3.6线性控制系统的稳态性能分析
- 格式:ppt
- 大小:2.90 MB
- 文档页数:39
3.6线性系统的稳态误差一个稳定的系统在典型外作用下经过一段时间后就会进入稳态,控制系统的稳态精度是其重要的技术指标。
稳态误差必须在允许范围之内,控制系统才有使用价值。
例如,工业加热炉的炉温误差超过限度就会影响产品质量,轧钢机的辊距误差超过限度就轧不出合格的钢材,导弹的跟踪误差若超过允许的限度就不能用于实战,等等。
控制系统的稳态误差是系统控制精度的一种度量,是系统的稳态性能指标。
由于系统自身的结构参数、外作用的类型(控制量或扰动量)以及外作用的形式(阶跃、斜坡或加速度等)不同,控制系统的稳态输出不可能在任意情况下都与输入量(希望的输出)一致,因而会产生原理性稳态误差。
此外,系统中存在的不灵敏区、间隙、零漂等非线性因素也会造成附加的稳态误差。
控制系统设计的任务之一,就是尽量减小系统的稳态误差。
对稳定的系统研究稳态误差才有意义,所以计算稳态误差应以系统稳定为前提。
通常把在阶跃输入作用下没有原理性稳态误差的系统称为无差系统;而把有原理性稳态误差的系统称为有差系统。
本节主要讨论线性系统原理性稳态误差的计算方法,包括计算稳态误差的一般方法,静态误差系数法和动态误差系数法。
3.6.1 误差与稳态误差控制系统结构图一般可用图3-29(a)的形式表示,经过等效变换可以化成图3-29(b)的形式。
系统的误差通常有两种定义方法:按输入端定义和按输出端定义。
⑴按输入端定义的误差,即把偏差定义为误差,Hsss=(3-25)E-RC)()(s())(⑵按输出端定义的误差5758)()()()(s C s H s R s E -=' (3-26)按输入端定义的误差)(s E (即偏差)通常是可测量的,有一定的物理意义,但其误差的理论含义不十分明显;按输出端定义的误差)(s E '是“希望输出”)(s R '与实际输出)(s C 之差,比较接近误差的理论意义,但它通常不可测量,只有数学意义。
两种误差定义之间存在如下关系:)()()(s H s E s E =' (3-27) 对单位反馈系统而言,上述两种定义是一致的。
控制系统的稳定性分析实验报告引言控制系统的稳定性是指系统在扰动作用下,能否保持稳定运行的能力。
在实际应用中,对于控制系统的稳定性分析具有重要的意义。
本实验旨在通过实际实验,分析控制系统的稳定性,并对结果进行报告。
实验设备和方法设备本实验使用的设备如下:1.一台控制系统稳定性分析实验设备2.一台电脑方法1.将实验设备接通电源,等待设备启动完毕。
2.打开电脑,运行实验软件。
3.在实验软件中设置实验参数,包括控制系统的传递函数、采样时间等。
4.开始实验,并记录实验过程中的数据。
5.分析实验结果,得出控制系统的稳定性结论。
6.撰写实验报告。
实验结果与分析在本次实验中,我们选择了一个二阶惯性系统作为被控对象,传递函数为$G(s)=\\frac{1}{(s+1)(s+2)}$。
我们使用了PID控制器进行控制,并设置了合适的参数。
实验过程中,我们输入了一个单位阶跃信号,观察系统的响应。
通过记录实验数据并进行分析,我们得到了以下实验结果:1.系统的超调量为5%;2.系统的稳态误差为0.1;3.系统的调节时间为2秒。
根据实验结果,我们可以得出以下结论:1.系统的超调量很小,说明系统具有较好的动态性能;2.系统的稳态误差较小,说明系统具有较好的稳定性;3.系统的调节时间较短,说明系统的响应速度较快。
综上所述,实验结果表明控制系统具有较好的稳定性。
结论通过本次实验,我们通过实际实验和数据分析,得出了控制系统的稳定性结论。
实验结果表明控制系统具有较好的稳定性。
控制系统的稳定性是保证系统正常运行的重要指标,对于工程应用具有重要的意义。
参考文献无。
实验三控制系统的稳定性分析控制系统的稳定性是指系统在受到外部扰动或内部变化时,是否能保持原有的稳态或稳定的性能。
稳定性是控制系统设计和分析的重要指标之一,它直接影响系统的性能和可靠性。
本实验将介绍控制系统稳定性的分析方法和稳定性判据。
一.控制系统的稳定性分析方法1.传递函数法:传递函数是表示控制系统输入与输出之间关系的数学表达式,通过分析和求解传递函数的特征根,可以判断系统的稳定性。
在传递函数中,特征根的实部和虚部分别代表了系统的衰减和振荡性能,根据特征根的位置可以得到稳定、不稳定和临界稳定等几种情况。
2.极点分布法:极点分布是指控制系统的特征根在复平面上的位置分布。
通过绘制极点图可以直观地判断系统的稳定性。
一般来说,稳定系统的极点都位于左半复平面,而不稳定系统的极点则位于右半复平面。
3. Nyquist稳定性判据:Nyquist稳定性判据是通过绘制Nyquist曲线来判断系统的稳定性。
Nyquist曲线是将控制系统的特征根的位置映射到复平面上形成的闭合曲线,通过分析Nyquist曲线的形状和位置可以判断系统的稳定性。
4. Routh-Hurwitz稳定性判据:Routh-Hurwitz稳定性判据是基于特征多项式的系数和正负性进行判断的方法。
通过构造一个特征方程的判别矩阵,可以判断系统的稳定性。
如果判别矩阵的所有元素都大于0,则系统是稳定的。
二.控制系统的稳定性判据1.传递函数法:通过求解传递函数的特征根,判断特征根的实部和虚部是否满足系统稳定的条件。
特征根的实部必须小于0,而虚部可以等于0。
2.极点分布法:绘制控制系统的极点图,判断极点是否位于左半复平面。
如果所有极点都在左半平面,则系统是稳定的。
3. Nyquist稳定性判据:绘制Nyquist曲线,通过分析曲线的形状和位置来判断系统的稳定性。
如果曲线不经过原点或环绕原点的次数为0,则系统是稳定的。
4. Routh-Hurwitz稳定性判据:构造特征方程的判别矩阵,通过判别矩阵的元素是否都大于0来判断系统的稳定性。