第12章势垒贯穿-谐振子-氢原子
- 格式:ppt
- 大小:2.62 MB
- 文档页数:37
1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。
如果是经典力学问题,由于E >0ν,粒子不能越过势垒,将在0=x 处被势垒反弹回去。
作为量子力学问题,由于粒子的波动性,结论就不一样,可以证明,粒子将有一定概率透过势垒进入a x >区域而继续前进。
由于粒子的能量是给定的,而且粒子是从-∞=x 处射来,这是属于游离态的定态,波函数可以表示成()() /,iEt ex t x -=ψψ (2)空间波函数()x ψ满足定态薛定谔方程: ()ψψψνψmk x m 22222 =E =+''- (3) 亦即⎩⎨⎧≤≤=-''><=+''a x a x x k 0,0,0,022ψβψψψ (3a)(3b) 其中,2 mE k =)(20E m -=νβ (4) (3a )式的解为ikx e ±~ψ,考虑到“粒子由左方入射”这个边界条件,应取()⎩⎨⎧><+=-)5(,)5(0,Re b a x De a x Ae x ikx ikx ikx ψA 项为入射波,R 项为反射波,D 项为透射波。
由于并无粒子从右方入射,所以a x > 区域没有ikx e -项。
(3b )式的解为())5(0,c a x Ce Be x x x <<+=-ββψ透射概率相当大,由此可见在微观领域势垒贯穿现象是容易发生的。
隧道扫描显微镜就是用原子尺度的探针针尖在不到一个纳米的高度上扫描样品时,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流.电流强度随针尖与样品间的距离的减少而呈指数上升,当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起隧道电流不断发生改变.将电流的这种改变图象化就显示出原子水平的凹凸形态。
2020年学年第1学期考试试题及答案 (A )卷课程名称 《 量子力学 》 任课教师签名 出题教师签名 审题教师签名 考试方式 (闭)卷 适用专业 考试时间 (120 )分钟一、填空题(25分)1、(2分)Planck 的量子假说揭示了微观粒子的 特性,爱因斯坦的光量子假说揭示了光的 性。
2、(6分)氢原子处于状态()()()()()φθφθφθψ,23,21,,1,1211021--=Y r R Y r R r 中,则氢原子的能量值为 ;角动量平方值为 ;角动量在Z 轴方向分量的平均值为 。
3、(3分)电子处于某能态的寿命为81.0010s -⨯,则该能态能量的最小不确定度E ∆为 。
4、(3分)已知在阱宽为a 的无限深势阱中运动的粒子,设阱内粒子处于()x x =ψ的状态,则在该态下,能量的测值为E 1的几率为 。
5、(3分)一一维自由粒子的初态为()x p i e x 00,η=ψ,则(),x t ψ= 。
6、(2分)微观体系的状态波函数ψ满足的薛定谔方程为 。
7、(2分)量子力学中两力学量能同时有确定值的条件是 。
8、(4分)设体系处于202111Y c Y c +=ψ状态(已归一化,即12221=+c c ),则z L 的可能测值及平均值分别为 和 。
二、简答题(10分)1、(5分)简述势垒贯穿效应,并举例说明其在实际中的应用。
2、(5分)简要说明波函数和它所描写的粒子之间的关系。
三、证明题(10分)1、(5分)证明:在定态中,几率流密度与时间无关。
2、(5分)证明: iz y 1+=ψ为角动量算符x L ˆ的本征值为η的本征态。
四、计算 (55分)1、(15分)粒子在一维势阱()⎪⎩⎪⎨⎧>≤≤-<∞=a x a x U x x U 0000中运动(U 0>0),求证粒子的束缚态能量由式()()E E U E U a tg +--=⎥⎦⎤⎢⎣⎡+0022ημ决定。
三、简答题1、简述德布罗意假设?答:具有能量E 和动量P 的自由粒子与一个频率为ν、波长为λ的平面波相联系。
λυhp h E ==,。
2、Bohr 的原子量子论中,两个极为重要的假定是什么?答:原子具有离散能量的定态概念;两个定态之间的量子跃迁和频率条件。
