2003年南京理工大学自动控制原理考研试题
- 格式:pdf
- 大小:4.24 MB
- 文档页数:4
《 自动控制原理 》典型考试试题(时间120分钟)院/系 专业 姓名 学号第二章:主要是化简系统结构图求系统的传递函数,可以用化简,也可以用梅逊公式来求一、(共15分)已知系统的结构图如图所示。
请写出系统在输入r(t)和扰动n(t)同时作用下的输出C(s)的表达式。
G4H1G3G1G 2N(s)C(s)R(s)--+++二 、(共15分)已知系统的结构图如图所示。
试求传递函数)()(s R s C ,)()(s N s C 。
三、(共15分)已知系统的结构图如图所示。
试确定系统的闭环传递函数C(s)/R(s)。
G1G2R(s)-++C(s)-+四、(共15分)系统结构图如图所示,求X(s)的表达式G4(s)G6(s)G5(s)G1(s)G2(s)N(s)C(s)R(s)--G3(s)X(s)五、(共15分)已知系统的结构图如图所示。
试确定系统的闭环传递函数C(s)/R(s)和C(s)/D(s)。
G1G2R(s)-++C(s)-+D(s)G3G4六、(共15分)系统的结构图如图所示,试求该系统的闭环传递函数)()(s R s C 。
七、(15分)试用结构图等效化简求题图所示各系统的传递函数)()(s R s C一、(共15分)某控制系统的方框图如图所示,欲保证阻尼比ξ=0.7和响应单位斜坡函数的稳态误差为ss e =0.25,试确定系统参数K 、τ。
二、(共10分)设图(a )所示系统的单位阶跃响应如图(b )所示。
试确定系统参数,1K 2K 和a 。
三、(共15分)已知系统结构图如下所示。
求系统在输入r(t)=t 和扰动信号d(t)=1(t)作用下的稳态误差和稳态输出)(∞C2/(1+0.1s)R(s)-C(s)4/s(s+2)E(s) D(s)四、(共10分)已知单位负反馈系统的开环传递函数为:2()(2)(4)(625)KG s s s s s =++++试确定引起闭环系统等幅振荡时的K 值和相应的振荡频率ω五、(15分)设单位反馈系统的开环传递函数为12 )1()(23++++=s s s s K s G α若系统以2rad/s 频率持续振荡,试确定相应的K 和α值第三章:主要包括稳、准、快3个方面稳定性有2题,绝对稳定性判断,主要是用劳斯判据,特别是临界稳定中出现全零行问题。
热动2003级自动控制原理试题班级____________ 学号 姓名1. 拉氏变换与Z 变换(1) 求函数f (t )(见图1)的拉氏变换和Z 变换,其中采样周期T=1s 。
(10分)(2) 求21()32F s s s =++的原函数。
(5分)2. 传递函数(每小题5分,共15分)(1) 图2所示,假定质量块m 对地面无摩擦,试求系统的传递函数)()(s U s X 。
图2(2) 应用梅森公式求图3的传递函数。
(3) 求图4所示系统的闭环脉冲传递函数。
U r (S)U C (S)图1图3图43. 如图5所示控制系统 ,要求其阶跃响应性能指标σp 为16.3%,t p 为1s 。
试求K 与τ。
(15分)4. 已知系统的开环传函为 ,试画出其根轨迹图,并求稳定域。
(20分)5. 已知单位负反馈系统开环传递函数为 , 绘制Nyquist 图和对数幅频特性。
(25分)6. 判别系统稳定性(每小题5分,共10分)(1) 已知系统特征方程: (2) 图6为负反馈系统的开环幅相曲线,K =500,p =0,求系统的稳定范围。
图6(t)2)1)(s (s H(s)G(s)++=s K100G(s)H(s)(0.1s 1)(5s 1)s =++543226310s s s s s +++++=u图5热动2003级自动控制原理试题解题要点1. (1)由图可得f (t )的表达式为:)1(1)(1)(--=t t t f则:se e s s s F ss ---=-=111)(1m 1T 1),-(1 ),()]([=→==--t z F z mT t f F m 对于111)(1=---=∴-z z z z z z F(2)2111)1)(2(1231)(2+-+=++=++=s s s s s s s F(3分)2. (1)由牛顿运动定律可知: