专题13:空间的平行与垂直问题
- 格式:doc
- 大小:176.50 KB
- 文档页数:7
空间向量的平行与垂直定理空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。
在研究物理、几何和力学等领域时,我们经常需要判断两个向量之间的关系,这个定理就为我们提供了一个有力的工具。
我们来研究两个向量的平行性。
如果两个向量的方向相同或相反,那么它们是平行的。
也就是说,如果向量A和向量B的方向相同或相反,我们可以写成A∥B。
这种平行关系可以用向量的数量积来判断。
具体来说,如果两个向量A和B的数量积等于它们的模长的乘积,即A·B=|A||B|,那么向量A和向量B是平行的。
接下来,我们来研究两个向量的垂直性。
如果两个向量的数量积等于0,那么它们是垂直的。
也就是说,如果向量A和向量B的数量积为0,我们可以写成A⊥B。
这种垂直关系可以用向量的数量积来判断。
具体来说,如果两个向量A和B的数量积等于0,即A·B=0,那么向量A和向量B是垂直的。
空间向量的平行与垂直定理在几何和物理问题中有广泛的应用。
例如,在平面几何中,我们经常需要判断两条线段的平行性或垂直性。
根据空间向量的平行与垂直定理,我们可以通过计算两个向量的数量积来判断它们之间的关系。
这样,我们就可以得到准确的结论,避免了繁琐的几何证明过程。
在物理学中,空间向量的平行与垂直定理也具有重要的应用价值。
例如,在力学中,我们经常需要计算物体受力的情况。
如果两个力的方向相同或相反,那么它们是平行的;如果两个力的数量积为0,那么它们是垂直的。
根据空间向量的平行与垂直定理,我们可以通过计算向量的数量积来判断力的方向和性质,从而进行精确的力学分析。
除了在几何和物理中的应用,空间向量的平行与垂直定理还可以应用于其他领域。
例如,在计算机图形学中,我们经常需要计算向量的平行和垂直关系,以确定图形的方向和位置。
在工程学中,空间向量的平行与垂直定理可以应用于结构分析和力学设计等方面。
空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。
空间几何的平行与垂直判定空间几何是数学中的一个重要分支,涉及到直线、平面、点等概念的研究。
其中,平行和垂直是空间几何中常见的关系,本文将对平行和垂直的判定方法进行详细介绍。
一、平行的判定方法在空间几何中,平行是指两个线(线段)或两个平面永远不会相交的关系。
下面将介绍几种常见的平行判定方法。
1. 直线的平行判定给定两条直线l1和l2,如果它们的斜率相等且不相交,则可以判定l1与l2平行。
即若直线l1的斜率为k1,直线l2的斜率为k2,且k1≠k2时,则l1和l2平行。
2. 平面的平行判定对于两个平面P1和P2,如果它们的法向量相等或平行,则可以判定P1与P2平行。
二、垂直的判定方法在空间几何中,垂直是指两个线(线段)或两个平面之间的相互垂直关系。
下面将介绍几种常见的垂直判定方法。
1. 直线的垂直判定给定两条直线l1和l2,如果它们的斜率互为倒数且不相交,则可以判定l1与l2垂直。
即若直线l1的斜率为k1,直线l2的斜率为k2,并且k1·k2=-1时,则l1和l2垂直。
2. 平面的垂直判定对于两个平面P1和P2,如果它们的法向量互为倒数且不平行,则可以判定P1与P2垂直。
三、平行与垂直的应用举例平行和垂直关系在实际问题中经常被应用。
以下是几个应用举例。
1. 平行线与垂直线的交点问题当两条平行线相交时,它们的交点无穷多个;而当两条垂直线相交时,它们的交点只有一个。
这一性质在导弹拦截等领域具有重要意义。
2. 平行四边形及其性质平行四边形是指具有两对平行边的四边形。
它们的特点是相对边相等、对角线相交于对角线的中点、对角线互相平分等。
平行四边形的性质在建筑设计等领域有广泛应用。
3. 垂直投影与三视图在工程绘图中,垂直投影是指将物体在垂直方向上的投影。
根据垂直投影可以得到物体的平面图、前视图、左视图、右视图等,这些视图通常用于工程设计、建筑规划等领域。
4. 共线与共面条件若一条直线与一个平面相交,那么这条直线上的任意一点与该平面上的任意一点以及该平面上的任意一条直线都共线。
空间几何的平行与垂直关系空间几何是研究物体的形状、大小、位置以及它们之间的关系的数学分支。
在空间几何中,平行和垂直是两个非常重要的关系。
平行指的是两条直线或两个面在空间中永远不会相交,而垂直则表示两条直线或两个面之间存在90度的夹角。
本文将详细讨论平行和垂直的概念、特点以及它们在几何推理和实际生活中的应用。
一、平行的特点和推理方法在空间几何中,平行是指两条直线或两个平面在空间中永远不会相交。
平行具有以下特点:1. 平行的直线之间的距离相等:如果两条直线平行,那么它们之间的距离将保持不变。
2. 平行的平面之间的角度相等:如果两个平面平行,那么它们之间的夹角将始终保持相等。
在几何推理中,我们可以使用平行线的性质来证明其他几何关系。
例如,如果两条直线与同一条直线的交线分别垂直,则这两条直线也是平行的。
二、垂直的定义和性质垂直是指两条直线或两个平面之间存在90度的夹角。
垂直具有以下性质:1. 垂直的直线之间相互正交:如果两条直线相互垂直,它们将彼此正交,形成90度的夹角。
2. 垂直的平面交线与平面之间的夹角为90度:当两个平面的交线与其他平面之间的夹角为90度时,我们可以说这两个平面互相垂直。
三、平行与垂直的实际应用平行和垂直的概念在实际生活中有广泛的应用。
以下是几个应用实例:1. 建筑设计:在建筑设计中,平行的概念非常重要。
例如,墙壁之间的平行关系可以决定空间的布局和设计效果。
2. 电气工程:电气工程中常用到平行和垂直的概念。
例如,电路中的导线可以平行排列,以减小电阻;电路中的电压和电流相互垂直,通过正交性来进行计算和分析。
3. 地理导航:在地理导航中,平行和经纬度之间的关系是非常重要的。
经线是平行于地球赤道的线,而纬线是平行于地球的纬度圈。
4. 视觉艺术:平行和垂直的概念在绘画、摄影和设计中发挥重要作用。
艺术家常常利用平行和垂直的线条来创造平衡和对比效果。
总结:空间几何中的平行和垂直关系是我们理解和应用物体形状、大小和位置的重要基础。
专题13:空间的平行与垂直问题班级 姓名一、前测训练1.如图所示,在三棱柱ABC -A 1B 1C 1中,若D 、E 是棱CC 1,AB 的中点,求证:DE ∥平面AB 1C 1.提示:法一:用线面平行的判定定理来证: “平行投影法”:取AB 1的中点F ,证四边形C 1DEF 是平行四边形.“中心投影法”延长BD 与B 1C 1交于M ,利用三角线中位线证DE ∥法二:用面面平行的性质取BB 1中点G ,证平面DEG ∥平面AB 1C 1. 2.在正方体ABCD -A 1B 1C 1D 1中, (1)求证:平面A 1BD ∥平面B 1D 1C(2)若E ,F 分别是A 1A ,C 1C 的中点,求证:平面EB 1D 1∥平面BDF .提示:(1)用面面平行的判定定理证: 证明BD ∥B 1D 1,A 1B ∥D 1C . (2)证明BD ∥B 1D 1,BF ∥D 1E .【变式】在正方体ABCD -A 1B 1C 1D 1中,E 是A 1A 的中点.点F 在棱CC 1上,使得平面EB 1D 1∥平面BDF .求证:点F 为棱CC 1的中点.3.在正方体ABCD —A 1B 1C 1D 1中,M 为棱CC 1的中点,AC 交BD 于O ,求证:A 1O ⊥平面MBD提示:用线面垂直的判定定理:证BD ⊥平面AA 1C 1C ,从而得出BD ⊥A 1O ; 在矩形AA 1C 1C 中,用平几知识证明A 1O ⊥OM ;4.在正三棱柱ABC -A 1B 1C 1中,所有棱长均相等,D 为BB 1的中点,求证:A 1B ⊥C D . 分析:要证明A 1B ⊥C D ,只要证明A 1B 与CD 所在的平面垂直,或CD 与A 1B 所在的平面垂直,但都没有现成的平面,构造经过CD 的平面与直线A 1B 垂直,或经过A 1B 的平面与直线CD 垂直.方法1:取AB 的中点E ,连CE ,证A 1B ⊥平面CDE ; 方法2:取B 1C 1的中点F ,连BF ,证CD ⊥平面A 1BF .A E A 1B CC 1B 1DAM O A 1 D 1A B CD B 1C 1【变式】在正三棱柱ABC -A 1B 1C 1中, D 为BB 1的中点, A 1B ⊥CD ,求证:AA 1=AB .5.如图,在四棱锥P -ABCD 中,四边形ABCD 是菱形,PB =PD ,且E ,F 分别是BC , CD 的中点.求证:平面PEF ⊥平面PAC .提示:设EF 与AC 交于点O ,证EF ⊥AC ,EF ⊥OP , 从而得出EF ⊥平面PAC .【变式】如图,在四棱锥P -ABCD 中,四边形ABCD 是平行四边形,PB =PD ,且E ,F 分别是BC , CD 的中点,若平面PEF ⊥平面PAC ,求证:四边形ABCD 是菱形.6.如图,已知VB ⊥平面ABC ,侧面VAB ⊥侧面VAC ,求证:△VAC 是直角三角形. 提示:过B 作BD ⊥VA ,垂足为D ,由侧面VAB ⊥侧面VAC ,得出BD ⊥侧面VAC ,从面BD ⊥AC ,由VB ⊥平面ABC ,得AC ⊥VB ,从而AC ⊥平面VAB . 所以AC ⊥VA .7.(1)设P ,A ,B ,C 是球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A =PB =1,PC =2,则球O 的表面积是________.(2)如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.答案 :(1)6π;(2) 3二、方法联想1.线线平行B C DA P EF B C A V(1)证明线线平行 方法1:利用中位线;方法2:利用平行四边形; 方法3:利用平行线段成比例; 方法4:利用平行公理; 方法5:利用线面平行性质定理;方法6:利用线面垂直性质定理;方法7:利用面面平行.(2)已知线线平行,可得线面平行【变式1】如图,在五面体ABCDEF 中,面ABCD 为平行四边形,求证:EF ∥BC . (平行公理证明线线平行,由线线平行得线面平行) 2.线面平行(1)证明线面平行 方法1 构造三角形(中心投影法),转化为线线平行.寻找平面内平行直线步骤,如下图:①在直线和平面外寻找一点P ;②连接PA 交平面α于点M ;③连接PA 交平面α于点N ,④连接MN 即为要找的平行线.