第8章 功率谱估计-第1讲
- 格式:ppt
- 大小:3.27 MB
- 文档页数:64
功率谱估计引言:对信号和系统进行的分析研究、处理有两类方法:一类是在时域内进行,维纳滤波、卡尔曼滤波以及自适应滤波等都属于时域处理方法;另一类方法是频域研究方法。
对于确定性信号,傅里叶变换是在频率分析研究的理论基础,但是在实际生活中大多数信号是随机信号,而随机信号的傅里叶变换是不存在的,在实际应用中,通常通过采集和观测平稳随机过程的一个抽样序列的一段(有限个)数据,根据这有限个已知的数据来估计随机过程的功率谱问题来对随机信号进行分析,这即是频率谱估计。
功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内通过用某种有效的方法来估计出其功率谱密度,从而得出信号、噪声及干扰的一些性质来,提取被淹没在噪声中的有用信号。
功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。
谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。
按照Weiner —Khintchine 定理,随机信号的功率谱和其自相关函数服从傅里叶变换关系,可以得出功率谱的一个定义,如公式(1)所示:()jwm m xx jw xx e m re P -∞-∞=∑=)( 公式(1)对于平稳随机信号,服从各态历经性,集合平均可以用时间平均来代替,可以推出功率谱的另一定义。
如公式(2)所示:()])(121[2lim ∑-=-∞→+=N N n jwn N jw xx e n x N E e P 公式(2)频率谱估计主要分为经典谱估计和现代谱估计,经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有相关法和周期图法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR 参数模型。
功率谱估计功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。
谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。
维纳滤波、卡尔曼滤波,可用于自适应滤波,信号波形预测等(火控系统中的飞机航迹预判)。
如果我在噪声中加入一个信号波形。
要完全滤波出我加入的信号波形,能够做到吗?如果知道一些信息,利用一个参考信号波形,可利用自适应滤波做到(信号的初始部分稍有失真)。
功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。
下面对谱估计的发展过程做简要回顾:英国科学家牛顿最早给出了“谱”的概念。
后来,1822年,法国工程师傅立叶提出了著名的傅立叶谐波分析理论。
该理论至今依然是进行信号分析和信号处理的理论基础。
傅立叶级数提出后,首先在人们观测自然界中的周期现象时得到应用。
19世纪末,Schuster提出用傅立叶级数的幅度平方作为函数中功率的度量,并将其命名为“周期图”(periodogram)。
这是经典谱估计的最早提法,这种提法至今仍然被沿用,只不过现在是用快速傅立叶变换(FFT)来计算离散傅立叶变换(DFT),用DFT的幅度平方作为信号中功率的度量。
周期图较差的方差性能促使人们研究另外的分析方法。
1927年,Yule提出用线性回归方程来模拟一个时间序列。
Yule的工作实际上成了现代谱估计中最重要的方法——参数模型法谱估计的基础。
Walker利用Yule的分析方法研究了衰减正弦时间序列,得出Yule-Walker方程,可以说,Yule和Walker都是开拓自回归模型的先锋。
1930年,著名控制理论专家Wiener在他的著作中首次精确定义了一个随机过程的自相关函数及功率谱密度,并把谱分析建立在随机过程统计特征的基础上,即,“功率谱密度是随机过程二阶统计量自相关函数的傅立叶变换”,这就是Wiener—Khintchine定理。
功率谱估计1.0简介数字信号处理(DSP)重要的应用领域之一,是建立在周期信号和随机信号基础上的功率谱估计。
语音识别问题,利用谱分析作初步测量,经语音带宽测试,并进行进一步声学处理。
声纳系统可以利用先进的谱分析技术找出潜艇和水面舰艇的位置。
谱测量雷达则可用来获取目标位置和速度信息等。
各种谱分析包含的测量是无限的,本文将会提供一个关于功率谱估计的简短介绍和基本概念。