xm x x k u =--)(12 (1)1112)(x k x x k =- (2)由(2)得:x k k k x 2121+=代入(1)x k k k k xm u 2121++=设系统为零初始状态,对上式进行拉氏变换可得:212121)()(k k kk m s s U s X ++=(2)一条前向通道:43211G G G G P =三个回路:143211H G G G G L -=,2322H G G L -=, 3433H G G L -=tte e tf 2)(--+=∴ 1无不相交回路,则:)(134323214321H G G H G G H G G G G ----=∆ P 1与所有回路有共同节点:11=∆则:(3)3.(1)(2)(3)4. (1)三条根轨迹,全部终止于无穷远零点;3432321432143211111)()(H G G H G G H G G G G G G G G P s R s C +++=∆∆=()()()()()()E Z R Z B Z R Z GH Z E Z =-=-⋅()()1()R Z E Z GH Z =+()()()()()1()R Z G Z C Z G Z E Z GH Z ==+()()()()1()C Z G Z Z R Z GH Z Φ==+0.5 %3.16%10021/p =∴=⨯--=ξξξπσe ξσ⇒p rad/s3.63p t n 21=-=ξπωnp t , ωξ⇒222210)101(210(s) n s n s n K s s K ωξωωτ++=+++=Φ ⎪⎩⎪⎨⎧∴+==τξωω1012102 nK n ⎩⎨⎧==0.26332.1τK(2)实轴上根轨迹为[-1,0]、(-∞,-2] (3)三条渐近线, 与实轴的交点为: 与实轴的夹角为:(4)在区间[-1,0]的分离点为:or则: (不合理)(5)根轨迹与虚轴的交点:系统的特征方程为:02323=+++K s s s 令:ωj s =代入上述方程,取实部为0,得:由根轨迹可知,当0<K<6时,系统稳定。
课程教学大纲编号: 100102课程名称: 自动控制原理 学分 4.5 试卷编号:100102008 考试方式: 闭卷考试 考试时间: 120 分钟 满分分值: 100 组卷年月: 2000/5 组卷教师: 向峥嵘 审定教师; 陈庆伟一.选择题(10分):1. 若某系统的Bode 图已知,其低频处的幅频特性是一条斜率为20dB/dec -的直线,且当1=ω时幅值为20dB ,相频 90)0(-→ϕ,则该系统( )(1) 是0型系统;(2)是I 型系统;(3)开环放大倍数为10;(4)开环放大倍数为10;(5)有一个积分环节。
2. 在下列系统中,属于线性系统的有( )(1))()(20t ax t x i =; (2))()(2)(4)(000t x t x t x t xi =++ ; (3))(5)(4)(3)(2000t x t tx t x t x t i =++ ;(4))()()()()(20000t x t x t x t x t x i =++ ;3. 若系统(或元件)的某输入 输出的拉氏变换分别为)(),(0s x s x i ,对应的传递函数记为G(s),则( )(1) 在零出始条件下,)()(G(s)0s X s X i =; (2) )()(G(s)0s X s X i =,不管出始条件是否为零均成立; (3) 若g(t)为单位脉冲响应,则L[g(t)]G(s)=;(4) G(s)反映了系统本身的固有特性;(5) 因为G(s)表示某种比值,所以肯定没有量纲。
4.二阶系统的传递函数为4462++s s ,则系统( ) (1)为过阻尼系统; (2)为临界阻尼系统; (3)增益为6;(4)增益为1.5; (5)其阶跃响应为衰减振荡曲线。
5.在)(s R e >0的条件下,dt te st ⎰∞-0cos ω =( )(1)22ωω+s ; (2) 22ω+s s ; (3) 222ω+s s ; (4) 222ωω+s 二.判断题(10分):1. 单位负反馈系统的开环传递函数为)1()12(2++Ts s s k ,如果k 充分大系统就不稳定;( );2. 高阶系统的动态性能总可以近似用二阶系统的计算公式来计算系统的阶跃响应性能指标( );3. 线性定常系统的稳定性只与闭环系统特征根有关( );4. 系统的稳态误差有系统的开环放大倍数k ν及系统类型数来决定( );5. 开环稳定的系统将其闭环后的系统一定稳定( )。