方法2:构造平行四边形(平行投影法) ,转化为线线平行.寻找平面内平行直线步骤,如下图:①选择直线上两点A 、B 构造两平行直线和平面α相交于M 、N ;②连接MN 即为要找的平行线.方法3:构造面面平行.构造平行平面步骤,如下图:①过A 做AC 平行于平面α内一条直线A ’C ’;②连结BC ;③平面ABC 即为所要找的平行平面.(2)已知线面平行方法1 可得线线平行,过直线l 做平面β交已知平面α于直线m ,则l ∥m .方法2 可得面面平行【变式】(1)如图所示,在三棱柱ABC -A 1B 1C 1中,D 、E 是棱CC 1,AB 的上的点,且AE =23AB ,若DE ∥平面AB 1C 1,求CDDC 1的值.(已知线面,转化为线线平行)(2)E ,P ,G ,H 分别是四面体的棱ABCD 的棱AB 、CD 、CA 、CB 的中点,求证:PE ∥平面PGH . (通过面面的平行证明线面平行) 3.面面平行(1)证明面面平行方法 在一个平面内寻找两条相交直线证明与另一个平面平行.注意 证面面平行必须先通过证线面平行,不可以直接通过证线线平行来证面面平行.m lα① ② A B C A ’ C ’ ①② ① A M NB 或①② ③ P A B④ ① ② ③A B P ④M N M N M NN(2)已知面面平行 可得线线平行 4.线线垂直 (1)证明线线垂直方法1:利用线面垂直;构造垂面证线线垂直要证l 垂直于AB ,构造垂面证线线垂直步骤:如下图:①过A 找垂直于l 的直线AC ;②连结BC ,③证BC 垂直l ,则l ⊥面ABC . 方法2:利用线线平行转移线线垂直; 方法3:利用勾股定理;方法4:利用等腰三角形三线合一; 方法5:利用菱形对角线互相垂直; 方法6:利用四边形为矩形. (2)已知线线垂直 可得线面垂直 5.线面垂直 (1)证明线面垂直方法 证明直线与平面内两条相交直线垂直. (2)已知线面垂直 可得线线垂直和面面垂直【变式】(1)在正方体ABCD —A 1B 1C 1D 1中,AC 交BD 于O ,点M 在棱CC 1上,且A 1O ⊥平面MBD ,求证:M 为棱CC 1的中点. (线面垂直得线线垂直)(2)在四面体ABCD 中,AD ⊥BC ,CA =CB =CD =1,BD =2,则△ABC 的面积为_____. (计算证明线线垂直)(3)在直三棱柱ABC -A 1B 1C 1中,AB =AC ,AB 1⊥BC 1,求证:A 1C ⊥BC 1. (利用平行转移线线垂直,从而一条直线与两异面直线的 垂直转化为线面的垂直)6.面面垂直(1)证明面面垂直关键是找到和另一个平面垂直的垂线,转化为线面垂直.找垂线的一般方法:①分别在两个平面内找两条互相垂直的直线,再判断其中一条直线垂直于平面; ②找(或作)两平面交线的垂线.③若存在第三个平面与其中一个面垂直,则在第三个内作找或作它们的交线的垂线(可以就是第三个与另一个平面的交线),再将这个垂线转移到另一个平面内.(2)已知面面垂直优先在其中一个平面内找或作两个平面交线的垂线,转化为线面垂直.ABlC①② MOA 1D1ABCD B 1C 1A 1【变式】在四棱锥P -ABCD 中,CD ⊥平面PAD ,△PAD 是正三角形,DC //AB ,DA =DC =2AB .求证:平面PBC ⊥平面PDC.(存在第三个面与其中一个面垂直)提示1:取PD 中点M ,则AM ⊥平面PDC ,下面只需将AM 平移到平面PBC 内. 提示2:作出平面PAD 与平面PBC 的交线PN ,只需证明PN ⊥平面PDC . 7.有关表面积、体积计算①表面距离问题考虑表面展开,转化成平面问题②体积计算,先证明高,后用体积公式求体积三、例题分析例1:在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,E 为PD 的中点,P A =2AB .(1)若F 为PC 的中点,求证:PC ⊥平面AEF ; (2)求证:CE ∥平面P AB .提示:(1)证明:PC ⊥AF ,PC ⊥EF .(2)①中心投影法:延长CD 与AB 交于G ,证明CE ∥PG . ②平行投影法:取P A 中点M ,过C 作CN ∥AD 交AB 于N . 证四边形CEMN 是平行四边形,从而得CE ∥MN . ③面面平行的性质:取AD 中点H ,证明平面CEH ∥平面P AB . 〖教学建议〗一、主要问题归类与方法:1.证明直线与平面垂直.方法:(1)定义法:a ⊥b ,b 为平面α内任意一条直线⇒a ⊥平面α.(2)线面垂直的判定定理:a ⊥m ,a ⊥n ,m ⊂平面α,n ⊂平面α,m ∩n =A ⇒ a ⊥平面α.(3)面面垂直的性质定理:平面α⊥平面β,平面α∩平面β=l ,a ⊂平面α,a ⊥l ⇒ a ⊥平面α.2.证明直线与平面平行.方法:(1)定义法:常常借助反证法完成;(2)判定定理:a ∥b ,a ⊄平面α,b ⊂平面α⇒a ∥平面α.用判定定理来证线面平行的关键是在平面内找到与已知直线平行的直线,其方法有:中心投影法与平行投影法. 证明线线平行常用方法:①平面几何的方法:三角形中位线,平行四边形,平行线段成比例等. ②面面平行的性质:α∥β,γ∩α=m ,γ∩β=n ⇒m ∥n .ACBEPFPABC D③线面垂直的性质:a⊥平面α,b⊥平面α⇒a∥b.④公理4:a∥c,b∥c⇒a∥b.(3)面面平行的性质:平面α∥平面β,a⊂平面α⇒a∥平面α.二、方法选择与优化建议:1.用方法(2),方法(2)是证明线面垂直的常用方法。
空间几何中的平行与垂直关系平行与垂直关系是空间几何中非常重要的概念,它们在解决平面或立体几何问题时经常被用到。
在本文中,我将介绍平行和垂直的定义和性质,并探讨它们在几何学中的应用。
一、平行关系在空间几何中,当两条线或两个平面没有交点且始终保持相同的距离时,我们称它们是平行的。
换句话说,平行线永远不会相交,平行面之间也永远不会相交。
我们可以使用以下方法来判断线或面是否平行:1. 如果两条线被一条平面所截,且截得的两对同位角相等,则这两条线平行。
2. 如果两个平面被一条直线所截,且截得的两对同位角相等,则这两个平面平行。
平行关系常常在解决与直线、多边形和多面体相关的问题时被应用。
比如,在建筑设计中,设计师常常需要确定两面墙是否平行,以便确保建筑结构的稳定。
在制图学中,要绘制平行线的效果,可以应用平行规或平行尺等工具辅助。
二、垂直关系与平行关系相反,垂直关系指的是两条线、两个平面或两个立体之间相互间的直角关系。
当两条线或两个平面的夹角大小为90度时,它们被认为是垂直的。
同样地,如果两个立体之间的相邻平面的交线是垂直的,则我们称这两个立体是垂直的。
判断垂直关系的方法有:1. 如果两条直线相交,并且相交的四个角中有两个角是直角,则这两条直线是垂直的。
2. 如果两个平面相交,并且相交的交线与两个平面各自的法线垂直,则这两个平面是垂直的。
垂直关系在几何学中有广泛的应用。
在建筑学中,垂直关系被用来确保墙壁与地面之间的角度为直角,以提供良好的结构支持。
在三维计算机图形学中,垂直关系可以用来进行透视变换,使得图像更加逼真。
三、平行和垂直的性质在空间几何中,平行和垂直具有一些重要性质,这些性质可以帮助我们解决几何问题。
1. 如果一条直线与两条平行线相交,则与这两条平行线的交线上的对应角是相等的。
2. 如果两条线分别与第三条线平行,则它们之间的对应角是相等的。
3. 判断两个平面是否垂直的方法之一,是计算它们的法向量之间的夹角。
空间几何的平行与垂直关系在空间几何中,平行和垂直是两个非常重要的概念。
它们描述了不同几何体之间的关系和性质。
平行表示两条或多条线、直线或平面在空间中永远不会相交,而垂直则表示两条线、直线或平面之间存在90度的角度关系。
本文将探讨空间几何中平行与垂直的关系以及它们在实际应用中的重要性。
一、平行与垂直的定义及性质1. 平行的定义:在几何学中,当两条直线或平面上的所有点在空间中的投影重合时,它们被认为是平行的。
平行线具有以下基本性质:a. 任意一点与直线上一点之间只有一条直线与该直线平行;b. 平行线之间的距离始终保持相等。
2. 垂直的定义:在几何学中,当两条直线或平面之间的夹角为90度时,它们被称为垂直的。
垂直线具有以下基本性质:a. 两条垂直线的斜率乘积为-1;b. 平面中的垂直直线与平面上的垂直线相交时,它们互为垂直;c. 四面体中的两条相交直线,若平行于共面两直线中的一条,则其余两条也互相平行。
二、平行与垂直关系的应用平行与垂直的关系在空间几何中有广泛的应用。
下面将介绍几个重要的应用领域:1. 建筑设计:在建筑设计中,平行和垂直关系被广泛应用于墙壁、天花板、地板等构造中。
确保这些构造的平行性和垂直性能够有效地提高建筑物的结构稳定性和美观度。
2. 工程测量:在工程测量中,平行和垂直关系被用于确定建筑物的地基、墙壁和建筑物的相对位置。
通过测量平行和垂直线的长度和夹角,工程师能够准确地定位和设置建筑物的各个部分。
3. 交通规划:在交通规划中,平行和垂直关系用于设计道路、轨道和桥梁。
合理的平行和垂直设计能够确保交通流畅、安全和高效。
4. 电子学与通信:在电子学和通信领域中,平行和垂直关系被用于设计电路板、天线和光纤等。
保持电线、导线的平行性和垂直性能够减少信号干扰和能量损耗,提高电子设备和通信系统的性能。
5. 图形绘制:在图形绘制和设计中,平行和垂直关系用于绘制几何图形和建模。
通过掌握平行和垂直关系的几何性质,能够更加准确地绘制出各种图形和几何体。
