3[1].1控制系统的动态性能指标
- 格式:ppt
- 大小:283.50 KB
- 文档页数:13
动态性能指标生产工艺对控制系统动态性能的要求经折算和量化后可以表达为动态性能指标。
自动控制系统的动态性能指标包括对给定信号的跟随性能指标和对扰动输入信号的抗扰性能指标。
一、跟随性能指标在给定信号(或称参考输入信号)R(t)的作用下,系统输出量C(t)的变化情况可用跟随性能指标来描述。
当给定信号表示方式不同时,输出响应也不一样。
通常以输出量的初始值为零,给定信号阶跃变化下的过渡过程作为典型的跟随过程,这时的动态响应又称为阶跃响应。
一般希望在阶跃响应中输出量c(t)与其稳态值∞c 的偏差越小越好,达到∞c 的时间越快越好。
常用的阶跃响应跟随性能指标有上升时间,超调量和调节时间:1)上升时间r t在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值∞c 所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。
图2—22)超调量%σ在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:%100%max ⨯-=∞∞c c c σ (2—4)超调量反映系统的相对稳定性。
超调量越小,则相对稳定性越好,即动态响应比较平稳。
3)调节时间s t调节时间又称过渡过程时间,它衡量系统整个调节过程的快慢。
原则上它应该是从给定量阶跃变化起到输出量完全稳定下来为止的时间。
对于线性控制系统来说,理论上要到∞=t 才真正稳定,但是实际系统由于存在非线性等因素并不是这样。
因此,一般在阶跃响应曲线的稳态值附近,取()%2%5±±或的范围作为允许误差带,以响应曲线达到并不再超出该误差带所需的最短时间定义为调节时间,可见图2—2。
二、抗扰性能指标一般是以系统稳定运行中,突加负载的阶跃扰动后的动态过程作为典型的抗扰过程,并由此定义抗扰动态性能指标,可见图2—3。
常用的抗扰性能指标为动态降落和恢复时间:1)动态降落%max c ∆系统稳定运行时,突加一定数值的扰动(如额定负载扰动)后引起转速的最大降落值%max c ∆叫做动态降落,用输出量原稳态值1∞c 的百分数来表示。
3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C `闭环传递函数124.004.01)()()(2++==s s s R s C s φ单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s C t e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK !用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T sTs Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 203-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。
微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。
对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。
本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。
根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。
这里先引入时域分析法的基本概念。
所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。
由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。
当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。
下面先介绍常用的典型输入信号。
3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。
为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。
介绍控制系统的性能指标控制系统的性能指标是用来评价控制系统的表现和效果的重要指标。
在设计和开发控制系统时,了解和掌握这些性能指标对于提高系统的效率和性能非常重要。
本文将介绍控制系统的三个主要性能指标:精度、响应时间和稳定性。
精度精度是控制系统的一个重要指标,用来评估系统的输出与期望值之间的差异。
在控制系统中,我们希望系统的输出能够尽可能接近期望值,而精度就是衡量这种接近程度的度量。
通常,精度是通过计算系统的误差来衡量的。
误差是系统输出与期望值之间的差异,可以表示为一个数值或一个百分比。
较小的误差意味着系统的输出与期望值之间的差异较小,即精度较高。
响应时间响应时间是指控制系统从接收到输入信号到产生相应输出信号的时间间隔。
它反映了系统对于输入变化的灵敏度和快速反应的能力。