课程教学大纲编号:100102课程名称:自动控制原理学分 4.5试卷编号:100102026考试方式:闭卷考试考试时间:120分钟满分分值:100组卷年月:2000/5组卷教师:向峥嵘审定教师;陈庆伟一.(20分)简答题1.试举例说明负反馈控制的基本原理,要求画出方框图。
2.频率特性的定义是什么?在Bode 图上各频段反映了系统哪方面的性能?3.对典型的二阶系统进行测速反馈校正,画出校正后系统的方框图,并简述校正原理和校正效果。
4.证明对于最小相位系统,当幅频特性已知时,有唯一确定的相频特性。
二.(5分)求图示网络的传递函数,其中)t (U c 是网络的输入电压,)t (U 0是网络的输出电压,R,L,C 分别是电容、电感、电阻的阻值、电感量及电容量。
三.(6分)设系统的脉冲响应函数如下,试求这些系统的传递函数。
)e e (.)t (g )()t sin(t )t (g )(t .t.20500202441051-=++=-π四.假设闭环传递函数为2222nn ns s ωξωω++的二阶系统在单位阶跃函数作用下的输出响应为)1.536.1sin(25.11)(2.1 +-=-t e t C t ,试计算系统的参数n ,ωξ,并通过ξ及n ω计算给足系统的调整时间和超调量。
(050.=∆)五.(10分)对于如图所示系统,试确定:1.使系统稳定的a 的值范围;2.试系统特征根均位于s 平面中的1-=e R 垂线左边的a 的值范围。
六.(9分)已知某系统的结构图如图所示,当输入)t (l )t (r =,干扰)(11.0)(t t n ⋅=时,求系统的稳态误差。
七.(15分)设单位反馈控制系统的开环传递函数为)s s )(.s )(s (s k )s (G *1365312++++=,试绘制系统的概略根轨迹,并分析系统的稳定性及阶跃响应的振荡性.八.(5分)已知二阶系统的开环幅相频率特性如图,其中p 为开环不稳定极点的个数,γ为开环积分环节的个数.试判断系统闭环的稳定性。
自控原理考研真题及答案自控原理是自动控制领域的基础课程,对于考研学生而言,掌握自控原理的知识非常重要。
为了帮助考生更好地备考自控原理,以下将介绍一道经典的自控原理考研真题,并给出详细的答案解析。
题目及答案如下:1.某控制系统的传递函数为G(s) = (s+2)/(s^2+6s+10),将其分解为部分分式后,若其阶数为n,则n等于多少?答案解析:根据题目给出的传递函数G(s),可以得到其分母的根为s^2+6s+10=0,通过求根公式可求得其根为s1=-3+j,s2=-3-j。
由于这两个根均为复根,所以传递函数为二阶系统。
因此,答案为n=2。
2.某开环系统的传递函数为G(s) = K/(s^3+4s^2+10s),若该系统为稳定系统,求参数K的范围。
答案解析:对于稳定系统来说,其特征多项式的所有根的实部都小于0。
根据题目给出的传递函数G(s),可以得到其特征多项式为s^3+4s^2+10s=0,通过求根公式可求得其根为s1=-1.33,s2=-0.67+j1.11,s3=-0.67-j1.11。
由于这三个根的实部均小于0,所以该系统为稳定系统。
由于K为传递函数的比例因子,不影响传递函数的特征根,所以参数K的范围可以取任意实数。
3.某系统的开环传递函数为G(s) = 10/(s+4),若该系统采用比例控制器,根据比例控制器的输出与输入的关系,求闭环传递函数。
答案解析:比例控制器的输出与输入的关系为C(s) = KpR(s),其中C(s)为比例控制器的输出,Kp为比例增益,R(s)为输入信号。
而闭环传递函数等于开环传递函数乘以比例控制器的传递函数,即T(s) = G(s)C(s)。
代入相应的数值,可得到T(s) = 10Kp/(s+4)。
4.某系统的开环传递函数为G(s) = 10/(s+5),若该系统采用积分控制器,根据积分控制器的输出与输入的关系,求闭环传递函数。