功率谱估计是基于统计的,涵盖了各种数字信号处理的概念,本文试图通过提供足够的背景及其内容和附录,使讨论更加顺畅。
对于那些熟悉初步背景和寻求快速引入谱估计的人,第6.0至11.0节应足以满足他们的需要。
最后,是工程师寻求测量功率谱的更严格的开发和更新的技术,这种探索可以查询列在附录D和现有技术社会优秀出版物里面的参考文献。
作为一个简要介绍和快速查找,请参考这篇文章的目录。
目录章节描述附录A 描述* 简介* 概念的概率,随机变量和随机过程* 什么是谱* 概率的定义* 能源和功率* 联合概率* 随机信号* 条件概率* 基本估计理论 *概率密度函数(PDF)* 周期 *累积分布函数(cdf)* 谱估计的平均周期 *均值,方差和标准差* 窗函数 *两种联合散发随机变量函数* 谱估计使用Windows稳定单周期 *联合累积分布函数* 谱估计平均周期 *联合概率密度函数* 程序功率谱密度估计 *统计的独立性* 决断 *边际分布和边际密度函数* 卡方分布 *术语:确定性,稳定性* 结论 *联合要素* 鸣谢 *相关函数附录*交互时间整合与期望*卷积*参考资料2.0 什么是谱?谱是一种关系,通常表示一些信号与频率的相对值表示。
每一个物理现象,无论是电磁,热,机械,液压或任何其他系统,具有独特的谱与它相关。
在电子方面,这种现象正在处理的信号,一般是作为固定电器或变电器的电压,电流和功率。
这些数量在时间域内被典型地描述,并且为时间作用,f( t),一个等效频域公式F (w)明确地描述频率构成要素,可以找到(频率谱)要求引起f (t)一个关于时间域和它所对应的频域表示法的关系的研究,其主要内容是傅里叶分析和傅里叶变换。
功率谱估计的方法
功率谱估计是信号处理中常用的一种方法,用于分析信号在频域内的特点,通常可以分为以下几种方法:
一、经典方法
1.傅里叶变换法:将时域信号通过傅里叶变换变换到频域,然后计算功率谱密度。
2.自相关法:通过自相关函数反映信号的统计平稳性,然后通过傅里叶变换计算功率谱密度。
3.周期图法:将信号分解为若干个周期波形,然后对每个周期波形进行傅里叶变换计算周期功率谱,最后汇总得到整个信号的功率谱。
二、非经典方法
1. 时-频分析法:如短时傅里叶变换(STFT)、小波变换等,将信号分解为时域和频域两个维度的分量,从而可以分析信号在时间和频率上的变化。
2. 基于协方差矩阵的特征值分解法:通过建立协方差矩阵,在张成空
间中求解特征向量,从而达到计算信号功率谱的目的。
3. 基于频率锁定法:如MUSIC法、ESPRIT法等,是一种利用特定信号空间中的特定模式进行处理的方法。
以上方法各有特点,根据实际需求选择不同的方法可以得到相应的功率谱估计结果。
功率谱估计浅谈摘要:介绍了几种常用的经典功率谱估计与现代功率谱估计的方法原理,并利用Matlab对随机信号进行功率谱估计,对两种方法做出比较,分别给出其优缺点。
关键词:功率谱;功率谱估计;经典功率谱估计;现代功率谱估计前言功率谱估计是从频率分析随机信号的一种方法,一般分成两大类:一类是经典谱估计;另一类是现代谱估计。
由于经典谱估计中将数据工作区以外的未知数据假设为零,这相当于数据加窗,导致分辨率降低和谱估计不稳定。
现代谱估计则不再简单地将观察区外的未知数据假设为零,而是先将信号的观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。
周期图、自相关法及其改进方法(Welch)为经典(非参数)谱估计方法, 其以相关和傅里叶变换为基础,对于长数据记录较适用,但无法根本解决频率分辨率低和谱估计稳定性的问题,特别是在数据记录很短的情况下,这一问题尤其突出。
以随机过程的参数模型为基础的现代参数法功率谱估计具有更高的频率分辨率和更好的适应性,可实现信号检测或信噪分离,对语音、声纳雷达、电磁波及地震波等信号处理具有重要意义,并广泛应用于通信、自动控制、地球物理等领域。
在现代参数法功率谱估计方法中,比较有效且实用的是AR模型法,Burg谱估计法,现代谱估计避免了计算相关,对短数据具有更强的适应性,从而弥补了经典谱估计法的不足,但其也有一些自身的缺陷。
下面就给出这两类谱估计的简单原理介绍与方法实现。
经典谱估计法经典法是基于传统的傅里叶变换。
本文主要介绍一种方法:周期图法。
周期图法由于对信号做功率谱估计,需要用计算机实现,如果是连续信号,则需要变换为离散信号。
下面讨论离散随机信号序列的功率谱问题。
