盾构机刀盘常见问题
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
盾构机刀盘设计要点探究盾构机刀盘设计五花八门,主要设计依据是盾构隧道的地质条件。
但针对相同地质条件,各制造厂家基于各自的理念设计出的刀盘又不尽相同。
作为使用单位,在进行设计联络、设计评审时,如何入手,如何判定优劣呢?刀盘设计的适应性判断是考虑问题的出发点。
刀盘结构外形的差异并不重要,只要结构强度满足力学要求,即满足极限条件下的推力、扭矩的要求即可。
我们需要关心的是另外几方面的问题:一、刀盘开口率刀盘开口率是指刀盘留空面积占整个刀盘面积的百分比。
这部分留空面积,是切削渣土的运动通道。
渣土脱离土体后,在重力及刀具刮削作用下,沿刀盘开口流动到土仓。
搅拌后,从土仓底部螺旋输送机排出。
开口率的大小对应的是渣土排放的效率。
若取值过小,破碎(切削)的渣土不能及时进入土仓,滞留在刀盘前方,跟随刀盘做摩擦运动,随着温度升高,会固结在刀具、辐条等部位形成泥饼。
因此,在结构强度允许的情况下,开口率尽可能地取较大的值较好。
开口率的取值对应刀盘的常态转速。
开口率的计算公式:K=1/(r+1)其中:K——开口率(%)r——刀盘转速(rpm)刀盘转速是一个从0到Rmax的范围值。
通常是连续可调的。
但刀盘的开口率是固定的,一经设计、制造成型就不可更改。
因此,确定刀盘开口率需要预先评估针对隧道地质条件下刀盘的经常工作状态,根据刀盘的常态转速来确定刀盘的开口率。
岩土硬度高、结理发育差的地层,刀盘转速应较大。
相应的,对刀盤开口率要求就小。
这与高硬度岩土开挖效率低,出渣量小的施工形态是对应的。
反之,岩土硬度低、结理发育丰富地层(如全、强风化地层),刀盘转速应较小。
对刀盘开口率要求就大。
例如,我单位施工的莞惠城际轨道交通GZH-6项目隧道地质主要是弱风化混合片麻岩,岩体较硬。
对于这类地层,施工时刀盘常态转速的经验值在1.5~2rpm之间。
据此,计算出开口率的值K在40%~33%范围内。
根据强度优先的原则,采用辐条+面板的结构形式。
结合刀具的布置等其它因素,刀盘开口率最后结果值是31%。
盾构机刀盘驱动系统液压故障案例分析一、海瑞克盾构刀盘驱动液压系统的故障分析及处理1.液压系统深圳某地铁项目使用的德国海瑞克盾构机,其刀盘驱动系统为泵、液压马达闭式回路,由3台并联的斜盘式轴向柱塞变量泵和8台并联的轴向柱塞液压马达组成。
系统附带补油液压泵、控制泵等元件。
整个系统为电比例调速,恒功率保护方式。
泵采用带有补油冲洗阀的双向变量泵。
2.故障及原因分析(1)故障现象盾构在掘进时,三个刀盘泵突然出现故障无法重新起动。
主控室显示补油液压泵压力不足,达不到设计要求的最低补油压力,此时补油液压泵压力显示为1.8MPa,而设定值为2.7MPa左右。
(2)原因分析1)检查油箱液位,液位常,可以排除吸油不足的因素。
2)检查补油液压泵溢流阀。
怀疑溢流阀被卡,造成卸荷。
清洗溢流阀后再装回原来位置仍不能建立正常压力,由此判断溢流阀无故障。
3)补油液压泵为螺杆泵,自身抗污染能力很强,由于补油液压泵自身原件损坏造成压力不足的可能性很小,而且在关闭补油液压泵出口球阀的情况下,调节补油液压泵溢流阀,压力显示与新泵相同,可以排除补油液压泵自身的问题。
至此可以判断补油液压泵压力不足是由于部分流量从某个地方非正常流走造成的。
4)补油液压泵除对闭式回路进行补油和对3台主泵进行壳体冷却外,还为螺旋输送机的减速器进行壳体冷却,在补油主管路上还装有蓄能器。
检查蓄能器回油管,没有油液流出;关闭通往螺旋输送机减速器管路上的球阀,补油压力还是达不到设计要求。
由此可以判断三个刀盘泵内部泄漏是造成补油压力不足的主要原因。
5)在观察三个刀盘泵泄漏油管时发现,3号刀盘泵泄漏油管有大量油液流动的迹象,同时发现斜盘没有归零,卡在5°左右的位置。
随即打开3号刀盘泵泄漏油口,发现有铜屑杂质,接着在冷却循环过滤器也发现了大量铜屑。
随即将3号刀盘泵送生产厂家拆检,发现泵的内部已严重损坏。
如滑靴磨损严重,其中的两个已碎裂成多块,固定回程盘的8颗螺栓也全部剪切断裂,且回程盘已断裂成三部分。