答案解析:积分控制器的输出与输入的关系为C(s) = KI/s,其中C(s)为积分控制器的输出,KI为积分增益,s为Laplace变换变量。
课程教学大纲编号: 100102课程名称: 自动控制原理 学分 4.5 试卷编号:100102021 考试方式: 闭卷考试 考试时间: 120 分钟 满分分值: 100 组卷年月: 2000/5 组卷教师: 向峥嵘 审定教师; 陈庆伟一.(10分)是非题:1. 闭环控制系统是自动控制系统,开环控制系统不是自动控制系统( )。
2.闭环控制系统的稳定性,与构成他的开环传递函数无关( ),与闭环传递函数有关( );以及与输入信号有关( )。
3.控制系统的稳态误差与系统的阶数有关( );与系统的类型有关;( ) 与系统的输入信号有关;( ),以及与系统的放大倍数有关。
( )4.前向通道传递函数为)k (s k02>的单位负反馈系统能无差的跟踪斜波信号( )。
5.最小相位系统是稳定的控制系统( )。
二.(10分)填空题图示系统的开环放大倍数为 ,静态位置误差为 ,静态速度误差为 ,误差传递函数)s (R )s (E 为 ,当输入信号4=)t (r 时,系统的稳态误差ss e 。
三.(10分)填空题在频率校正法中,串联超前校正是利用串联矫正装置在系统的 频区产生相角 ,以提高系统的 ,且使幅值穿越频率c ω ,从而系统的响应速度 。
串联滞后校正是利用校正装在 频区产生的特性,以使c ω ,达到提高 的目的,校正后的系统响应速度 。
四.(10分)计算作图题化简如图所示的结构图,并求闭环传递函数)s (R )s (C 。
五.(10分)一个开环传递函数为 )s (s k )s (G 1+=τ的单位负反馈系统,其单位阶跃响应曲线如图所示,试确定参数k 及τ。
六.(8分)设单位负反馈系统的开环传递函数为)s .(s )s (G 110100+=,试计算系统的响应控制信号t sin )t (r 5=时的稳态误差。
七.(10分)设某系统的开环传递函数为)Ts (s k)s (H )s (G 1+=,现希望系统特征方程的所有根都在a s -=这条线的左边区域内,试确定满足此要求k 的值和T 值的范围)a (0>。
课程名称: 自动控制原理 学分 4.5 教学大纲编号: 100102 试卷编号:100102035 考试方式: 闭卷考试 满分分值 100 考试时间: 120 分钟一.(15分)二.(5分)30=c三.(5分) sC )R R (s C R )s (U )s (U )s (G i 22122011+++== 四.(10分) 603400104002.t s s )s (n s ==++=ξωφ秒%%.n 4725020===σξω五.(12分)7502.a k ==六.(13分)(a)不稳定 (b)稳定;七.(15分) 2)a s (s a )s (H )s (G += 渐进线:3460-=±=a σϕ分离点:23221-=-=d d与虚轴交点:216j j a ±=±=ω轨迹如图示.在图上作 60=θ的射线,则与轨迹交点1s (对称2s )为满足50.=ξ的闭环极点,通过计算可得:88605021.j .s ,±-=,此时3=a八.(5分) )s .(s )s .()s (H )s (G 10201101002++=九.(10分)有图可知 00>>T ,k 系统稳定输入为正弦信号.故系统在正弦信号的作用下,稳态误差也为同频率的正弦量: kT s T s )s (R )s (E )s (E +++==11φ令ωj s = 则k T tg T tg )k ()T ()T (kT j T j )j (R )j (E )j (E +-+++=+++==--1111111222ωωωωωωωωωφ因为 0A )j (R =ω则根据频率特性的定义可直接得出稳态误差. )k T tg T tg t sin(A )k ()T ()T (e ss +-++++=--11111222ωωωωω十.(15分)0625751..)(c -=≈γω不稳 4614362..)(c =≈γω,稳定(3)串联超前校正;。
一、求下面电路的传递函数)()()()()()(1c 1s U s U s U s U s U s U o c o 、、并画出动态结构图。