空间中的平行和垂直1.线面平行与垂直的判定定理、性质定理线面平行的判定定理⎭⎪⎬⎪⎫a ∥b b ⊂αa ⊄α⇒a ∥α线面平行的性质定理⎭⎪⎬⎪⎫a ∥αa ⊂βα∩β=b ⇒a ∥b线面垂直的判定定理⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =O l ⊥a ,l ⊥b ⇒l ⊥α线面垂直的性质定理⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b2. 面面平行与垂直的判定定理、性质定理面面垂直的判定定理⎭⎪⎬⎪⎫a ⊥αa ⊂β⇒α⊥β面面垂直的性质定理⎭⎪⎬⎪⎫α⊥βα∩β=ca ⊂αa ⊥c⇒a ⊥β面面平行的判定定理⎭⎪⎬⎪⎫a ⊂βb ⊂βa ∩b =Oa ∥α,b ∥α⇒α∥β面面平行的性质定理⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b提醒 使用有关平行、垂直的判定定理时,要注意其具备的条件,缺一不可. 3. 平行关系及垂直关系的转化示意图1.证明线线平行的常用方法(1)利用平行公理,即证明两直线同时和第三条直线平行;(2)利用平行四边形进行转换;(3)利用三角形中位线定理证明;(4)利用线面平行、面面平行的性质定理证明.2.证明线面平行的常用方法(1)利用线面平行的判定定理,把证明线面平行转化为证线线平行;(2)利用面面平行的性质定理,把证明线面平行转化为证面面平行.3.证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行.4.证明线线垂直的常用方法(1)利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;(2)利用勾股定理逆定理;(3)利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可.5.证明线面垂直的常用方法(1)利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;(2)利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;(3)利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面等.6.证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决.考点一空间线面位置关系的判断例1(1)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3 B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面(2)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m(1)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α考点二线线、线面的位置关系例2如图,在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,E为PD的中点,P A=2AB.(1)若F为PC的中点,求证:PC⊥平面AEF;(2)求证:EC∥平面P AB.(1)立体几何中,要证线垂直于线,常常先证线垂直于面,再用线垂直于面的性质易得线垂直于线.要证线平行于面,只需先证线平行于线,再用线平行于面的判定定理易得.(2)证明立体几何问题,要紧密结合图形,有时要利用平面几何的相关知识,因此需要多画出一些图形辅助使用.如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=BB1,D为AC的中点.(1)求证:B1C∥平面A1BD;(2)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;(3)在(2)的条件下,设AB=1,求三棱锥B-A1C1D的体积.考点三面面的位置关系例3如图,在几何体ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD.M为线段BD的中点,MC∥AE,AE=MC= 2.(1)求证:平面BCD⊥平面CDE;(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.(1)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(2)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.考点四图形的折叠问题例4如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE 折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.如图(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G .将△ABF 沿AF 折起,得到如图(2)所示的三棱锥A -BCF ,其中BC =22.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .练习1. 已知α,β,γ是三个互不重合的平面,l 是一条直线,下列命题中正确的是( )A .若α⊥β,l ⊥β,则l ∥αB .若l 上有两个点到α的距离相等,则l ∥αC .若l ⊥α,l ∥β,则α⊥βD .若α⊥β,α⊥γ,则γ⊥β2. 如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD .则在三棱锥A -BCD 中,下列命题正确的是 ( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC3. 下列命题中,m 、n 表示两条不同的直线,α、β、γ表示三个不同的平面.①若m ⊥α,n ∥α,则m ⊥n ;②若α⊥γ,β⊥γ,则α∥β;③若m ∥α,n ∥α,则m ∥n ;④若α∥β,β∥γ,m ⊥α,则m ⊥γ. 正确的命题是( )A .①③B .②③C .①④D .②④4. 一正四面体木块如图所示,点P 是棱VA 的中点,过点P 将木块锯开,使截面平行于棱VB 和AC ,若木块的棱长为a ,则截面面积为( )A.a 22B.a 23C.a 24D.a 255. 如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .6. 如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线P A 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题: ①P A ∥平面MOB ;②MO ∥平面P AC ; ③OC ⊥平面P AC ; ④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).7.如图所示,在四棱锥P -ABCD 中,AB ⊥平面PAD ,AB ∥CD ,PD =AD , E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△PAD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面PAB.8.如图,在平行四边形ABCD 中,AB =2BC =4,∠ABC =120°,E ,M 分别为AB ,DE 的中点,将△ADE 沿直线DE 翻折成△A ′DE , F 为A ′C 的中点,A ′C =4. (1)求证:平面A ′DE ⊥平面BCD ; (2)求证:FB ∥平面A ′DE .。
空间几何中的平行与垂直关系空间几何是研究空间中点、线、面及其相关性质和关系的数学学科。
在空间几何中,平行和垂直是两个基本的关系。
本文将介绍平行和垂直的概念、性质以及它们在空间几何中的应用。
一、平行关系平行是指两条直线或两个面永远不会相交的关系。
在空间几何中,我们可以通过以下方式判断两条直线是否平行:1. 直线的斜率相等:如果两条直线的斜率相等,那么它们是平行的。
这是因为两条直线的斜率相等,意味着它们的倾斜角度相同,在空间中永远不会相交。
2. 直线的方向向量平行:如果两条直线的方向向量平行,那么它们是平行的。
我们可以通过计算两条直线的方向向量,并判断它们是否平行。
3. 直线的截距比相等:如果两条直线的截距比相等,那么它们是平行的。
我们可以通过计算两条直线的截距比,并判断它们是否相等。
平行的性质:1. 平行具有传递性:如果直线l1与直线l2平行,直线l2与直线l3平行,那么直线l1与直线l3平行。
2. 平行具有对称性:如果直线l1与直线l2平行,那么直线l2与直线l1平行。
平行的应用:1. 平行线在平面图形中的应用:平行线在平面图形中有着重要的应用,如矩形、平行四边形等。
在这些图形中,平行线的存在使得我们可以推导出图形的性质和定理。
2. 平行线在建筑设计中的应用:建筑设计中常常需要使用平行线来确定建筑物的边界、墙壁等。
二、垂直关系垂直是指两条直线或两个面之间存在直角的关系。
在空间几何中,我们可以通过以下方式判断两条直线是否垂直:1. 直线斜率之积为-1:如果两条直线的斜率之积为-1,那么它们是垂直的。
这是因为两条直线的斜率之积为-1,意味着它们相互垂直。
2. 直线的方向向量垂直:如果两条直线的方向向量垂直,那么它们是垂直的。
我们可以通过计算两条直线的方向向量,并判断它们是否垂直。
3. 直线的斜率之和为0:如果两条直线的斜率之和为0,那么它们是垂直的。
这是因为两条直线的斜率之和为0,意味着它们相互垂直。