盾构法施工常见问题及防治常见问题如下:一、盾构掘进1、土压平衡式盾构正面阻力过大2、土压平衡盾构螺旋机出土不畅3、盾构掘进轴线偏差4、盾构过量地自转5、盾构后退6、盾尾密封装置泄漏7、盾构切口前方地层过量变形(发生垂直、水平位移)8、运输过程中管片受损9、盾构铰接千斤顶及超挖刀的错误使用10、分区油压控制导致管片楔行量发生快速变化二、盾构机械设备1、盾构刀盘轴承失效2、盾构推进压力低3、盾构推进系统无法动作4、液压系统漏油5、皮带运输机打滑6、盾构内气动元件不动作7、电气系统故障8、真空泵不动作9、自动测量系统故障三、隧道注浆1、浆液质量不满足盾构推进需要2、沿隧道轴线地层变形量过大,产生土体裂隙四、管片拼装1、圆环管片环面不平整,出现环面错台2、管片环面与隧道设计轴线不垂直,存在楔行量3、纵缝质量不符合要求4、圆环整环旋转5、连接螺栓拧紧程度没达到标准要求6、错缝拼装管片碎裂7、管片环高差过大8、管片椭圆度过大五、管片防水施工1、管片压浆孔渗漏2、管片接缝渗漏常见问题原因分析及防治:一、盾构掘进1、土压平衡式盾构正面阻力过大现象:盾构推进过程中,由于正面阻力过大造成盾构推进困难和地面隆起变形。
原因分析:①盾构刀盘的进土开口率偏小,进土不畅通;或者是无轴螺旋形成泥棍,发生堵塞。
②盾构正面地层土质发生变化;③盾构正面遭遇较大块状的障碍物;④推进千斤顶内泄漏,达不到其本身的最高额定油压;⑤正面平衡压力设定过大。
⑥土体塑流化改良效果不好⑦推进速度过快⑧切削速度过快⑨皮带机输送能力受限预防措施:①合理设置无轴螺旋出土口闸门的开度,保证出土畅通;②详细了解盾构推进断面内的土质状况,以便及时优化调整土压设定值、推进速度等施工参数;③经常检修推进千斤顶,确保其运行良好;④合理设定平衡压力,加强施工动态管理,及时调整控制平衡压力。
治理方法:①采取辅助技术,尽量采取在工作面内进行障碍物清理,在条件许可的情况下,也可采取大开挖施工法清理正面障碍物;②增加千斤顶,增加盾构总推力。
盾构到达洞门处为淤泥质黏土夹粉土及粉细砂层,地下水丰富,埋深浅,出洞风险极高,因此本次达到接收采用三轴搅拌加固、旋喷加固、冷冻加固和钢套筒接收四种方法相结合的接收方式,保证了盾构机进洞的安全。
在整个接收过程中,稍有控制不好,会造成如下问题。
以下问题虽然在我项目部施工过程中没有全部浮现,但结合类似工程经验,过程控制不当都会带来如下问题,影响安全、质量及进度。
1、套筒与洞门钢环固定不坚固,造成钢环错位。
2、工序安排不合理、安排不当、施工时间长造成暴露、掌子面垮塌。
3、钢套筒漏水,不利于保压。
4、后靠、支撑不坚固,套筒错位、变形。
5、盾构姿态不好,刮、蹭套筒使之变形。
6、刀盘在推进过程中被冻结。
我项目部的两次盾构到达、接收施工比较顺利,处理方法及总结如下:盾构进洞段的推进施工分三个阶段。
阶段划分区域详见下图盾构机进洞阶段划分区示意图。
盾构机进洞阶段划分区示意图盾构机推进至加固体,但刀盘尚未抵达冻结体刀盘中心刀进入加固体 1.05m 后,盾尾加强水泥砂浆的注入,切断刀盘先后的水力联系,刀盘中心刀进入加固体 2.25m 后,盾构停机检查,要求盾构机处于最佳状态,蒸汽发生器安装并试用后,再次开始推进,准备进入第二阶段的推进。
在第一阶段的推进过程中,需要注意以下事项:( 1 )推进过程中严格控制推进速度和总推力,避免进刀量过大引起的刀盘被卡。
加固区强度较高,推进速度在 3 ~ 15mm/min ,推力在 1600~1900T。
在刀盘转动过程中土仓内及刀盘前加注泡沫进行润滑和改良土体。
( 2 )严格控制盾构姿态,特殊是盾构切口的姿态,根据最后前50 环的姿态控制测量,和洞门中线的复核测量,确定洞门中心精确位置,控制目标为水平+40~+45mm ,垂直+65~ +100mm 之间。
( 3 )控制盾尾间隙,保证盾尾间隙的均匀,必要时安装转弯环管片进行调节。
(4)严格控制切口的土压力为 1.9~2.0bar。
( 5 )推进过程连续均匀,均衡施工,保证土仓内一定土压,防止出空土仓盾构机抬头上浮。
盾构刀盘严重磨损原因探析及总结戴长康发布时间:2023-04-20T04:58:20.299Z 来源:《工程建设标准化》2023年4期作者:戴长康[导读] 本文针对佛山二号线南湖区间右线盾构机刀盘磨损进行原因分析,分析各种因素对刀盘损坏产生的影响程度,并对掘进参数进行系统分析,为类似工程施工提供参考依据。
广州轨道交通建设监理有限公司广东广州 528051摘要:本文针对佛山二号线南湖区间右线盾构机刀盘磨损进行原因分析,分析各种因素对刀盘损坏产生的影响程度,并对掘进参数进行系统分析,为类似工程施工提供参考依据。
关键词:泥水盾构;刀具;刀盘磨损1、工程简介及盾构机施工情况佛山地铁二号南庄站~湖涌站长2270.645m,管片总数为1515环。
右线于2017年6月23日在湖涌站始发,于2019年3月19日在南庄站完成盾构接收工作,历时1年8月26天。
盾构机掘进至1501环时抵达到达端混凝土素墙,刀盘扭矩较大,时常出现刀盘扭矩报警,盾构机无明显进尺。
2019年2月18日,项目部采用抽芯的方式对素混凝土墙进行预处理(主要利用钻孔抽芯设备将地连墙混凝土取出),取芯完成后,盾构机掘进速度明显提升,顺利进入端头加固体,进行接收前准备工作。
