 1 4 9即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X p pp p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=- 进一步有p pp p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x xx f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx x x dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求:(1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而 2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x e y x f +--=π.。
件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求: (1)乙箱中次品件数X 的数学期望; (2)从乙箱中任取一件产品是次品的概率.解 (1)X 的可能值为0,1,2,3,所以X 的概率分布为()()333360,1,2,3k kC C P X k k C -=== 即 X 0 1 2 3P120 920 920 120因此199130123202020202EX =⨯+⨯+⨯+⨯= (2)设A ={从乙箱中任取一件产品是次品},根据全概率公式有(){}{}30191921310202062062064k P A P X k P A X k =====⨯+⨯+⨯+⨯=∑三、(12)某保险公司对一种电视机进行保险,现有9000个用户,各购得此种电视机一台,在保险期内,这种电视机的损坏率为0.001,参加保险的客户每户交付保险费5元,电视机损坏时可向保险公司领取2000元,求保险公司在投保期内:(1)亏本的概率;(2)获利不少于10000元的概率。
解 101,2,,9000i i i i ξ⎧⎨⎩=第台电视机坏设=第台电视机正常9000900011{1}0.001{0}0.9990.0010.00099999i i i i iii i P P E D E D ξξξξξξ=========≈∑∑保险公司亏,则电视机坏的台数: >9000*5/2000=22.5900090009000122.51(4.5)0i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫>=>=-Φ≈⎨⎬⎩⎭⎪⎭∑∑∑ 保险公司获利不少于10000元,则电视机坏的台数:<(9000*5-10000)/2000=17.5900090009000117.5(2.83)(3)(2)(2)(2.832)0.97720.021450.830.99532i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫<=<=Φ⎨⎬⎩⎭⎪⎭Φ-Φ=Φ+-=+⨯=-∑∑∑四、(15分)设二维随机变量(),X Y 的概率分布为 YX -1 0 1-1 a 0 0.2 0 0.1 b 0.21 0 0.1 c其中a 、b 、c 为常数,且X 的数学期望0.2EX =- ,{}000.5P Y X ≤≤= ,记Z X Y =+.求: (1) a 、b 、c 的值; (2)Z 的概率分布律; (3){}P X Z =.解 (1)由概率分布的性质可知, 0.61a b c +++=,即0.4a b c ++=. 由0.2EX =-,可得0.1a c -+=-.再由{}{}{}0,00.1000.500.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,解得0.3a b +=.解以上关于a 、b 、c 的三个方程可得, 0.2,0.1,0.1a b c ===. (2)Z 的所有可能取值为-2,-1,0,1,2.则{}{}21,10.2P Z P X Y =-==-=-={}{}{}11,00,10.1P Z P X Y P X Y =-==-=+==-={}{}{}{}01,11,10,00.3P Z P X Y P X Y P X Y ===-=+==-+==={}{}{}11,00,10.3P Z P X Y P X Y ====+=== {}{}21,10.1P Z P X Y =====所以Z 的概率分布为Z -2 -1 0 1 2 P 0.2 0.1 0.3 0.3 0.1(3) {}{}000.10.10.10.2P X Z P Y b ====++=+=.五、(15分)设随机变量X 的概率密度为()110210 2 40 X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩当当其他令2Y X =,(),F x y 为二维随机变量(),X Y 的分布函数.求:(1)Y 的密度函数()Y f y ; (2) ()cov ,X Y ; (3) 1,42F ⎛⎫- ⎪⎝⎭.解 (1)Y 的分布函数为(){}{}2Y F y P Y y P X y =≤=≤当0y ≤时, ()()0,0Y Y F y f y ==. 当01y <<时,(){{}{00Y F y P X P X P X =≤≤=≤<+≤≤=()Y f y =当14y ≤<时,(){}{11002Y F y P X P X =-≤<+≤≤=()Y f y =当4y ≥时,()()1,0Y Y F y f y ==. 所以Y 的概率密度为()01140 Y y f y y <<⎪=≤<⎪⎩当当其他(2) ()0210111244X EX xf x dx xdx xdx +∞-∞-==+=⎰⎰⎰()022211546X EY EX x f x dx x dx +∞-∞-====⎰⎰()023********248X EXY EX x f x dx x dx x dx +∞-∞-===+=⎰⎰⎰故 ()2cov ,3X Y EXY EX EY =-⋅=(3) 2111,4,4,4222F P X Y P X X ⎛⎫⎧⎫⎧⎫=≤-≤=≤-≤⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭1111,22212224P X X P X P X ⎧⎫⎧⎫⎧⎫=≤-≤≤=-≤≤-=-≤≤-=⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭六、(2学分) (10分) 设随机变量X 与Y 独立,其中X 的概率分布为12~0.30.7X ⎛⎫ ⎪⎝⎭而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .解 设()F y 是Y 的分布函数,则由全概率公式可知,U X Y =+的分布函数为(){}G u P X Y u =+≤{}{}0.310.72P X Y u X P X Y u X =+≤=++≤={}{}0.3110.722P Y u X P Y u X =≤-=+≤-=由于X 与Y 独立,得(){}{}()()0.310.720.310.72G u P Y u P Y u F u F u =≤-+≤-=-+-因此,U 的概率密度为()()()()()()0.310.720.310.72g u G u F u F u f u f u '''===-+-=-+-七、(2学分)(10分)已知男子中有5%是色盲患者,女子中有0.25%是色盲患者,若从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解 设A {{抽到一名男性};B {{抽到一名女性};C {{抽到一名色盲患者},由全概率公式得11()(|)()(|)()5%0.25% 2.625%22P C P C A P A P C B P B =+=⨯+⨯=1()()(|)5% 2.5%2P AC P A P C A ==⨯=由贝叶斯公式得()20(|)()21P AC P A C P C ==八、(2学分)(16分)(1)设()12,,, 2n X X X n ≥为独立同分布的随机变量,且均服从()0,1N ,记X =121n i i X n -=∑,() 1,2,,i i Y X X i n =-=. 求:{}10n P Y Y +≤.(2)袋中有a 只红球,b 只白球,c 只黑球。