立体几何的平行和垂直定理一、空间中的平行问题1、直线与平面平行的判定及其性质1判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行⇒线面平行符号表示:2性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行⇒线线平行符号表示:作用:利用该定理可解决直线间的平行问题.2、平面与平面平行的判定及其性质1判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行线面平行→面面平行,符号表示:2性质定理:如果两个平行平面都和第三个平面相交,那么它们的交线平行.面面平行→线线平行符号表示:作用:可以由平面与平面平行得出直线与直线平行3、在寻求平行关系时,利用中位线、平行四边形等知识是非常常见的手段.有时也可用“垂直于同一个平面的两条直线平行”进行证明.二、空间中的垂直问题1、线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线垂直于一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角从一条直线出发的两个半平面所组成的图形是直二面角平面角是直角,就说这两个平面垂直.2、线面垂直判定定理和性质定理判定定理:如果一条直线垂直于一个平面内的两条相交直线,那么这条直线垂直这个平面.线线垂直→线面垂直性质定理:垂直于同一个平面的两条直线平行.3、面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、在证明线线垂直时,经常利用线面垂直→线线垂直,同时要注意隐含的垂直关系,如等腰三角形的三线合一、矩形的相邻两边互相垂直、直径所对的圆周角为直角、菱形或正方形的两条对角线互相垂直且平分、边长已知时可利用勾股定理得出该三角形为直角三角形等.三、3种空间角1、异面直线的夹角1异面直线:既不相交也不平行的直线为异面直线2两条异面直线所成角的范围是0°,90°,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.3求异面直线夹角的步骤:先将异面直线进行平移使其相交,接着确定其夹角,最后构造三角形,利用正余弦定理进行计算2、直线和平面所成的角1定义:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.2求直线与平面所成角的思路:“一作,二证,三计算”.在“作角”时依定义关键在于找出垂线,进而确定直线在平面内的射影,最后确定直线与平面所成的角3、二面角:1定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.1二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内..分别作垂直于...棱的两条射线,这两条射线所成的角叫二面角的平面角.2直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角1.2014高考北京卷文第17题如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.1求证:1//C F 平面ABE ;2求证:平面ABE ⊥平面11B BCC ;3求三棱锥E ABC -的体积.2.已知正方体ABCD -A 1B 1C 1D 11异面直线11CC BA 和的夹角大小是 .2CD B A B A 111和平面所成的角大小是 .3ABCD CD B A 和平面平面11所成二面角的大小是 .。
空间中的平行与垂直关系一、知识梳理1、 平行关系(1)直线与平面平行的判定定义:直线与平面没有公共点,称这条直线与这个平面平行。
判定定理:若l α⊄,a α⊂,l ∥a ,则l ∥α。
(2)直线与平面的平行性质定理:判定定理:若l ∥α,l β⊂,a αβ=,则l ∥a 。
(3)平面与平面的平行的判定定义:没有公共点的两个平面叫做平行平面。
判定定理1:若, a b αα⊂⊂,a b P =,a ∥β,b ∥β,则α∥β;判定定理2:若, l l αβ⊥⊥,则α∥β;判定定理3:若α∥β,β∥γ,则α∥γ。
(4)平面与平面的平行性质定理:性质定理1:若α∥β,a α⊂,则a ∥β;性质定理2:若α∥β,且a γα=,b γβ=,则a ∥b ;性质定理3:若α∥β,且l α⊥,则l β⊥。
2、补充结论:如果一个平面内的两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行。
3、线线平行的常用证明方法(1)利用平面几何的结论,如三角形的中位线平行于底边、平行四边形的对边平行、利用比例,等;(2)利用公理4:平行于同一条直线的两条直线平行;(3)利用线面平行的性质定理、面面平行的性质定理、线面垂直的性质定理4、垂直关系(1)直线与平面垂直的判定定义:如果一条直线和一个平面相交,并且和这个平面内的所有直线垂直。
判定定理:若, , m n mn P αα⊂⊂=,, l m l n ⊥⊥,则l α⊥。
(2)直线与平面的垂直性质定理:符号表示:若l α⊥,对任意的a α⊂,都有l a ⊥。
(3)平面与平面的垂直的判定定义:两个平面所成的二面角为直角,那么这两个平面垂直。
判定定理:若, a a αβ⊂⊥,则l α⊥。
(4)平面与平面的垂直性质定理:性质定理1:若, , , l a a l αβαβα⊂=⊂⊥,则a β⊥。
性质定理2:若, , l αβαγβγ=⊥⊥,则l γ⊥。
5、补充定理(1)若, l αα⊥∥β,则l β⊥;(2)若, l a α⊥∥l ,则a α⊥。
空间几何中的平行与垂直关系在空间几何中,平行和垂直关系是两个基本的概念,它们在我们的日常生活和数学应用中扮演着重要角色。
本文将探讨空间几何中的平行和垂直关系,并介绍其定义、特性以及相关的应用。
一、平行关系在空间几何中,平行关系是指两条直线或两个平面永远不相交。
如果我们将其数学表达,可以用以下方式表示:定义1:设直线l和m都在同一个平面内,如果l和m上的任意两点A和B的连线AB与l上的另一点C所在的直线相交,那么l与m平行,记作l ∥ m。
定义2:设平面α和β,如果平面α上任意一条直线与平面β上的任意一条直线所确定的两个轴线互相平行,那么平面α和平面β平行,记作α∥β。
平行关系具有以下特性:性质1:如果两条直线平行,则它们的任意一对相交线段的比值都相等。
性质2:如果一个平面与两个平行平面相交,则它们的任意一对相交线段的比值都相等。
性质3:如果两条直线分别与一组平行直线相交,那么它们的对应角相等。
段平行、平面平行以及平面与线段平行的基本依据。
在工程学和建筑学中,平行关系用于设计和绘图中的垂直标尺、平行线、平行导板等。
此外,在计算机图形学、地理学和导航系统等领域,平行关系也扮演着重要的角色。
二、垂直关系垂直关系是指两条直线或两个平面之间的关系,其中一条直线或一个平面与另一条直线或另一个平面的法线垂直。
我们可以用以下方式表示垂直关系:定义3:设直线l和m在同一个平面内,如果l和m上的任意一对相交直线的法线互相垂直,那么l与m垂直,记作l ⊥ m。
定义4:设平面α和β,如果平面α上的任意一条直线与平面β上的任意一条直线的法线互相垂直,那么平面α和平面β垂直,记作α⊥β。
垂直关系具有以下特性:性质4:如果两条直线垂直,则它们的任意一对相交角互为直角。
性质5:如果一个直线与一个平面垂直,则该直线上的任意一条边与该平面上任意一条边所确定的两个角互为直角。
性质6:如果两个平面垂直,则它们的任意一对相交线互为直角。
空间几何中的平行与垂直关系在空间几何中,平行与垂直关系是两种重要的几何关系。
它们在解决几何问题、计算坐标和推导定理等方面起着至关重要的作用。
通过研究平行和垂直关系,我们可以更好地理解空间中的几何性质,并应用于实际问题的求解。
1. 平行关系平行关系是指两条或多条直线在空间中永远不会相交。
在平行线之间不存在任何交点,它们的方向相同或者互为反向。
为了表示平行关系,我们可以使用"//"符号,如AB // CD。
在三维空间中,平行关系的判断可以通过以下方法确定:- 斜率法:对于两条直线L1和L2,如果它们的斜率相等,则L1与L2平行。
具体计算时,我们可以求两条直线上某一点的斜率,如果斜率相等,则可以判断它们是平行的。
- 向量法:如果两条直线的方向向量是平行的,则它们是平行的。
我们可以通过求取两条直线的方向向量,然后比较它们是否平行来判断平行关系。
平行关系的性质:- 平行线具有相同的斜率。
- 平行线之间的距离是恒定的,任意两点到另一条直线的距离相等。
- 平行线与平面的交线是平行的。
2. 垂直关系垂直关系是指两条直线或直线与平面的交线之间的关系。
在垂直关系中,直线或直线段与垂直交线之间的夹角为90度。
在三维空间中,判断垂直关系的方法有:- 向量法:如果两条直线的方向向量相互垂直,则它们是垂直的。
通过计算两条直线的方向向量,然后判断它们是否相互垂直。
- 斜率法:如果两条直线的斜率的乘积为-1,则它们是垂直的。
具体计算时,我们可以求两条直线上某一点的斜率,然后计算斜率的乘积,如果结果为-1,则可以判断它们是垂直的。
垂直关系的性质:- 垂直关系是相互垂直的直线或者直线与平面之间的关系。
在直角坐标系中,垂直关系可以表示为两直线斜率的乘积为-1。
- 垂直交线之间的夹角为90度。
- 垂直关系通常用于解决与直角、垂直性质相关的问题,例如计算两直线之间的距离、垂直偏移等。
总结:在空间几何中,平行与垂直关系是两种重要的几何关系。
空间几何中的平行与垂直关系在空间几何中,平行与垂直是两种重要的关系。
它们的性质和应用广泛存在于数学、物理学、工程学等领域。
本文将介绍平行和垂直的定义、性质以及相关的定理,以帮助读者更好地理解和应用这些概念。
一、平行关系1. 定义在空间几何中,平行是指两个或多个直线或平面在同一平面内没有任何交点的特殊关系。
我们可以用符号 "∥" 表示平行关系。
例如,在平面α上有两条直线l和m,如果l ∥ m,则说明直线l和m在平面α上没有交点。
2. 性质平行的直线具有以下性质:- 平行线与同一平面内的第三条直线的相交角相等。
- 平行线与平行线之间的距离在任意两点处相等。
平行的平面具有以下性质:- 平行平面之间没有任何交点。
- 平行平面内的直线与另一平面的交线与平行平面平行。
3. 平行的判定方法判定两条直线是否平行可以采用以下方法:- 垂直判定法:如果两条线分别与同一直线的两条垂线垂直,则这两条线是平行的。
- 夹角判定法:如果两直线与另一直线的夹角相等或互补,则这两条直线是平行的。
二、垂直关系1. 定义在空间几何中,垂直是指两个直线或者平面之间的交角等于90度的特殊关系。
我们可以用符号"⊥" 表示垂直关系。
例如,在平面β上,如果一条直线l与平面β内另一条直线m垂直,则可以表示为 l ⊥ m。
2. 性质垂直关系具有以下性质:- 垂直于同一直线的两条直线平行。
- 如果两个平面相互垂直,则由这两个平面确定的直线与任一平面相交的直线垂直。
3. 垂直的判定方法判定两条直线是否垂直可以采用以下方法:- 两直线斜率之积为 -1,则这两条直线是垂直的。
- 如果两直线的斜率都不存在(即两直线都是垂直于x轴或y轴的),则这两条直线是垂直的。
三、平行与垂直之间的关系平行和垂直的关系是互补的。
具体而言,两条直线或平面如果既不平行也不垂直,则称它们为斜交。
在空间几何中,有一些重要的定理与平行和垂直关系有关。
空间几何的平行与垂直关系知识点总结在空间几何中,平行与垂直关系是非常重要的概念,它们贯穿于整个几何学习的始终。
理解和掌握这些关系对于解决空间几何问题至关重要。
下面,我们就来详细总结一下空间几何中平行与垂直关系的相关知识点。
一、线线平行1、平行线的定义在同一平面内,不相交的两条直线叫做平行线。