2、原因分析2.1 刀盘自身结构因素2.1.1刀盘结构形式及材质组成南~湖区间右线96#盾构机刀盘结构形式为辐条面板式,刀盘直径6980mm,开口率31%。
刀盘采用Q345B钢材整体焊接加工而成,同时在刀盘面板和周边焊接碳化铬超硬耐磨板和耐磨网。
刀盘支承形式为中间支承,刀盘背部设置4根主动搅拌棒,可对渣土进行搅拌,增强渣土的流动性。
本盾构机刀盘为新出场第一次使用刀盘,其面板及辐条为整体钢板焊接加工而成,无分段焊接、搭接等情况,刀盘所用钢材质量合格,各焊接焊缝质量检测合格,刀盘整体质量满足出场及使用要求。
2.1.2刀具破岩能力及在本区间的适应性(一)刀具破岩能力南湖区间右线96#盾构机刀盘主要破岩刀具为撕裂刀(先行刀),其破岩机理为撕裂刀先行切削、疏松土体,将土体切割分块,为切削刀创造良好的切削条件,大大降低了切削刀具的冲击荷载和切削力矩,提高刀具切削效率。
盾构施工中常见问题分析及防治措施盾构施工过程中,管片上浮、管片错台、管片渗水三类问题是严重影响成型管片的质量与美观。
本文结合施工过程中,对管片错台、管片上浮、管片渗水产生原因加以分析,并提出相应防治措施,以提高盾构隧道的使用效果和延长隧道使用寿命。
一、管片上浮管片上浮是指管片脱离盾尾后,在受到集中应力后产生向上运动的现象。
?规?规定盾构掘进中线平面位置和高程允许偏差为±50mm。
管片拼装偏差控制为±50mm。
隧道建成后,中线允许偏差为高程和平面为±100mm,且衬砌构造不得侵入建筑限界。
由此推算管片上浮允许值与盾构姿态、管片姿态密切相关,因此均应限制在±30mm以才能保证不侵限,并使管片外侧得到均匀的注浆回填。
1、上浮的原因及分析结合在轨道交通一号线望湖城至大店盾构区间的施工经历,可从以下四个方面来分析管片上浮的原因。
〔1〕同步注浆不饱满,从而存在上浮空间盾构区间圆形隧道〔管片〕外径6.0m,径5.4m,管片厚度300mm,管片宽度1.5m,分块数为6块〔管片由一块封顶块、两块邻接块、三块标准块构成〕。
盾构机与管片之间存在着150㎜的建筑空隙,如果同步注浆不饱满,使管片外侧与土层之间的间隙没有及时有效地充填,就必然出现管片上浮的空间。
其次,在同步注浆不饱满时,地层土软硬不同,产生的管片上浮情况也不同。
一般情况下,软地层不容易上浮,而硬地层却有空间导致管片上浮。
这是因为在掘进过程中,对于软地层,上部松软地层土的自稳性差,会因为自重、存在空隙而有相对的下沉,从而使因注浆不饱满造成的管片和土层之间的剩余空隙根本消失。
硬地层由于自稳能力强,完整性好,能很好的控制自身沉降。
使管片有足够的上浮空间和时间,且地层越硬,管片上浮的情况越严重。
〔2〕过量超挖盾构机在掘进过程中的隧道轴线与理论轴线有一定的差值,在掘进过程中时时在调整盾构机的姿态,盾构机走的线形是“蛇形〞。
当盾构机刀盘处于几种地层交织界面时,盾构机很容易产生“爬坡〞和“栽头〞现象。
阐述盾构机刀盘刀具磨损与处理措施在国内的很多工程中都对盾构法进行了应用,在解决恶劣地质构造时发挥着重要的作用。
但是,刀盘刀具磨损情况还长期的制约着该方法的有效发展,因此,文章以北京砂卵石地质构造为例,对盾构机刀盘刀具磨损与处理措施进行了分析与阐述。
进而为有关单位及工作人员提供一定的借鉴作用。
一、刀盘的磨损情况分析1、磨损现象分析在盾构隧道贯通后,需要检查、清洗盾构刀盘,这时,我们就可以发现有无磨损现象发生,通常情况下,盾壳和刀盘的间隙位置是最容易被磨损的,以整体角度出发,刀具和刀盘会展现出边缘侧板磨损和外周磨损大的情况,圆周中部和中心磨损小的情况。
具体磨损案例如下:首先,刀盘外圈周边容易出现磨损;其次,先行刀在刀盘辐板上容易被损坏,容易磨损先行刀安装基座,一旦这个部位没有注意,损坏会非常的严重;再次,通常会较深磨损刀盘面板,并且会有明显的凹陷存在于部分位置。
2、分析磨损因素在盾构推力的影响下,刀具会将一定的压力带给开挖面土体,在刀盘的转动下,会有摩擦出现在刀盘前方土砂和刀盘及刀具之间,进而就会出现磨损情况。
刀具磨损同刀具材质、地质条件、刀具的贯入度、时间等有关,并且随着不断增加的刀具掘削里程,在刀盘周边布置的刀具因为有较大的线速度、切削线路长,所以容折断、磨损快等情况。
当外周边刀具和周边刀被磨损了之后,这样就会相应的磨损到边缘侧板和外周边。
同时,在开挖时,会有将复杂的力施压到盾构刀盘刀具上面,恶劣工作环境以及盾构刀具所穿越的不同地层与磨损程度有着非常密切的联系,粉质砂土、粘质土和淤泥质砂土等地层不会过大的磨损刀具,而砂卵石土和砂土地层会加剧盾构刀具磨损,甚至还会造成盾构刀具崩齿,砂卵石地层在北京地区是一种分布非常广泛的地形地质,因此,在施工的过程中非常容易遇见,甚至还会夹杂着大粒径卵石和石块,所以,会较为严重的磨损到道具和刀盘。