3、德布罗意提出物质波的假定,即具有一定能量E 和动量p 的实物粒子相联系的波的频率和波长分别为多少? 答:,h E h pνλ== 4、德布罗意关系答:德布罗意关系:粒子的能量和动量与波的频率和波长之间的关系,正象光子和光波的关系一样。
,h E h p n k νωλ====。
5、简述德布洛意物质波假设的内容。
设目前肉眼能够看到的最小粒子(设其直径d =10-4厘米)的质量μ=10-12克,速度v =0.1厘米/秒,试计算该粒子的物质波波长(保留三位有效数字),并以此为例说明实物粒子的波动性为何一直未被发现(物理学常数:3410626.6-⨯=h 焦耳·秒)。
答:1923年,德布洛意根据物质世界普遍存在的对称性,认为既然光具有波粒二象性,那么对有质量的粒子也有类似的性质,于是提出了物质波的假设:以能量E ,动量p 运动的实物粒子表现为频率h E =ν,波长p h =λ的波。
对质量μ=10-12克、速度v =0.1厘米/秒的实物粒子,其物质波波长m m v h p h 162312341063.6101.010101063.6-----⨯=⨯⨯⨯⨯===μλ。
光作为波的主要特征表现在衍射和干涉上。
但是光的衍射和干涉却是有条件的,如果光的波长远远小于小孔的直径或双窄缝的间距,则光的小孔衍射和双窄缝干涉现象就不会发生,波的特征就显示不出来。
对物质波来说,也应该如此如果。
由上面的计算可知,对实物粒子,由于它的物质波波长总是远远小于它的直径,它的波动性显示不出来,在实际中也很难发现实物粒子的波动性。
6、简述德布洛意物质波假设的内容。
对电子(直径d ≈10-13厘米)其质量μ=9.1×10-28克,若电子经100伏电压加速,试计算此时电子的物质波波长(保留三位有效数字),并以此为例说明,相对于实物粒子,微观粒子为何能表现出明显的波动性。
《量子力学》试题(A) 答案及评分标准一、简答题(30分,每小题5分) 1.何谓势垒贯穿?是举例说明。
答:微观粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为势垒贯穿。
它是一种量子效应,是微观粒子波粒二象性的体现。
例如金属电子冷发射、α衰变等现象都是由隧道效应产生的,利用微观粒子势垒贯穿效应的特性制造了隧道二极管。
2.波函数()t r ,ψ是应该满足什么样的自然条件?()2,t r ψ的物理含义是什么? 答:波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。
()2,t r ψ表示在t 时刻r 附近τd 体积元中粒子出现的几率密度。
3.分别说明什么样的状态是束缚态、简并态、正宇称态和负宇称态?答:当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。
若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是本征值相应的简并度。
将波函数中的坐标变量改变一个负号,若新波函数与原波函数一样,则称其为正宇称态;将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
4.物理上可观测量应该对应什么样的算符?为什么?答:物理上可观测量对应线性厄米算符。
线性是状态叠加原理要求的,厄米算符的本征值是实数,可与观测值比较。
5.坐标x 分量算符与动量x 分量算符x pˆ的对易关系是什么?并写出两者满足的测不准关系。
答:对易关系为[] i ˆ,=x px ,测不准关系为2≥∆⋅∆x p x 6.厄米算符F ˆ的本征值nλ与本征矢n 分别具有什么性质? 答:本征值为实数,本征矢为正交、归一和完备的函数系二、证明题:(10分,每小题5分)(1)证明:i z y x =σσσˆˆˆ 证明:由对易关系z x y y x i σσσσσˆ2ˆˆˆˆ=-及反对易关系0ˆˆˆˆ=+x y y x σσσσ ,得z y x i σσσˆˆˆ=上式两边乘z σˆ,得2ˆˆˆˆz z y x i σσσσ= ∵ 1ˆ2=z σ ∴ i z y x =σσσˆˆˆ (2)证明幺正变换不改变矩阵的本征值。