在控制系统中,响应时间的短暂与否对于控制效果和性能非常重要。
一个具有较短响应时间的控制系统可以更快地对输入变化做出反应,从而使系统更加稳定和可靠。
稳定性稳定性是指控制系统在面对外部扰动时能够保持输出的稳定性和可控性。
在控制系统中,我们希望系统的输出能够保持在期望范围内,而不会出现过大的波动或不稳定的情况。
稳定性可以通过控制系统的传递函数和频率响应来进行评估。
一个稳定的控制系统将产生平稳且可控的输出,而不会受到外部扰动的影响。
性能指标的关系精度、响应时间和稳定性在控制系统中密切相关,彼此影响。
精度和稳定性是控制系统的基本要求,而响应时间则是在满足精度和稳定性的前提下,对控制系统性能进行优化的重要考虑因素。
在设计和开发控制系统时,需要综合考虑这三个性能指标。
如果一个控制系统的精度较高但响应时间较长,那么系统的实时性和灵敏度可能会受到影响;如果一个控制系统的响应时间很短但稳定性较差,那么系统的输出可能会不稳定或发生超调。
因此,为了实现优秀的控制系统性能,需要在精度、响应时间和稳定性之间找到一个平衡点。
这就需要设计者在控制系统开发过程中合理选择和调整控制器参数、采用合适的控制策略以及优化系统的结构和组件。
2012~2013年(本)1、平波电抗器的大小是如何选择的?答:一般按低速轻载时保证电流连续的条件来选择,通常首先给定最小电流I(以A为单位),再利用它计算所需的总电感(以mH为单位)。
减去电枢电感,即得平波电抗应有的电感值。
2、转速负反馈单闭环有静差调速系统中,电枢电阻、转速反馈系数,这些参数变化时系统是否有调节作用?为什么?答:在电压负反馈单闭环有静差调速系统中,当放大器的放大系数Kp发生变化时系统有调节作用再通过反馈控制作用,因为他们的变化最终会影响到转速,减小它们对稳态转速的影响。
当电动机励磁电流、电枢电阻Ra发生变化时仍然和开环系统一样,因为电枢电阻处于反馈环外。
当供电电网电压发生变化时系统有调节作用。
因为电网电压是系统的给定反馈控制系统完全服从给定。
当电压反馈系数γ发生变化时,它不能得到反馈控制系统的抑制,反而会增大被调量的误差。
反馈控制系统所能抑制的只是被反馈环包围的前向通道上的扰动。
(无调节作用。
因为反馈控制系统所能抑制的只是被反馈包围的前向通道上的扰动。
)3、对于经常正、反运行的调速系统,理想的起动过渡过程应什么样?答:始终保持电流(电磁转矩)为允许的最大值,使调速系统以最大的加(减)速度运行。
当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。
(起动电流呈矩形波,转速按线性增长)4、什么是软起动器?答:当电压降低时,起动电流将随电压成正比地降低,从而可以避开起动电流冲击的高峰。
起动转矩与电压的平方成正比,起动转矩的减小将比起动电流的降低更多,降压起动时又会出现起动转矩不够的问题。
降压起动只适用于中、大容量电动机空载(或轻载)起动的场合。
5、对于通用变频器,所谓的“通用”有什么含义?答:一是可以和通用的笼型异步电动机配套使用;二是具有多种可供选择的功能,适用于各种不同性质的负载。
6、什么是正弦脉宽调制技术?答:由它们的交点确定逆变器开关器件的通断时刻,从而获得幅值相等、宽度按正弦规律变化的脉冲序列,这种调制方法称作正弦波脉宽调制7、比例积分控制中比例和积分部分各有什么特点?答:比例部分能迅速响应控制作用,积分部分则最终消除稳态偏差。
控制系统的动态性能指标自动控制系统的动态性能指标包括: ⒈跟随性能指标 ⒉抗扰性能指标下面分别介绍这两项性能指标。
O ±5%(或±2%))(t C ∞C ∞-C C max maxC ∞C 0tt r t s图1 典型阶跃响应曲线和跟随性能指标1. 跟随性能指标:在给定信号或参考输入信号的作用下,系统输出量的变化情况可用跟随性能指标来描述。
常用的阶跃响应跟随性能指标有— 上升时间tr从系统图加阶跃给定信号开始到响应第一次达到稳态值所经过的时间,它表征动态响应的快速性。
— 超调量与峰值时间p t在阶跃响应过程中,时间超过r t 以后,输出量有可能继续升高,到达最大值m ax C 以后回落。
m ax C 和稳态值∞C 之间的差与稳态值的比称为超调量,常用百分数表示,即%100max ⨯-=∞∞C C C σ超调量反映系统的相对稳定性。
超调量越小,相对稳定性越好。
系统阶跃响应从零开始,到达最大值m ax C 所经历的时间p t ,称为峰值时间p t 。
— 调节时间ts调节时间又称为过渡过程时间,它衡量整个输出量调节过程的快慢。
理论上线性系统的输出过渡过程要到∞=t 时才结束,但实际上由于存在各种非线性因素,过渡过程到一定时间就终止了。
为了在线性系统阶跃响应曲线上表示调节时间,认为响应进入稳态值附近一个小的误差带内(可取%5±或%2±)并不再出来时,系统的过渡过程就结束了。
将响应进入并不再超出该误差带所需要的时间定义为调节时间。
调节时间既反映了系统响应的快速性,也能反映系统的稳定性。
maxC ∆1∞C 2∞C ±5%(或±2%)CNNOtt mt vC b图2 突加扰动的动态过程和抗扰性能指标2. 突加阶跃扰动时抗扰性能指标控制系统稳定运行中,突然施加一个使输出量降低的阶跃扰动量以后,输出量由降低到恢复到新的稳态的过渡过程是系统典型的抗扰动过程,如图2所示。