二、具体的解决对策分析通过上述的分析能够发现,在北京砂卵石地层中进行掘进的过程中,对盾构机的刀具会经常的带来损害,并且,一旦刀具损坏跟换维修起来就会非常的吃力,并且,所花费的费用和时间也较多,因此,采取有效的方式避免或者降低这种损耗是非常必要的,因此,我们可以从以下几个方面入手来降低对刀盘的损耗。
盾构机刀盘修复盾构机拆解后发现:1、刀盘外圆面磨损。
2、部分主切刀座及原有耐磨钢板已经完全磨耗。
3、刀盘空腔外露没有蒙板覆盖。
4、刀盘面网格耐磨带稀少。
5、原有耐磨板失效。
6、泡沫孔裸露没有保护。
7、原有边刮刀没有固定在刀座上,而是直接与刀盘主体筋板焊接。
8、刀盘里面筋板需要堆焊网格耐磨带。
分析主要原因为隧道穿越的地层主要为粘土沙,其中夹杂中粗砂、砾砂、卵石,砂性土摩擦阻力大,渗透性强,在盾构的推进挤压下水分很快排出,土体强度提高,故不仅盾构推进摩擦阻力大,而且开挖面土压力也较大,对刀盘的磨损会比较严重。
3.1 焊工管理3.1.1 所有焊工须持有有效证件,并且模拟现场焊接符合要求。
3.1.2 焊工精神饱满上岗作业,技能娴熟,操作手法全面。
3.1.3 焊前对焊工进行工艺交底,使焊工掌握具体焊接工艺,熟悉焊材和焊机性能,工艺确定后,焊工要严格执行。
3.1.4 开工前带焊工熟悉施工现场,进行详细的安全教育和管理,使焊工树立安全观念,进行安全操作。
3.2 焊材管理3.2.1焊材入库焊材有齐全的材质证明,并经检查确认合格后入库。
3.2.2 焊材发放焊材由专人发放,并做好发放记录,包括生产批号,施焊焊缝部位。
3.2.3耐磨焊丝检查固本耐磨焊丝只有在烘烤时拆包,拆包时核对焊丝牌号、规格、批号等。
拆包后检查焊丝是否生锈、药皮是否脱落,目测检验不合格的焊条不得进入烘箱,烘干后,对同一生产批号的焊丝进行检查,看药皮韧性及内部焊心是否生锈,如有不合格,这扩大检查,如仍有不合格报告技术负责人处理。
3.3环境管理3.3.1 手工电弧焊现场风速大于8m/s时,采取有效的防风措施后方可施焊。
3.3.2 雨雪天气或相对湿度大于90%时,采取有效防护措施后施焊。
3.3.3 现场需要搭设围挡(施工场地待定)3.3.4 刀盘面向上水平放置,安放支点应牢固可靠。
1、设计尺寸:主视图外径Ф6260mm,剖视图B-B显示:环带直径6230mm,刀盘厚度为450mm,耐磨环带宽度160 mm厚度50mm,耐磨块原有数量56块均匀分布。
城市建筑工程近年来随着国内盾构机生产及施工水平的不断提高,盾构法施工在国内隧道工程施工中得到了越来越广泛的应用。
虽然国内盾构法施工技术已基本成熟但是施工中大大小小的事故还是频繁发生,其主要原因之一便是行业发展太快,相关技术管理人员储备不足,部分技术管理人员对盾构法施工经验不足,对盾构法施工原理掌握不够,遇到突发事件处理不当;针对这种情况本文就土压平衡盾构机施工中常见突发事件的形成原因及处理方法加以探讨和总结,希望能为部分同仁提供一定的帮助。
一、土压平衡盾构机几种常见突发情况及原因分析1.刀盘不转。
a、刀具损坏、脱落,造成扭矩突然增大,当大于其安全扭矩时,刀盘停止旋转,再次启动困难。
b、盾构掘进结束后,立即停止刀盘旋转,停机扭矩过大。
c、掌子面的突然坍塌或失稳造成刀盘被卡住。
d、渣土改良不好。
e掘进复合地层刀盘贯入度过大,导致刀具被地层卡住。
f止浆板损坏注浆浆液逆流到掌子面,或地层加固浆液进入掌子面,盾构停机时间较长时浆液凝固把刀盘裹住。
g 遇到孤石、异物或建(构)筑物被卡。
h急停按钮被按下或设备故障。
2.盾体卡死。
a、刀具、刀盘磨损严重,开挖直径不足。
b、地层中异物挤压卡住盾体。
c、转弯时盾体与地层干涉。
d、盾尾间隙未控制好,盾尾与管片干涉。
e、盾构长时间停机,盾体被注浆浆液或地层加固浆液包裹。
3.主轴承密封损坏。
a、设计不合理、制造过程存在缺陷。
b、盘、土仓结泥饼后土仓温度持续居高不下。
c、地层中存在坚硬的异物,异物进入土仓造成轴承部位损坏。
d、盾构机操作人员没有掌握渣土改良效果,没有实时观测土仓和渣土温度。
e、设备运转过程中没有及时足量的注入油脂或油脂质量不达标,杂物进入密封。
f、冷却水循环未起效果,密封温度长期过高。
4.盾尾密封失效。
a、盾尾密封设计不合理、自身质量或安装质量存在缺陷,始发前手涂油脂质量不达标。
b、盾尾油脂质量不达标、注入量不足、注入方法不合理。
c、区间距离过长密封磨损、疲劳损坏。