2、线线平行的判定定理(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
3、线线平行的性质定理(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
4、空间中直线平行的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
二、线面平行1、线面平行的定义如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。
2、线面平行的判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
3、线面平行的性质定理如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线与交线平行。
三、面面平行1、面面平行的定义如果两个平面没有公共点,那么这两个平面平行。
2、面面平行的判定定理(1)如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
(2)如果两个平面都平行于同一条直线,那么这两个平面平行。
3、面面平行的性质定理(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。
四、线线垂直1、线线垂直的定义如果两条直线所成的角为直角,那么这两条直线互相垂直。
2、线线垂直的判定定理(1)如果一条直线垂直于一个平面,那么这条直线垂直于平面内的任意一条直线。
(2)如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直1、线面垂直的定义如果一条直线与一个平面内的任意一条直线都垂直,那么这条直线与这个平面垂直。
高考数学考点解读+命题热点突破专题13空间中的平行与垂直理【考向解读】1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.【命题热点突破一】 空间线面位置关系的判定(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断. 例1、【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,D ,E 分别为AB ,BC 的中点,点F在侧棱B1B 上,且 ,.11B D A F ⊥1111A C AB ⊥ 求证:(1)直线DE ∥平面A1C1F ; (2)平面B1DE ⊥平面A1C1F.【答案】(1)详见解析(2)详见解析【解析】证明:(1)在直三棱柱中,111A B CA B C -11//A C A C在三角形ABC 中,因为D,E 分别为AB,BC 的中点. 所以,于是//D E A C 11//D E A C 又因为DE 平面平面⊄1111,A C F A C ⊂11AC F所以直线DE//平面11AC F【变式探究】(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 与l1,l2都不相交 B .l 与l1,l2都相交C .l 至多与l1,l2中的一条相交D .l 至少与l1,l2中的一条相交(2)平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a∥α,a∥β B .存在一条直线a ,a ⊂α,a∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a∥β,b∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a∥β,b∥α答案 (1)D (2)D解析 (1)若l 与l1,l2都不相交则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l 至少与l1,l2中的一条相交.(2)若α∩β=l ,a∥l,a ⊄α,a ⊄β,则a∥α,a∥β,故排除A. 若α∩β=l ,a ⊂α,a∥l,则a∥β,故排除B.若α∩β=l ,a ⊂α,a∥l,b ⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.【特别提醒】解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中. 【变式探究】已知m ,n 为两条不同的直线,α,β为两个不重合的平面,给出下列命题:①若m ⊥α,n ⊥α,则m ∥n ; ②若m ⊥α,m ⊥n ,则n ∥α; ③若α⊥β,m ∥α,则m ⊥β; ④若m ⊥α,m ∥β,则α⊥β. A .0 B .1 C .2 D .3 答案 C【命题热点突破二】 空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化. 例2、 【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,D ,E 分别为AB ,BC 的中点,点F在侧棱B1B 上,且 ,.11B D A F ⊥1111A C AB ⊥ 求证:(1)直线DE ∥平面A1C1F ; (2)平面B1DE ⊥平面A1C1F.【答案】(1)详见解析(2)详见解析(2)在直三棱柱中,111A B CA B C -1111A A ⊥平面AB C因为平面,所以11A C ⊂111ABC 111A A ⊥A C 又因为111111*********,,A C AB A A A B B A A B A B B A A B A A A ⊥⊂⊂=,平面平面 所以平面11AC ⊥11A B B A因为平面,所以1BD ⊂11A B B A 111A CB D ⊥ 又因为1111111111111C F ,C F ,BD A A C A A F A A C A F A ⊥⊂⊂=F ,平面平面 所以111C F BD A ⊥平面 因为直线,所以11B D B DE ⊂平面1B D E 平面11.A C F ⊥平面 【变式探究】如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC∥平面PDA ; (2)证明:BC⊥PD;(3)求点C 到平面PDA 的距离.(3)解 如图,取CD 的中点E ,连接AE 和PE. 因为PD =PC ,所以PE⊥CD, 在Rt△PED 中,PE ===.因为平面PDC⊥平面ABCD ,平面PDC∩平面ABCD =CD ,PE ⊂平面PDC , 所以PE⊥平面ABCD ,由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h,因为V三棱锥CPDA=V三棱锥PACD,所以S△PDA·h=S△ACD·PE,即h===,所以点C到平面PDA的距离是.【特别提醒】垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.【变式探究】如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明(1)如图,取CE的中点G,连接FG,BG.∵F为CD的中点,∴GF∥DE且GF=DE.∵AB⊥平面ACD,DE⊥平面ACD,∴AB∥DE,∴GF∥AB.又AB=DE,∴GF=AB.∴四边形GFAB为平行四边形,则AF∥BG.∵AF⊄平面BCE,BG⊂平面BCE,∴AF∥平面BCE.(2)∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF.又CD∩DE=D,故AF⊥平面CDE.∵BG∥AF,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.【命题热点突破三】平面图形的折叠问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化、有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问题的主要方法.例3、【2016高考新课标2理数】如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,.A B C D AC BD O 5,6A BA C ==,E F ,A DC D 54AE CF ==EF BD H D E F ∆EF D E F'∆O D '(Ⅰ)证明:平面;D H '⊥A B C D (Ⅱ)求二面角的正弦值.B D A C'-- 【答案】(Ⅰ)详见解析;(Ⅱ)【解析】 (Ⅰ)由已知得,,又由得,故.ACB D ⊥A D C D =A E C F =A E C FA D C D=A CE F ∥ 因此,从而.由,得.E FH D ⊥E F D H'⊥5A B =6A C=4D 由得.所以,.EFA C ∥14OH AE DO AD ==1OH ===3D H D H ' 于是,222223110D H O H D O ''+=+==故.D H O H '⊥又,而,D H E F'⊥O H E F H = 所以.D H A B C D '⊥平面(Ⅱ)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即,所以可取.设是平面的法向量,则,即,所以可取.于是, .因此二面角的正弦值是.H H F x H x y z -()0,0,0H ()3,1,0A --()0,5,0B -()3,1,0C -()0,0,3D '(3,4,0)A B =-()6,0,0A C =()3,1,3A D '=()111,,x y z =m A B D '0A B A D ⎧⋅=⎪⎨'⋅=⎪⎩m m11111340330x y x y z -=⎧⎨++=⎩()4,3,5=-m ()222,,x y z =n A C D '00A C A D ⎧⋅=⎪⎨'⋅=⎪⎩n n 222260330x x y z =⎧⎨++=⎩()0,3,1=-n co s ,⋅<>=m n mn s in ,<>m n B D A C '-- 【变式探究】如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A1DE 的位置,使A1F ⊥CD ,如图(2). (1)求证:DE∥平面A1CB ; (2)求证:A1F⊥BE;(3)线段A1B 上是否存在点Q ,使A1C⊥平面DEQ ?