锯齿波触发电路
- 格式:ppt
- 大小:880.50 KB
- 文档页数:20
锯齿波同步触发电路移相范围的调试方法
锯齿波同步触发电路是一种常用的电路,在调试时需要调整移相范围。
下面是一种常见的锯齿波同步触发电路移相范围的调试方法:
1. 连接锯齿波发生器:将锯齿波发生器的输出连接到同步触发电路的输入端。
2. 调整基准电压:根据需要,调整同步触发电路的基准电压,使其与锯齿波的波峰或波谷对齐。
调整基准电压通常使用移位电阻或电位器来实现。
3. 调整同步触发电路的移相电压:使用移位电阻或电位器调整同步触发电路的移相电压,使得当锯齿波的斜率达到特定阈值时,触发电路的输出触发。
通过调整移相电压,可以调整触发点在锯齿波上的位置。
4. 观察输出信号:连接示波器或其他信号监测设备,观察同步触发电路的输出信号。
根据需要调整移相电压,直到输出信号在所需的位置触发。
5. 测试和调整移相范围:在调试过程中,使用不同频率和振幅的锯齿波进行测试,确保同步触发电路在不同情况下都能正常触发。
如果需要调整移相范围,可以微调基准电压和移相电压,直到所需的移相范围达到。
注意事项:
- 在调试过程中,注意锯齿波和触发电路的电压匹配,确保输入信号在电路的工
作范围内。
- 调整移相电压时要小心,避免过高或过低的电压,可能导致触发不准确或损坏电路。
- 在调试锯齿波同步触发电路时,可以借助示波器等测试设备来实时监测信号,更加方便和准确地调整参数。
实验一锯齿波同步移相触发电路实验一、实验目地(1>加深理解锯齿波同步移相触发电路地工作原理及各元件地作用.(2>掌握锯齿波同步移相触发电路地调试方法.二、实验所需挂件及附件三、实验线路及原理锯齿波同步移相触发电路地原理图如图1所示.锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见电力电子技术教材中地相关内容.图1四、实验内容(1>锯齿波同步移相触发电路地调试.(2>锯齿波同步移相触发电路各点波形地观察和分析.五、预习要求(1>阅读电力电子技术教材中有关锯齿波同步移相触发电路地内容,弄清锯齿波同步移相触发电路地工作原理.(2>掌握锯齿波同步移相触发电路脉冲初始相位地调整方法.六、思考题(1>锯齿波同步移相触发电路有哪些特点?(2>锯齿波同步移相触发电路地移相范围与哪些参数有关?(3>为什么锯齿波同步移相触发电路地脉冲移相范围比正弦波同步移相触发电路地移相范围要大?七、实验方法(1>在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧地自藕调压器,将输出地线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03地“外接220V”端,按下“启动”按钮,打开DJK03电源开关,这时挂件中所有地触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔地电压波形.①同时观察同步电压和“1”点地电压波形,了解“1”点波形形成地原因.②观察“1”、“2”点地电压波形,了解锯齿波宽度和“1”点电压波形地关系.③调节电位器RP1,观测“2”点锯齿波斜率地变化.④观察“3”~“6”点电压波形和输出电压地波形,记下各波形地幅值与宽度,并比较“3”点电压U3和“6”点电压U6地对应关系.(2>调节触发脉冲地移相范围将控制电压U ct调至零(将电位器RP2顺时针旋到底>,用示波器观察同步电压信号和“6”点U6地波形,调节偏移电压U b(即调RP3电位器>,使α=170°,其波形如图2所示.图2锯齿波同步移相触发电路(3>调节U ct<即电位器RP2)使α=60°,观察并记录U1~U6及输出“G、K”脉冲电压地波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器地“V/DIV”和“t/DIV”微调旋钮旋到校准位置>.八、实验报告(1>整理、描绘实验中记录地各点波形,并标出其幅值和宽度.(2>总结锯齿波同步移相触发电路移相范围地调试方法,如果要求在U ct=0地条件下,使α=90°,如何调整?(3>讨论、分析实验中出现地各种现象.九、注意事项1.双踪示波器有两个探头,可同时观测两路信号,但这两探头地地线都与示波器地外壳相连,所以两个探头地地线不能同时接在同一电路地不同电位地两个点上,否则这两点会通过示波器外壳发生电气短路.为此,为了保证测量地顺利进行,可将其中一根探头地地线取下或外包绝缘,只使用其中一路地地线,这样从根本上解决了这个问题.当需要同时观察两个信号时,必须在被测电路上找到这两个信号地公共点,将探头地地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外.(2>因为脉冲“G”、“K”输出端有电容影响,故观察输出脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管地门极和阴极<或者也可用约100Ω左右阻值地电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极地阻值),否则,无法观察到正确地脉冲波形.。
锯齿波触发电路原理
锯齿波触发电路是一种用来产生精确的触发信号的电路。
它通常由一个锯齿波发生器和一个比较器组成。
锯齿波发生器产生一个周期性变化的锯齿波信号,该信号的幅值逐渐增加或递减。