盾构机常见故障及常⽤设备使⽤简述⽬录⼀、盾构机使⽤中维保管理 (1)1、盾构机常见故障排查思路 (1)2、盾构机使⽤常见故障及排故措施 (2)(1)⼑盘⼑具 (2)(2)主驱动系统 (3)(3)推进及铰接装置 (4)(4)“两油三脂” (7)a.齿轮油系统主要故障点及预防措施 (7)b.液压油相关故障点及预防措施 (8)c.HBW系统的主要故障点及预防措施 (9)d.EP2系统的主要故障点及预防措施 (9)e.盾尾油脂系统主要故障点及预防措施 (10)(5)⼈闸装置 (11)(6)拼装系统 (12)a.管⽚吊机 (12)b.管⽚⼩车 (13)c.拼装机 (14)(7)渣⼟改良及排渣系统 (17)(8)同步注浆系统 (18)(9)液压动⼒系统 (19)(10)电⽓系统 (20)3、海瑞克盾构机主要零配件使⽤说明 (20)(1)电⽓系统 (20)a.MTS⾏程传感器 (20)b.电源 (22)c.电磁流量计 (23)d.享⼠乐计数器 (23)e.图尔克转速监控 (25)f.W.E.ST.放⼤板 (26)g.Baumer、享⼠乐编码器 (27)h.SICK安全继电器 (27)i.BECKHOFF模块 (29)j.WAGO模块 (29)(2)液压流体系统 (30)a.Bosch Rexroth泵、马达、阀组 (30)a.HAWE哈维压⼒表、多路阀 (30)b.ALLWEILER螺杆泵 (30)c.IST、固瑞克、英格索兰、林肯⽓动油脂泵 (30)d.Lowara、Wilden隔膜泵 (30)⼆、技术创新 (30)盾构机使⽤维护保养交流材料⼀、盾构机使⽤中维保管理1、盾构机常见故障排查思路排故重点是找到故障点,分析问题原因,⼀旦故障点及原因找出后解决问题反⽽显得简单。
⾸先详实记录故障现象,然后分析故障原因,再排除故障隐患,最后总结经验举⼀反三防微杜渐。
以“树根”状思路逐步展开分析,以管⽚吊机故障为例。
在现场施⼯过程中吊机操作⼿最先发现问题,⽐如离合⽚冒烟发烫,他第⼀反应应该是离合器没打开,进⼀步会想到离合⽚磨损、或者整流模块烧毁、线圈烧毁等,再次应该想到没有及时保养、螺丝松动、缺相等等。
盾构机刀盘刀具的设计与优化盾构机是一种用来建设城市地下隧道的重要工程机械,而刀盘刀具又是盾构机中的核心部件之一。
刀盘刀具的设计与优化对盾构机的工作效率和质量至关重要。
在本文中,我们将探讨盾构机刀盘刀具的设计原则、优化策略以及一些新技术的应用。
首先,盾构机刀盘刀具的设计应考虑以下几个方面:刀具材料的选择、刀具形状的优化以及刀具的布置方式。
刀具材料应具有一定的硬度和耐磨性,以保证刀具在长时间工作中不易损坏。
常见的刀具材料有高速钢、硬质合金等。
刀具的形状优化主要是为了提高切削效率和降低切削力,一般采用多刀刀盘设计,以增加刀具数量和刀具布置的灵活性。
刀具的布置方式则需根据具体工程项目的要求和地质条件来确定,以确保刀具能够适应不同的地质环境。
其次,盾构机刀盘刀具的优化策略主要包括刀具的布置优化、刀具参数的优化以及刀具寿命的优化。
在刀具布置优化方面,可以采用非对称布局、间距调整等方法来改善刀具的使用效果。
刀具参数的优化则需要通过合理选择刀具的直径、刀具间距、刀具角度等,以提高切削效率和降低切削力。
刀具寿命的优化可以通过改进刀具材料、刀具涂层等方式来延长刀具的使用寿命,降低更换频率,从而提高盾构机的工作效率。
另外,近年来,一些新技术的应用也为盾构机刀盘刀具的设计与优化带来了新的机会。
其中,数值模拟技术是一种非常有效的方法。
通过建立盾构机工作的数值模型,可以对刀具受力情况进行仿真分析,预测切削力、刀具磨损情况等,从而指导刀具的设计与优化。
此外,激光测量技术也可以用于实时监测刀具的磨损情况,及时调整刀具参数,提高盾构机的工作效率。
在实际应用中,盾构机刀盘刀具的设计与优化需要结合具体工程项目的要求和地质条件进行深入研究。
同时,应重视刀具的维护和管理,定期进行刀具的检查、修复和更换,以确保刀具的正常工作和延长使用寿命。
总结起来,盾构机刀盘刀具的设计与优化是提高盾构机工作效率和质量的重要环节。
通过合理选择刀具材料、刀具形状以及刀具布置方式,优化刀具参数和刀具寿命,并结合新技术的应用,我们可以提高盾构机的工作效率,降低切削力,提高切割质量,从而为城市地下隧道的建设贡献力量。
盾构机常见故障原因及对策amp盾构机在施工过程中可能会发生各种故障,导致工程进度被延误甚至停工。
以下是盾构机常见故障原因及对策:一、泥水密封失效泥水密封失效是盾构机施工中常见的故障之一。
泥水密封失效的原因主要有:1. 密封圈老化:长时间使用导致密封圈老化,弹性减弱;2. 密封圈安装不当:安装密封圈时未注意把握好放射量,导致密封不严;3. 泥浆压力过高:泥浆压力超过设计值,导致密封圈承受过大作用力;针对泥水密封失效的对策有:1. 定期更换密封圈:根据使用寿命的建议,定期更换密封圈,避免老化导致的失效;2. 注意安装密封圈:安装密封圈时应注意放射量,确保密封严密;3. 控制泥浆压力:控制泥浆压力在设计值范围内,避免压力过大;二、电力系统故障电力系统故障会导致盾构机停工,影响施工进度。