请说明理由. 例3 (1)证明 因为D ,E 分别为AC ,AB 的中点, 所以DE∥BC.又因为DE ⊄平面A1CB ,BC ⊂平面A1CB , 所以DE∥平面A1CB.(3)解 线段A1B 上存在点Q ,使A1C⊥平面DEQ. 理由如下:如图,分别取A1C ,A1B 的中点P ,Q ,则PQ∥BC.又因为DE∥BC, 所以DE∥PQ.所以平面DEQ 即为平面DEP. 由(2)知,DE⊥平面A1DC , 所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.【特别提醒】(1)折叠问题中不变的数量和位置关系是解题的突破口;(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾或肯定结论.【变式探究】如图(1),四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2,作如图(2)折叠,折痕EF∥DC.其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M-CDE的体积.(1)证明因为PD⊥平面ABCD,AD⊂平面ABCD,所以PD⊥AD.又因为ABCD是矩形,CD⊥AD,PD与CD交于点D,所以AD⊥平面PCD.又CF⊂平面PCD,所以AD⊥CF,即MD⊥CF.又MF⊥CF,MD∩MF=M,所以CF⊥平面MDF.(2)解因为PD⊥DC,BC=2,CD=1,∠PCD=60°,所以PD=,由(1)知FD⊥CF,在直角三角形DCF中,CF=CD=.过点F作FG⊥CD交CD于点G,得FG=FCsin60°=×=,所以DE =FG =,故ME =PE =-=, 所以MD ===.S△CDE=DE·DC=××1=.故VM -CDE =MD·S△CDE=××=. 【高考真题解读】9.【2016高考新课标2理数】 是两个平面,是两条直线,有下列四个命题:,αβ,m n(1)如果,那么.,,//m n m n αβ⊥⊥αβ⊥(2)如果,那么.,//m n αα⊥m n ⊥ (3)如果,那么.//,m αβα⊂//m β(4)如果,那么与所成的角和与所成的角相等.//,//m n αβm αn β其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④10.【2016高考浙江理数】如图,在△ABC 中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 . 【答案】【解析】中,因为,所以.A B C △2,120A B B C A B C ==∠=30B A D B C A ∠=∠=由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.2222c o s A C A B B C A B B C B =+-⋅2222222c o s 1201=+-⨯⨯=A C A D x=0x <<D C x -A B D∆2222c o s B D A D A B A D A B A =+-⋅22222c o s30x x =+-⋅24x=+B 在中,,.P B D ∆P D A D x ==2P B B A == 由余弦定理可得,所以.2222222(c o s 2222P D P B B D x x B P D P D P B x +-+-+∠===⋅⋅⋅30B P D ∠= 由此可得,将ABD 沿BD 翻折后可与PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).△△ 过作直线的垂线,垂足为.设,则,P BD O P O d =11s i n 22P B D S B D d P D P B B P D =⨯=⋅∠△即,解得12s i n 302d x=⋅d 而的面积.△B C D 1s i n )2s i n 30)2SC D B C B C D x x =⋅∠=⋅= 当平面PBD⊥平面BDC 时: 四面体的体积.P B CD 1133B C DV S d =⨯=⨯△观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为()x x -=x x -x x x P B C D 1211.【2016高考新课标1卷】平面过正方体ABCD-A1B1C1D1的顶点A,//平面CB1D1,平面ABCD=m,平面AB B1A1=n,则m 、n 所成角的正弦值为αααI αI【答案】A 12.【2016高考新课标3理数】在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是( )111A B C A B C -V A B B C ⊥6A B =8B C =13A A =V (A )4π (B )(C )6π(D ) 92π323π 【答案】B【解析】要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B .V R 334439()3322R πππ== 1.(2015·安徽,5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面2.(2015·浙江,8)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为α,则( )A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α解析极限思想:若α=π,则∠A′CB<π,排除D;若α=0,如图,则∠A′DB,∠A′CB都可以大于0,排除A,C.故选B.答案B3.(2015·浙江,13)如图,三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.解析连接DN,作DN的中点O,连接MO,OC.在△AND中.M为AD的中点,则OMAN.所以异面直线AN,CM所成角为∠CMO,在△ABC中,AB =AC=3,BC=2,则AN=2,∴OM=.在△ACD中,同理可知CM=2,在△BCD中,DN=2,在Rt△ONC中,ON=,CN=1∴OC=.在△CMO中,由余弦定理cos∠CMO===.答案784.(2015·江苏,16)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为A C⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.5.(2015·新课标全国Ⅱ,19)如图,长方体ABCD-A1B1C1D1中,AB =16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.解(1)交线围成的正方形EHGF如图:6.(2015·新课标全国Ⅰ,18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC,(2)求直线AE与直线CF所成角的余弦值.(1)证明连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC=.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=,且EG⊥AC.在Rt △EBG中,可得BE=,故DF=.在Rt △FDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=,从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.7.(2014·江苏,16)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.证明(1)因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC.8.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD 为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.(2)解 因为PA⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,的方向为x 轴的正方向,||为单位长,建立空间直角坐标系A -xyz ,则D(0,,0),E ,=.设B(m ,0,0)(m>0),则C(m ,,0),=(m ,,0).设n1=(x ,y ,z)为平面ACE 的法向量,则即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0,可取n1=.又n2=(1,0,0)为平面DAE 的法向量,由题设知|cos 〈n1,n2〉|=,即=,解得m =.因为E 为PD 的中点,所以三棱锥E -ACD 的高为,三棱锥E -ACD 的体积V =××××=.。
空间几何中的平行与垂直关系在空间几何中,平行与垂直是非常重要的概念和关系。
它们在数学中具有着丰富的内容和应用。
本文将介绍空间几何中平行与垂直的定义、性质以及相关定理,旨在帮助读者更好地理解和应用这些概念。
一、平行的定义与性质在空间几何中,平行线是指在同一个平面内永远不会相交的直线。
根据平行线与平面的关系,我们可以得到如下定义和性质:1. 定义一:两条直线L₁和L₂平行,记作L₁∥ L₂,当且仅当它们在同一个平面上且不相交。
2. 定义二:如果两条直线分别与第三条直线相交,在相交点两侧所成的内角互补,则这两条直线是平行的。
平行线的性质也有一些值得注意的地方:1. 性质一:通过同一点外一直线上的两个角互补,则这两条直线是平行的。
2. 性质二:如果一条直线与两条平行线相交,那么它将与这两条平行线之间的内角、外角互补。
3. 性质三:如果两条直线分别与第三条直线平行,那么这两条直线也是平行的。
二、垂直的定义与性质垂直是空间几何中另一个重要的关系,它指的是两条直线或者一个直线与一个平面之间的相互垂直关系。
下面是垂直关系的定义和性质:1. 定义一:两条直线L₁和L₂垂直,记作L₁⊥ L₂,当且仅当它们的内角互补为直角(90度)。
2. 定义二:一条直线和一个平面垂直,当且仅当它与该平面内的任意一条直线相交时,所成的内角为直角(90度)。