比较器根据输入的参考电压与锯齿波信号进行比较,当锯齿波信号与参考电压相等时,比较器会输出一个触发信号。
锯齿波发生器通常由一个集成电路或者元件组成,例如电容器、电阻器和运算放大器。
它的工作原理是通过控制电容器的充放电过程来生成锯齿波信号。
当电容器充电到一个阈值电压时,锯齿波信号的方向将翻转,然后电容器会开始放电。
放电过程中,锯齿波信号的幅值逐渐减小,直到再次达到阈值电压,然后重复充放电过程。
比较器的作用是将锯齿波信号与参考电压进行比较。
当锯齿波信号的幅值达到参考电压时,比较器会输出一个触发信号。
这个触发信号可以用来控制其他电路或装置的操作。
例如,在音频设备中,锯齿波触发电路可用于触发音频信号的采样和处理。
总之,锯齿波触发电路通过产生周期性变化的锯齿波信号,并通过比较器来触发输出信号。
这种电路被广泛应用于许多领域,如音频设备、测量仪器和自动控制系统中的触发和同步功能。
《锯齿波同步移相触发电路实验》一、实验目的:1. 理解锯齿波同步移相触发电路的原理;2. 了解同步移相电路的特点和应用;3. 熟悉实验器材的使用方法和实验方法。
二、实验原理:同步移相电路是一种基本的信号处理电路,它是通过传输器件(如锯齿电压发生器,正弦波振荡器等)得到的两路同频信号对位移相,然后再将其中一路信号经过级联电路滤掉高频成分,剩下低频分量,然后再通过运算放大器输出到驱动器驱动被驱动器件,实现对被驱动器件进行同步控制的电路。
在同步移相电路中,特别常用的是锯齿波同步移相触发电路,其基本原理如下:锯齿波同步移相触发电路是用来控制脉冲宽度调制(PWM)的主要电路,它主要由一个锯齿波信号发生器、一个变压器和一个运算放大器组成。
锯齿波发生器产生的锯齿波,经过变压器的变换,使其输出信号与控制信号同步。
运算放大器将两路输入信号相减,再放大,从而得到控制信号,控制脉冲的宽度。
三、实验器材:锯齿波信号发生器、示波器、数字万用表、电源、电容、电阻等。
四、实验步骤:1. 准备实验器材,给锯齿波信号发生器和示波器供电。
2. 将锯齿波信号发生器连接到示波器,观察其输出波形是否为锯齿波。
3. 在示波器上调节触发电平,使锯齿波稳定地显示。
4. 观察变压器的接线方式,并将其连接到运算放大器的输入端。
5. 利用电容和电阻配置同步移相滤波电路,将锯齿波信号和控制信号按同频率输入至运算放大器的输入端。
6. 通过示波器观察输出脉冲波形是否符合预期。
五、实验结果与分析:1. 实验中锯齿波同步移相触发电路工作正常,输出脉冲波形均符合预期。
2. 实验结果表明,锯齿波同步移相触发电路能够很好地实现对脉冲宽度的控制,具有应用价值。
六、实验总结:本实验通过锯齿波同步移相触发电路的实验操作,加深了对同步移相电路的理解和应用,掌握了实验器材的使用方法和实验方法。
实验结果表明,锯齿波同步移相触发电路非常适合用于控制脉冲宽度。
实验一锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
(2)掌握锯齿波同步移相触发电路的调试方法。
二、实验所需挂件及附件三、实验线路及原理锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图1-1所示。
图1-1锯齿波同步移相触发电路原理图由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压UT来控制锯齿波产生的时刻及锯齿波的宽度。
由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R4、V3放电。
调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。
控制电压Uct、偏移电压Ub和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压Uct和偏移电压Ub的大小。
V6、V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图1-2所示。
图1-2 锯齿波同步移相触发电路I各点电压波形(α=900)四、实验内容(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
五、预习要求(1)阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。
(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。
六、思考题(1)锯齿波同步移相触发电路有哪些特点?(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?七、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
实验一锯齿波同步移相触发电路锯齿波同步移相触发电路可以用于控制交流电源的电压、电流、功率,通过对电压进行调整,可以实现互感器的接口对靠近完美的匹配,保证改进系统的响应倍率与稳态误差。
本实验采用Intersil公司的ICL8038作为电路的核心元件,利用其输出的锯齿波信号为基准信号,通过电容的充放电来控制相位移动,从而实现同步移相效果。
1. 实验原理1.1 ICL8038简介ICL8038是一个集成了三角波发生器、正弦波发生器、方波发生器、同步移相、调制等多种功能于一身的高性能集成电路。
它的主要用途是作为信号发生器和调制器,可广泛应用于精密测试设备、声音设备、电子管组成音频系统等领域。