电力系统故障的原因主要有:1. 电源供电异常:供电电压过高或过低,电缆接触不良等原因导致电力系统故障;2. 电机故障:电机内部故障或电机与其他电器设备之间的连接问题导致电力系统故障;针对电力系统故障的对策有:1. 检查供电电源:定期检查供电电源的电压,确保电压稳定;2. 检查电缆连接:定期检查电缆连接情况,确保连接良好;3. 定期维护电机:定期对电机进行维护保养,避免电机故障;三、刀盘故障刀盘故障会导致盾构机停工,并需要维修刀盘,影响工程进度。
刀盘故障的原因主要有:1. 刀盘耗损:长时间使用导致刀盘耗损,刀具不锋利;2. 刀盘卡住:刀盘被较大的土层或石块卡住,无法正常运转;针对刀盘故障的对策有:1. 定期维护刀盘:定期更换刀盘刀具,保持刀盘的锋利度;2. 清理施工面:在施工过程中,定期清理施工面上的大块土层或石块,避免刀盘被卡住;四、液压系统泄漏液压系统泄漏会导致液压系统压力下降,影响盾构机正常工作。
液压系统泄漏的原因主要有:1. 老化密封件:长时间使用导致液压系统中的密封件老化;2. 液压管路磨损:液压管路磨损导致泄漏;针对液压系统泄漏的对策有:1. 定期更换密封件:根据使用寿命的建议,定期更换液压系统中的密封件;2. 定期检查液压管路:定期检查液压管路的磨损情况,及时更换磨损严重的管路。
盾构机几种常见故障的处理1.泥土粘着并堵塞刀盘产生原因:盾构机在粘性土层中施工时,由于粘性土具有内摩擦角小、粘性大和流动困难等特点,使得粘性土体粘附在刀盘上。
被刀盘从开挖面上切削下来的粘土,通过刀盘渣槽进入泥土仓后,在泥土仓上压力的作用下容易被压实固结,首先将刀盘支撑臂中心充满填实,并很快地堵死了刀盘中心的渣槽,使刀盘中心正面的土体不能通过中心刀渣槽进入泥土仓,而是在刀盘挤压力的作用下从刀盘四周的渣槽进入泥土仓。
逐渐地,整个泥土仓内全部被压实固结的土体充满并堵塞。
当刀盘继续旋转切削土体时,固结土体的刀盘和开挖面土体之间产生很大的摩擦力,相互摩擦产生大量的热量,刀盘温度不断升高,使刀盘和泥土仓内的土体不断地被烧结固化,最终在刀盘和整个泥土仓内形成坚硬的“泥饼”。
“泥饼”形成后,刀盘扭矩和盾构机推进阻力均迅速增大,螺旋输送机无法出土,盾构机不能往前推进。
泥土仓内过高的温度会缩短刀盘主轴承的使用寿命,加速主轴承的损坏,甚至会出现主轴承“烧结、抱死”的严重后果。
处理方法:当盾构机在粘土地层中进行施工时,或当泥土仓内形成“泥饼”时,应采取以下预防和排除措施:(1)空转刀盘,并通过泥土仓隔板的空心搅动棒向泥土仓注水,使“泥饼”在离心力的作用下脱落。
(2)在使开挖面保持稳定的前提下,可人工进入泥土仓清除“泥饼”。
(3)掘进时增加泡沫剂的注入量,改善土体的和易性,预防粘土结块。
(4)在盾构机设计时,应在泥土仓隔板上增加空心搅动棒,以加大搅拌渣土强度和范围,并通过空心搅动棒注水,用于清洗刀盘和泥土仓。
2.螺旋输送机循环“喷涌”泥水产生原因:盾构机在高水砂层进行施工时,由于开挖面土体充水裂隙,含水量丰富,而且已成型的盾构隧道同步注浆量没有完全充实衬背空隙,以致留下流水通道,开挖面土体裂隙的水不断地流入泥土仓,泥土仓内不停地积水。
当螺旋输送机工作时,首先吸入泥土仓内的水,然后从其出土闸门迅速喷出,形成“喷涌”。
泥土仓内的水被暂时吸干后,螺旋输送机才能出渣排土,很快地泥土仓内又积水较多,螺旋输送机又必须先吸水后出土。
盾构机常见故障分析及预防措施发布时间:2021-01-12T11:24:41.177Z 来源:《基层建设》2020年第25期作者:陈时光高金凤[导读] 摘要:随着城市地铁的飞速发展,盾构机作为一种高效掘进机械在地铁建设中得到广泛的应用,盾构机构越来越受到人们的重视,了解盾构机的常见故障有利于在施工中及时处理盾构故障,确保盾构保质保量完成掘进任务。
中建八局轨道交通建设有限公司江苏南京 211100摘要:随着城市地铁的飞速发展,盾构机作为一种高效掘进机械在地铁建设中得到广泛的应用,盾构机构越来越受到人们的重视,了解盾构机的常见故障有利于在施工中及时处理盾构故障,确保盾构保质保量完成掘进任务。
本文针对土压平衡盾构机常见的故障问题进行分析,并提出了相应的预防措施,确保盾构在实际施工中顺利推进。
关键词:盾构机,故障分析,预防措施,土压平衡1、引言对于盾构机的种类而言,虽然后构机的种类非常之多,但是其工作原理基本相通。
在实际施工的过程之中,对盾构机的合理使用以及维护措施,可以有效且充分的发挥其所有的优势,以此提高整个工程的效率,并为推进整个地下挖掘工程的不断发展奠定良好的基础。