垂直关系也有一些性质需要了解:1. 性质一:两条互相垂直的直线在相交点两侧所成的内角是直角。
2. 性质二:如果一条直线垂直于两条相互平行的直线,那么它同时与这两条直线垂直。
3. 性质三:如果两条直线相互垂直于同一条直线,那么这两条直线平行。
三、平行与垂直的相关定理除了上述基本定义和性质之外,还存在一些关于平行与垂直的重要定理,值得进一步探讨。
1. 平行线的判定定理:如果两条直线分别与同一条直线平行,那么这两条直线也是平行的。
2. 平行线的性质定理:如果两条直线平行,并且分别与第三条直线相交,那么这两条直线分别与第三条直线的内角、外角互补。
专题13 空间中的平行与垂直 文【考向解读】1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.【命题热点突破一】 空间线面位置关系的判定(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1、【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C因为11AC ⊂平面111A B C ,所以111AA⊥A C 又因为111111111111111,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂=,平面平面 所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为1111111111111C F,C F,B D A AC A A F A AC A F A ⊥⊂⊂=F ,平面平面所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.AC F ⊥平面【变式探究】(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交(2)平面α∥平面β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α【答案】 (1)D (2)D【特别提醒】解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.【变式探究】已知m ,n 为两条不同的直线,α,β为两个不重合的平面,给出下列命题:①若m ⊥α,n ⊥α,则m ∥n ;②若m ⊥α,m ⊥n ,则n ∥α;③若α⊥β,m ∥α,则m ⊥β;④若m ⊥α,m ∥β,则α⊥β.A .0B .1C .2D .3【答案】 C【命题热点突破二】 空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2、 【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析【变式探究】如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.【解析】 (1)证明因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.(2)证明因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD =CD,BC⊂平面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD.(3)解如图,取CD的中点E,连接AE和PE.因为PD=PC,所以PE⊥CD,在Rt△PED中,PE=PD2-DE2=42-32=7.【特别提醒】垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.【变式探究】如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.【命题热点突破三】 平面图形的折叠问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化、有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问题的主要方法.例3、【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;【解析】【变式探究】如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?请说明理由.【解析】例3 (1)证明因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.【特别提醒】(1)折叠问题中不变的数量和位置关系是解题的突破口;(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾或肯定结论.【变式探究】如图(1),四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2,作如图(2)折叠,折痕EF∥DC.其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M-CDE的体积.【高考真题解读】9.【2016高考新课标2理数】,αβ是两个平面,,m n是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =.设AD x =,则0x <<,DC x =.在ABD ∆中,由余弦定理可得2222c o s B D A D A B A D A BA =+-⋅22222cos30x x =+-⋅24x =-+.故BD =.在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222222(33c o s 2222P D P BB D x BPD PD PBx +-+--+∠===⋅⋅⋅,所以30BPD ∠=.由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDCBAP11.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为B13【答案】A【解析】如图,设平面11CBD 平面ABCD ='m ,平面11CBD 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F AB ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为2,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 1.(2015·安徽,5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 【答案】 D2.(2015·浙江,8)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD -B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α 【答案】 B【解析】 极限思想:若α=π,则∠A ′CB <π,排除D ;若α=0,如图,则∠A ′DB ,∠A ′CB 都可以大于0,排除A ,C.故选B.3.(2015·浙江,13)如图,三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.【答案】 784.(2015·江苏,16)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .(2)BC1⊥AB1.5.(2015·新课标全国Ⅱ,19)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【解析】6.(2015·新课标全国Ⅰ,18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC,(2)求直线AE与直线CF所成角的余弦值.(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长,建立空间直角坐标系G -xyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 7.(2014·江苏,16)如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA =6,BC =8,DF =5.求证:(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .8.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.【解析】(1)证明连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.21 又E 为PD 的中点,所以EO ∥PB .又因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解 因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32.因为E 为PD 的中点,所以三棱锥E -ACD 的高为12,三棱锥E -ACD 的体积V =13×12×3×32×12=38.。