(15分)解:将电路图参数用拉氏算子替代,将电路图重画并简化,步骤如下:(s)(5分)(1)R 3+sL(2)sLR R sL R R +++3232)(*(3)U 1(s)sLR R sL R R +++3232)(*(4)所以: 132323232011)(*)(*)()(R scsL R R sL R R sL R R sL R R s U s U ++++++++=(5分) 31)()(R sL sLs U s U c +=132323232301101)(*)(**)()(*)()()()(R scsL R R sL R R sL R R sL R R R sL sLs U s U s U s U s U s U c c +++++++++==系统的动态结构图为: (5分)本题考查要点: 电路图的数学模型和传递函数的关系,动态传递函数及结构图画法。
包含简单的电路简化过程。
二、对系统结构图进行简化并写出系统的开环传递函数、闭环传递函数、误差传递函数。
(15分)解:对结构图的简化过程如下:(10分)(1)(2)(3)(4)(5)所以系统的开环传递函数为:(5分)12151234323431)(*1)(H G G G G G H G G H G G G s G K ++++=121512343234312151234323431)(*111)(*1)(H G G G G G H G G H G G G H G G G G G H G G H G G G s G B +++++++++=12151234323431)(*111)()()(H G G G G G H G G H G G G s R s E s G E +++++==本题考查要点:结构图的简化方法(信号分支点和汇合点的移动、环节的合并)、几种传递函数的表示法。
自动控制原理题目含答案---------------------------------------《自动控制原理》复习参考资料一、基本知识11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。
2、闭环控制系统又称为反馈控制系统。
3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。
4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。
5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。
6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。
7、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为G1(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。
8、系统前向通道传递函数为G(s),其正反馈的传递函数为H(s),则其闭环传递函数为G (s)/(1- G(s)H(s))。
9、单位负反馈系统的前向通道传递函数为G(s),则闭环传递函数为G(s)/(1+ G(s))。
10、典型二阶系统中,ξ=时,称该系统处于二阶工程最佳状态,此时超调量为%。
11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。
12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。
13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。
14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。
15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。
16、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。
17、对于典型二阶系统,惯性时间常数T愈大则系统的快速性愈差。
越小,即快速性18、应用频域分析法,穿越频率越大,则对应时域指标ts越好19最小相位系统是指S右半平面不存在系统的开环极点及开环零点。