因此分析及预防盾构施工常见故障,针对问题做出相应的处理措施,这样才能保证盾构施工顺利进行。
2、盾构机常见故障分析及预防措施2.1 盾构刀盘轴承失效(1)现象及原因分析盾构刀盘轴承失效,刀盘无法转动,盾构失去切削功能无法推进。
原因如下:盾构刀盘轴承密封失效,砂土等杂质进入轴承内,使轴承卡死。
滚柱无法在滚道内滚动,轴承损坏;封腔的润滑油脂压力小于开挖面平衡压力,易引起盾构正面的泥土或地下水夹着杂质进入轴承,使轴承磨损,间隙增大,从而导致保持架受外力破坏而使滚柱散乱,轴承无法转动而损坏;轴承的润滑状态不好,使轴承磨损严重,进而损坏。
(2)预防措施设计密封性能好、强度高的土砂密封,保护轴承不受外界杂质的侵害;密封腔内的润滑油脂压力设定要略高于开挖面平衡压力,并经常检查油脂压力;经常检查轴承的润滑情况,对轴承的润滑油定期取样检查。
盾构机刀盘刀具磨损分析与改进一、引言盾构机是一种用于地下隧道开挖的机械设备,其刀盘刀具是关键部件之一。
刀盘刀具的磨损情况直接影响到盾构机的开挖效率和寿命。
本文将对盾构机刀盘刀具磨损进行分析,并提出改进措施,以提高盾构机的工作效率和使用寿命。
二、盾构机刀盘刀具磨损分析1. 磨损形式刀盘刀具主要有刀头、滚刀、凿岩头等组成。
在盾构机开挖过程中,刀具与隧道地层不断磨擦,导致刀具磨损。
刀盘刀具主要磨损形式包括磨耗磨损、断裂磨损和自擦磨损。
磨耗磨损是最为常见的磨损形式,主要是因为刀头与地层的摩擦导致切削面材料磨损。
断裂磨损则是刀盘刀具在工作时由于受到剧烈冲击或超过其材料强度限制造成的断裂现象。
自擦磨损是指刀头上的刀具与切削面之间的磨损,主要是因为刀具材料之间的磨擦产生摩擦热而引起的。
2. 磨损原因刀盘刀具的磨损主要受以下几个方面的影响:(1)地层硬度:地层硬度越大,刀具与地层摩擦力越大,磨损程度也越大。
(2)地层结构:地层的裂隙、节理等结构对刀具磨损具有一定影响。
(3)刀具材料:刀具材料的硬度、韧性、耐磨性等性能对磨损情况有直接影响。
(4)刀具设计:刀具的形状、角度、排布等设计因素会直接影响磨损情况。
三、刀盘刀具磨损改进措施1. 材料优化刀盘刀具的材料选择至关重要。
根据地层的硬度以及磨损形式,选用具有良好硬度、韧性和耐磨性的材料,可以有效延长刀具的使用寿命。
目前,硬质合金、高速钢等材料被广泛应用于刀盘刀具制造。
2. 刀具设计改进通过改进刀具的形状、角度和排布等设计因素,可以降低刀具的磨损程度。
例如,合理的刀具刃角可以减少切削阻力和磨损;适当增加刀头与地层的接触面积,可以分散磨损力,延缓刀具的磨损速度。
3. 切削液的应用在盾构机开挖过程中,切削液的应用可以减少刀具与地层之间的摩擦阻力,从而降低刀具的磨损程度。
合适的切削液类型和浓度可以根据具体地层情况进行调整。
4. 定期检测和维护定期对刀盘刀具进行检测,及时发现和修复磨损、断裂等问题,可以保持刀具的良好工作状态,延长使用寿命。
土压平衡盾构机刀盘泥饼成因分析及整治中交路桥华南工程有限公司中山市 528400摘要:随着盾构施工的广泛应用,针对在易结泥饼的地层中施工,在掘进施工管理方面需加强掘进参数实验阶段的总结工作,充分了解施工地质的特性,做好相应措施,施工过程中及时对渣样进行分析,根据地质及参数的变化,及时采取有效的防结泥饼措施。
结合实践施工案例对结泥饼问题进行了系统分析,有效避免泥饼的形成,最后总结了过程的丰富经验,在后续施工中实践应用,取得了较好的效果,有效避免了刀盘结泥饼,并为后续类似施工项目提供建议。
关键词:盾构施工;刀盘结泥饼;速度;扭矩;推力;温度;设备;喷涌;案例分析1、工程概况1.1工程简介佛山地铁三号线3202-3标东乐路站~大良站区间隧道,采用盾构法施工,由大良站向东乐路站方向掘进施工,区间隧道周边存在建构筑物及管线,隧道外径Φ6000mm,内径5400mm,管片环宽1.5m,厚度0.3m。
左线长1237.141m,最小平面曲线半径663m,最大纵坡为+27.6‰,覆土厚度9.902m~27.932m。
本区间盾构施工主要受具有承压的基岩风化裂隙水影响,全年雨量充足,降雨较多。
左线隧道洞身主要穿越淤泥质粉细砂<2-2>、粉质粘土<2-4>、中风化泥质粉砂岩<8-2>、强风化泥质粉砂岩<7-2>、全风化泥质粉砂岩<6-2>。
图1-1佛山地铁三号线3202-3标工程线路走向示意图在该项目为了保证盾构穿越国家文物清晖园安全,左线施工中由于地质情况突变,部分技术措施未能提前采取,因此出现了刀盘轻微结泥饼现象,进行了开仓清理泥饼作业,本文通过该项目中出现的结泥饼问题,进行系统的分析,制定有效措施,并在后续施工中有效的避免了泥饼的形成。