连续时间随机信号的功率谱密度与自相关函数是一对傅里叶变换对,即:()()j x x S R e d +∞-Ω-∞Ω=⎰τττ若()x R m 是()x R Ω的抽样序列,由序列的傅里叶变化的关系,可得()()j j n x x m S e R m e ωω∞-=-∞=∑即()j x S e ω与()x R m 也是一对傅里叶变换对。
功率谱密度估计
功率谱密度估计是一种用于估计信号的功率谱密度的方法。
功率谱密度指的是一个信号在频域上的能量分布情况。
常见的功率谱密度估计方法有:
1. 周期图法:将信号分成一系列周期为N的子段,对每个子
段进行傅里叶变换,然后求平均得到估计的功率谱密度。
2. 平均势谱法:将信号分成若干个重叠的子段,对每个子段进行傅里叶变换,然后对各个子段的功率谱密度进行平均得到估计的功率谱密度。
3. Welch方法:在平均势谱法的基础上,将信号分成多个子段,并对每个子段进行窗函数加权处理,然后对加权后的子段功率谱密度进行平均得到估计的功率谱密度。
4. 自相关法:通过计算信号的自相关函数来估计功率谱密度。
自相关函数表示信号的不同时间点之间的相关性。
这些方法在实际应用中有各自的优缺点,选择合适的方法需要考虑信号的特点以及其他要求,例如信号的长度、频率分辨率等。
课程设计功率谱估计一、教学目标本章节的教学目标是使学生掌握功率谱估计的基本概念、方法和应用。
具体来说,知识目标包括:了解功率谱估计的定义、意义和基本原理;掌握常用的功率谱估计方法,如矩估计、最大似然估计等;了解功率谱估计在信号处理、通信等领域中的应用。
技能目标包括:能够运用功率谱估计方法解决实际问题;能够使用相关软件工具进行功率谱估计。
情感态度价值观目标包括:培养学生的创新意识和团队合作精神;使学生认识到功率谱估计在工程实际中的重要性,激发学生对相关领域的研究兴趣。
二、教学内容本章节的教学内容主要包括功率谱估计的基本概念、方法和应用。
具体包括以下几个方面:功率谱估计的定义和意义;常用的功率谱估计方法,如矩估计、最大似然估计等;功率谱估计的性质和性能比较;功率谱估计在信号处理、通信等领域中的应用。
三、教学方法为了实现本章节的教学目标,我们将采用多种教学方法,如讲授法、讨论法、案例分析法、实验法等。
在教学过程中,我们将注重理论与实践相结合,引导学生通过实际案例来理解和掌握功率谱估计的方法和应用。
同时,我们将鼓励学生积极参与讨论,培养学生的创新意识和团队合作精神。
四、教学资源为了支持本章节的教学内容和教学方法的实施,我们将准备以下教学资源:教材和相关参考书,用于引导学生学习和理解功率谱估计的基本概念和方法;多媒体资料,用于展示和分析功率谱估计的实例;实验设备,用于让学生亲手实践功率谱估计的方法和应用。
同时,我们还将利用网络资源,提供相关的学习资料和软件工具,以便学生能够更好地学习和应用功率谱估计。
五、教学评估本章节的教学评估将采用多元化的评估方式,以全面、客观、公正地评价学生的学习成果。
评估方式包括平时表现、作业、考试等。
平时表现主要考察学生的课堂参与度、讨论发言等,以评估学生的主动性和积极性。
作业主要考察学生对功率谱估计方法和应用的理解和掌握,通过布置相关的练习题和案例分析题,让学生能够巩固所学知识。
功率谱估计概念
功率谱估计是对信号的功率谱密度进行估计的过程,是信号处理中的基本问题之一。
功率谱密度描述了信号中不同频率分量的功率分布,对于分析信号的频域特性、噪声抑制、信号识别等领域具有重要意义。
在许多实际应用中,我们常常需要从采集到的信号数据中估计其功率谱。
这是因为功率谱是描述信号本质特征的重要手段,能帮助我们了解信号中各个频率分量的强度和分布情况。
比如在通信、雷达、音乐、语音处理、生物医学工程等领域,都需要对信号的功率谱进行估计和分析。
传统的功率谱估计方法包括周期图法、自相关法、Burg法等。
但这些方法通常需要较长的数据样本,并且对数据的预处理和窗函数选择敏感,计算复杂度也较高。
随着现代信号处理技术的发展,新的功率谱估计方法不断涌现,如基于小波变换的方法、基于神经网络的方法等。
这些新方法能够更准确地估计信号的功率谱,并且对噪声和干扰具有较强的鲁棒性。
在估计信号的功率谱时,我们需要关注估计的精度、稳定性、计算复杂度等问题。
不同的应用场景对功率谱估计的要求也不同,需要根据实际情况选择合适的方法。
同时,功率谱估计也是信号处理领域中一个富有挑战性的研究方向,仍有许多问题需要进一步研究和探索。
总的来说,功率谱估计是信号处理中的一项重要技术,广泛应用于各个领域。
随着科技的不断发展和进步,相信未来会有更多高效、准确的功率谱估计方法出现,推动相关领域的技术进步和应用创新。