专题13:空间的平行与垂直问题班级姓名一、前测训练1.如图所示,在直三棱柱ABC-A1B1C1中,若D、E是棱CC1,AB的中点,求证:DE∥平面AB1C1.提示:法一:用线面平行的判定定理来证:“平行投影法”:取AB1的中点F,证四边形C1DEF“中心投影法”延长BD与B1C1交于M,利用三角线中位线证法二:用面面平行的性质取BB1中点G,证平面DEG∥平面AB1C1.2.已知底面为平行四边形的四棱锥S-ABCD中,P为SB中点,Q为AD上一点,若PQ∥面SDC,求AQ:QD.答案:1:13.在正方体ABCD-A1B1C1D1中,(1)求证:平面A1BD∥平面B1D1C(2)若E,F分别是A1A,C1C的中点,求证:平面EB1D1∥平面BDF提示:(1)用面面平行的判定定理证:证明BD∥B1D1,A1B∥D1C.(2)证明BD∥B1D1,BF∥D1E.A1D1A BCDB1C1E·F·DSA BCPQ4.在正方体ABCD —A 1B 1C 1D 1中,M 为棱CC 1的中点,AC 交BD 于O ,求证:A 1O ⊥平面MBD提示:用线面垂直的判定定理:证BD ⊥平面AA 1C 1C ,从而得出BD ⊥A 1O ; 在矩形AA 1C 1C 中,用平几知识证明A 1O ⊥OM ;5.在正三棱柱ABC -A 1B 1C 1中,所有棱长均相等,D 为BB 1的中点,求证:A 1B ⊥CD .提示:取AB 的中点E ,连CE ,证A 1B ⊥平面CDE .6.如图,在四棱锥P -ABCD 中,四边形ABCD 是菱形,PB =PD ,且E ,F 分别是BC , CD 的中点. 求证:平面PEF ⊥平面P AC .提示:设EF 与AC 交于点O ,证EF ⊥AC ,EF ⊥OP , 从而得出EF ⊥平面P AC .7.如图,已知VB ⊥平面ABC ,侧面VAB ⊥侧面VAC ,求证:△VAC 是直角三角形. 提示:过B 作BD ⊥VA ,垂足为D ,由侧面VAB ⊥侧面VAC ,得出BD ⊥侧面VAC ,从面BD ⊥AC ,由VB ⊥平面ABC ,得AC ⊥VB ,从而AC ⊥平面VAB . 所以AC ⊥VA .A 1D 1 A BCD B 1C 1M ·OA 1BCC 1B 1 DAB C DA P EF B CV二、方法联想1.证明线面平行方法1 构造三角形(中心投影法),转化为线线平行.寻找平面内平行直线步骤,如下图:①在直线和平面外寻找一点P ;②连接P A 交平面α于点M ;③连接P A 交平面α于点N ,④连接MN 即为要找的平行线.方法2:构造平行四边形(平行投影法) ,转化为线线平行.寻找平面内平行直线步骤,如下图:①选择直线上两点A 、B 构造两平行直线和平面α相交于M 、N ;②连接MN 即为要找的平行线.方法3:构造面面平行.构造平行平面步骤,如下图:①过A 做AC 平行于平面α内一条直线A ’C ’;②连结BC ;③平面ABC 即为所要找的平行平面.证明线线平行 方法1:利用中位线;方法2:利用平行四边形; 方法3:利用平行线段成比例; 方法4:利用平行公理; 方法5:利用线面平行性质定理;方法6:利用线面垂直性质定理; 方法7:利用面面平行. 2.已知线面平行方法 过直线l 做平面β交已知平面α于直线m ,则l ∥m .3.面面平行证明ml α ① ②A B CA ’C ’ ①② ① A M N B 或 ①② ③ P A B④ ① ② ③ABP ④ M N M N方法 在一个平面内寻找两条相交直线证明与另一个平面平行.注意 证面面平行必须先通过证线面平行,不可以直接通过证线线平行来证面面平行. 4.证明线面垂直方法 证明直线与平面内两条相交直线垂直. 证明线线垂直方法1:利用线面垂直;方法2:利用线线平行; 方法3:利用勾股定理;方法4:利用等腰三角形三线合一; 方法5:利用菱形对角线互相垂直; 方法6:利用四边形为矩形.5.构造垂面证线线垂直要证l 垂直于AB ,构造垂面证线线垂直步骤:如下图:①过A 找垂直于l 的直线AC ;②连结BC ,③证BC 垂直l ,则l ⊥面ABC .6.证明面面垂直关键是找到和另一个平面垂直的垂线,转化为线面垂直.找垂线的一般方法:(1)分别在两个平面内找两条互相垂直的直线,再判断其中一条直线垂直于平面; (2)找(或做)两平面交线的垂线. 7.已知线面垂直优先在其中一个平面内做两个平面交线的垂线,转化为线面垂直.三、例题分析(考虑立体几何的难度,三个层次学校题目均相同)例1:在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,E 为PD 的中点,P A =2AB .(1)若F 为PC 的中点,求证:PC ⊥平面AEF ; (2)求证:CE ∥平面P AB .证明:(1)在△ABC 中,∵∠ABC =90°,∠BAC =60°, ∴AC =2AB ,又∵P A =2AB ,∴AC =P A , ∵F 为PC 的中点,∴AF ⊥PC ;∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD ,∵∠ACD =90°,∴CD ⊥AC , AC ∩P A =A ,∴CD ⊥平面P AC , ∵PC ⊂平面P AC ,∴CD ⊥PC ,∵E 为PD 的中点,F 为PC 的中点,∴EF ∥CD ,∴EF ⊥PC ,ABlC ① ② ADBEPF∵AF ∩EF =F ,∴PC ⊥平面AEF .(2)提示:①中心投影法:延长CD 与AB 交于G ,证明CE ∥PG . ②平行投影法:取P A 中点M ,过C 作CN ∥AD 交AB 于N . 证四边形CEMN 是平行四边形,从而得CE ∥MN .③面面平行的性质:取AD 中点H ,证明平面CEH ∥平面P AB . 【教学建议】1.本题涉及到证明空间的线面垂直与线面平行. 2.证明线面垂直通常的方法:(1)定义法:a ⊥b ,b 为平面α内任意一条直线⇒ a ⊥平面α.(2)线面垂直的判定定理:a ⊥m ,a ⊥n ,m ⊂平面α,n ⊂平面α,m ∩n =A ⇒ a ⊥平面α. (3)面面垂直的性质定理:平面α⊥平面β,平面α∩平面β=l ,a ⊂平面α,a ⊥l ⇒ a ⊥平面α. 3.证明直线与平面平行的方法: (1)定义法:常常借助反证法完成;(2)判定定理:a ∥b ,a ⊄平面α,b ⊂平面α⇒ a ∥平面α.用判定定理来证线面平行的关键是在平面内找到与已知直线平行的直线,其方法有:中心投影法与平行投影法. 证明线线平行常用方法:①平面几何的方法:三角形中位线,平行四边形,平行线段成比例等. ②面面平行的性质:α∥β,γ∩α=m ,γ∩β=n ⇒m ∥n . ③线面垂直的性质:a ⊥平面α,b ⊥平面α⇒a ∥b . ④公理4:a ∥c ,b ∥c ⇒a ∥b .(3)面面平行的性质:平面α∥平面β, a ⊂平面α⇒ a ∥平面α.例2:如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .证明:(1)法一:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD , 所以D 1D ⊥BD .又因为AB =2AD ,∠BAD =60°, 在△ABD 中,由余弦定理得BD 2=AD 2+AB 2-2AD ·AB cos60°=3AD 2,所以AD 2+BD 2=AB 2. 因此AD ⊥BD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1. 又AA 1⊂平面ADD 1A 1,故AA 1⊥BD .法二:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,ABEPF所以BD ⊥D 1D .取AB 的中点G ,连接DG ,在△ABD 中,由AB =2AD 得AG =AD ,又∠BAD =60°,所以△ADG 为等边三角形. 因此GD =GB ,故∠DBG =∠GDB ,又∠AGD =60°,所以∠GDB =30°. 故∠ADB =∠ADG +∠GDB =60°+30°=90°.所以BD ⊥AD . 又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1. 又AA 1⊂平面ADD 1A 1,故AA 1⊥BD . (2)连接AC ,A 1C 1. 设AC ∩BD =E ,连接EA 1,因为四边形ABCD 为平行四边形,所以EC =12AC .由棱台定义及AB =2AD =2A 1B 1知,A 1C 1∥EC 且A 1C 1=EC , 所以四边形A 1ECC 1为平行四边形.因此CC 1∥EA 1.又因为EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,所以CC 1∥平面A 1BD . 【教学建议】1.本题涉及证明线线垂直,线面平行.2.证明异面直线垂直问题,一般的方法是证线面垂直,要根据图中已有的线线垂直,找到所需证明的平面;证明线面平行,既可有判定定理来证,也可有面面平行的性质来证,但以用判定定理来证要容易些,而用判定定理关键是找到平面内与已知直线平行的直线,所以要学会“中心投影法”与“平行投影法”.例3:如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD =DC =4,AD =2,E 为PC 的中点.(1)求证:AD ⊥PC ;(2)求三棱锥P -ADE 的体积;(3)在线段AC 上是否存在一点M ,使得P A ∥平面EDM ,若存在,求出AM 的长;若不存在,请说明理由.证明(1)∵ PD ⊥平面ABCD ,AD ⊂平面ABCD ,∴PD ⊥AD , ∵底面ABCD 为矩形,∴AD ⊥DC ,又PD ∩DC =D , ∴AD ⊥平面PDC ,PC ⊂平面PDC , ∴AD ⊥PC ; (2)由(1)知AD ⊥平面PDC ,∴AD 的长为A 到平面PDE 的距离, 在直角三角形PDC 中,E 为PC 中点,PD =DC =4,∴S △PDE =4,∴V P -ADE =V A -PDE =13×S △PDE ×AD =13×4×2=83.(3) 当M 为AC 中点时,P A ∥平面EDM , 即在线段AC 上存在一点M ,使得P A ∥平面EDM .∵M 为AC 中点,E 为PC 中点,∴EM ∥P A ,又P A ⊄平面EDM ,EM ⊂平面EDM , ∴P A ∥平面EDM .此时AM =12AC =1242+22=5.【教学建议】1.本题主要涉及证明线线垂直,体积计算与探究命题成立的条件.2.证明空间两条异面直线垂直问题,通常是证明一条直线垂直与另一条直线所在的一个平面;A BD CE P多面体体积的计算,关键是找到多面体的高,另一方面对于不易找高的多面体,可以利用几何体体积之间的关系进行转化,转化为比较容易计算的几何体体积.3.对命题条件的探索常采用以下三种方法:①先猜后证,即先观察与尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性;③把几何问题转化为代数问题,探索命题成立的条件.4.对命题结论的探索常采用以下方法:首先假设结论存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾的结果就否定假设.四、反馈练习。