1.2刀盘结泥饼现象盾构在复合地层风化的泥岩、泥质粉砂岩、泥质砂岩、粘土等土层施工,地层富含粘土矿物颗粒,在刀具的切削和刀盘的冲击作用下,岩块变成碎屑和粉末状,在刀盘旋转挤压条件下易产生泥饼现象。
盾构施工中常见问题分析及防治措施盾构施工过程中,管片上浮、管片错台、管片渗水三类问题是严重影响成型管片的质量与美观。
本文结合施工过程中,对管片错台、管片上浮、管片渗水产生原因加以分析,并提出相应防治措施,以提高盾构隧道的使用效果和延长隧道使用寿命。
一、管片上浮管片上浮是指管片脱离盾尾后,在受到集中应力后产生向上运动的现象。
《规范》规定盾构掘进中线平面位置和高程允许偏差为±50mm。
管片拼装偏差控制为±50mm。
隧道建成后,中线允许偏差为高程和平面为±100mm,且衬砌结构不得侵入建筑限界。
由此推算管片上浮允许值与盾构姿态、管片姿态密切相关,因此均应限制在±30mm以内才能保证不侵限,并使管片外侧得到均匀的注浆回填。
1、上浮的原因及分析结合在合肥轨道交通一号线望湖城至葛大店盾构区间的施工经验,可从以下四个方面来分析管片上浮的原因。
(1)同步注浆不饱满,从而存在上浮空间盾构区间圆形隧道(管片)外径6.0m,内径5.4m,管片厚度300mm,管片宽度1.5m,分块数为6块(管片由一块封顶块、两块邻接块、三块标准块构成)。
盾构机与管片之间存在着150㎜的建筑空隙,如果同步注浆不饱满,使管片外侧与土层之间的间隙没有及时有效地充填,就必然出现管片上浮的空间。
其次,在同步注浆不饱满时,地层土软硬不同,产生的管片上浮情况也不同。
一般情况下,软地层不容易上浮,而硬地层却有空间导致管片上浮。
这是因为在掘进过程中,对于软地层,上部松软地层土的自稳性差,会因为自重、存在空隙而有相对的下沉,从而使因注浆不饱满造成的管片和土层之间的剩余空隙基本消失。
硬地层由于自稳能力强,完整性好,能很好的控制自身沉降。
使管片有足够的上浮空间和时间,且地层越硬,管片上浮的情况越严重。
(2)过量超挖盾构机在掘进过程中的隧道轴线与理论轴线有一定的差值,在掘进过程中时时在调整盾构机的姿态,盾构机走的线形是“蛇形”。
盾构机刀盘常见问题
一泡沫孔堵塞究其原因,主要有3点:
(1)泡沫管在面板处的开口设计安装的单向阀结构不合理,致使泡沫孔在掘进过程中常常因为土仓压力过高而被堵塞,泡沫难以加到掌子面。
(2)泡沫管设置在盾构机的4根立柱内,很难进行拆卸,并且泡沫管的走线从掌子面到旋转接头的泡沫出口呈多直角弯分布,管道输通机等机械式疏通机具难有用武之地。
(3)若碴土进入管路较长,经过弯管较多,靠泡沫系统本身最高的15bar的压力很难疏通管路。
解决方法:当地质条件较好时,可以将旋转接头拆除,从刀盘面板的泡沫管出口和旋转接头的泡沫管进口分别用高压水枪和管道输通机同时疏通。
二刀圈极限磨损分析其原因,主要有以下几点:
1. 地质较软且粘性较大,刀孔容易被堵塞,使掌子面极易形成泥饼从而导致刀具转动困难,造成弦磨。
2.刀具轴承损坏,刀具无法转动。
3.刀具启动扭矩过大,启动困难。
解决方法:疑问?好像没有什么好的方法可以解决刀圈磨损
1.怎么在刀圈耐磨块磨损完之前提示
三刀座磨损
对磨损不严重的刀座,采用焊接的方法进行修复;对磨损严重的,采用简单的焊接不能恢复原有尺寸的刀座,只能采用其它的维修方法(其它的维修方法目前主要有两种:一种是将新刮刀直接焊接在磨损的刀座上;另一种是将旧刀座割除,在原位置上焊接新的刀座。
)。
盾构机刀盘常见问题
一泡沫孔堵塞究其原因,主要有3点:
(1)泡沫管在面板处的开口设计安装的单向阀结构不合理,致使泡沫孔在掘进过程中常常因为土仓压力过高而被堵塞,泡沫难以加到掌子面。
(2)泡沫管设置在盾构机的4根立柱内,很难进行拆卸,并且泡沫管的走线从掌子面到旋转接头的泡沫出口呈多直角弯分布,管道输通机等机械式疏通机具难有用武之地。
(3)若碴土进入管路较长,经过弯管较多,靠泡沫系统本身最高的15bar的压力很难疏通管路。
解决方法:当地质条件较好时,可以将旋转接头拆除,从刀盘面板的泡沫管出口和旋转接头的泡沫管进口分别用高压水枪和管道输通机同时疏通。
二刀圈极限磨损分析其原因,主要有以下几点:
1. 地质较软且粘性较大,刀孔容易被堵塞,使掌子面极易形成泥饼从而导致刀具转动困难,造成弦磨。
2.刀具轴承损坏,刀具无法转动。
3.刀具启动扭矩过大,启动困难。
解决方法:疑问?好像没有什么好的方法可以解决刀圈磨损
1.怎么在刀圈耐磨块磨损完之前提示
三刀座磨损
对磨损不严重的刀座,采用焊接的方法进行修复;对磨损严重的,采用简单的焊接不能恢复原有尺寸的刀座,只能采用其它的维修方法(其它的维修方法目前主要有两种:一种是将新刮刀直接焊接在磨损的刀座上;另一种是将旧刀座割除,在原位置上焊接新的刀座。
)。