课程教学大纲编号: 100102课程名称: 自动控制原理 学分 4.5 试卷编号:100102033 考试方式: 闭卷考试 考试时间: 120 分钟 满分分值: 100 组卷年月: 2000/5 组卷教师: 向峥嵘 审定教师; 陈庆伟一.(13分)简答题1.试举一例负反馈控制的基本原理。
(要求画出方框图) 2. 写出PID 控制律的数学表达式;3. 系统的开环对数幅频率特性的中频段反映了控制系统的什么性能?通常应如何设置?4. 为什么要建系统的数学模型?常用的系统数学模型有哪些?(至少三种)。
二.(10分)选择题1.线性系统的传递函数与系统的( )有关;(1) 输入及输出; (2)输入; (3)结构; (4)输入及结构。
2.开环稳定的系统,其闭环( ),开环不稳定的系统,其闭环( );(1) 不一定稳定; (2)不一定不稳定;(3)一定稳定; (4)一定不稳定;3.传递函数中s 的量纲为( );(1)秒; (2)无量纲; (3)1-秒 (4)与具体的物理元件有关;4.静态误差系数描述了系统 稳态误差的大小,动态误差系数描述了系统动态过程误差大小,该说法( )。
(1)正确; (2)不正确; (3)不一定正确;5.当∞→ω时,各型系统的幅相曲线均趋于零,从第几象限趋于零取决于( );(1)分母的阶次; (2)分子的阶次;(2) 分母与分子的阶次和; (4)分母与分子的阶次和。
6.两个二阶系统系统的超调量相等,则此两个系统具有相同的( ); d n )(k )()()(ωξω43217.系统的幅频特性和相频特性取决于( );(1)系统的输入; (2)系统本身的结构和参数;(3)系统的输出; (4)初始条件。
8.一阶系统的时间常数越大,系统( );(1)响应速度越快; (2)精确度越高;(3)响应速度越慢; (4)精确度越低。
9.已知系统的传递函数为 s s .e )s (G 20-=,其相频特性)j (G ω为( )ωωωω-----+- 904209032090220901)(.)(.)(.)(三.(5分)如图所示系统,试画出其方框图,并求出传递函数。
第 1 页一、填空(每空1分,共18分)1.自动控制系统的数学模型有 、 、 、共4种。
2.连续控制系统稳定的充分必要条件是 。
离散控制系统稳定的充分必要条件是 。
3.某统控制系统的微分方程为:dtt dc )(+0.5C(t)=2r(t)。
则该系统的闭环传递函数 Φ(s)= ;该系统超调σ%= ;调节时间t s (Δ=2%)= 。
4.某单位反馈系统G(s)=)402.0)(21.0()5(1002+++s s s s ,则该系统是 阶 型系统;其开环放大系数K= 。
5.已知自动控制系统L(ω)曲线为:则该系统开环传递函数G(s)= ;ωC = 。
6.相位滞后校正装置又称为 调节器,其校正作用是 。
7.采样器的作用是 ,某离散控制系统)()1()1()(10210TT e Z Z e Z G -----=(单位反馈T=0.1)当输入r(t)=t 时.该系统稳态误差为 。
二. 1.求:)()(S R S C (10分)R(s)第2页2.求图示系统输出C(Z)的表达式。
(4分)四.反馈校正系统如图所示(12分)求:(1)K f=0时,系统的ξ,ωn和在单位斜坡输入下的稳态误差e ss.(2)若使系统ξ=0.707,k f应取何值?单位斜坡输入下e ss.=?第 3 页(1) (2) (3)五.已知某系统L (ω)曲线,(12分)(1)写出系统开环传递函数G (s ) (2)求其相位裕度γ(3)欲使该系统成为三阶最佳系统.求其K=?,γmax =?六、已知控制系统开环频率特性曲线如图示。
P 为开环右极点个数。
г为积分环节个数。
判别系统闭环后的稳定性。
第 4 页七、已知控制系统的传递函数为)1005.0)(105.0(10)(0++=s s s G 将其教正为二阶最佳系统,求校正装置的传递函数G 0(S )。
(12分)一.填空题。
(10分)1.传递函数分母多项式的根,称为系统的2. 微分环节的传递函数为3.并联方框图的等效传递函数等于各并联传递函数之4.单位冲击函数信号的拉氏变换式5.系统开环传递函数中有一个积分环节则该系统为 型系统。