1.2 同步移相同步移相是指在同一时刻对多种波形进行相位移动,使它们能够按照特定的规律呈现出合成波形,用于多路信号输入、混频器等电路中。
在此实验中,通过电容的充放电来控制相位,从而实现同步移相效果。
2. 实验电路实验电路图如下:其中,U1为ICL8038,C1为3.3μF电容器,C2为0.01μF电容器,R1为22kΩ电阻,R2为50kΩ电阻,R3为100kΩ电阻,P1为可调电位器,D1为1N4148二极管,V1为12V 交流电源。
3. 实验步骤3.1 按照电路图连接电路。
3.2 调节可调电位器P1,使输出的锯齿波信号的频率为1kHz左右。
3.3 将示波器探头分别接到U1的引脚3(VCO)和引脚5(SYNC IN)上,观察锯齿波的变化。
3.4 调节可调电位器P1,观察SYNC OUT引脚上的输出波形,当SYNC OUT的两个锯齿波相位差为180°时,可调电位器P1的位置即为同步移相的最佳位置。
3.6 调节电路参数,观察波形的变化。
4. 实验结果经过调节实验电路,可以得到如图4所示的同步移相输出波形:图4 同步移相输出波形从图5中可以看出,当电容器C1的值较小时,同步移相输出波形的变化比较明显,而当电容器C1的值较大时,同步移相输出波形的变化比较平滑。
简述三相全控桥式整流电路的锯齿波触发电路其调试步骤三相全控桥式整流电路是一种常用的电力电子器件,用于将交流电转换为直流电。
它的工作原理是通过调节桥式整流电路中的晶闸管的触发角,控制电流的方向和大小,从而实现对负载电压的调节。
锯齿波触发电路是控制晶闸管触发角的关键部分,它通过产生锯齿波信号来实现晶闸管的触发控制。
在三相全控桥式整流电路中,锯齿波触发电路的功能是产生一个包含6个周期的锯齿波信号,每个周期包含两个上升沿和一个下降沿。
触发脉冲通过晶闸管触发电路发送给晶闸管,来控制晶闸管的导通和关断。
调试三相全控桥式整流电路的步骤如下:1.检查连接:首先,检查电路的连接是否正确,包括电源、负载和电感的连接,确保电路连接无误。
2.调节电源:将交流电源连接到桥式整流电路中,逐步调节电源的输出电压,确保其达到设计要求。
3.选择触发电路:根据需要选择合适的锯齿波触发电路,同时检查触发电路的连接是否正确。
4.调节触发角:根据系统需求,调节晶闸管触发角。
触发角决定了晶闸管的触发时间和导通时间,进而影响负载电流的大小和方向。
5.测量电流和电压:使用示波器测量负载电流和电压,检查是否符合设计要求。
通过调节触发角和电源电压,实现对负载电流和电压的控制。
6.调整电源频率:根据需要,调整电源频率。
一般情况下,电源频率应与负载频率匹配,以提高整流效率和负载稳定性。
7.调试保护功能:确保电路正常工作,并实现过电流、过温等保护功能。
8.性能测试:对整个系统进行性能测试,包括负载响应、效率、稳定性等方面的测试。
9.优化调节:根据测试结果,对电路进行优化调节,以实现更好的性能和控制效果。
10.验证可靠性:确保整个电路的可靠性和稳定性,包括长时间运行测试和负载变化测试。
在调试过程中,需要注意安全事项,特别是对电源和高压部分的注意和保护。
同时,也需要注意电路的散热问题,避免过热导致故障和损坏。
总之,调试三相全控桥式整流电路的步骤主要包括检查连接、调节电源、选择触发电路、调节触发角、测量电流和电压、调整电源频率、调试保护功能、性能测试、优化调节和验证可靠性。
实验一 锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
(2)掌握锯齿波同步移相触发电路的调试方法。
二、实验所需挂件及附件三、实验线路及原理锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图1-1所示。
由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压UT 来控制锯齿波产生的时刻及锯齿波的宽度。
由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,图1-1锯齿波同步移相触发电路原理图电容C2通过R4、V3放电。
调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。
控制电压Uct、偏移电压Ub和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压Uct和偏移电压Ub的大小。
V6、V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图1-2所示。
图1-2 锯齿波同步移相触发电路I各点电压波形(α=900)四、实验内容(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
五、预习要求(1)阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。
(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。
六、思考题(1)锯齿波同步移相触发电路有哪些特点?(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?七、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。