第2讲 空间中的平行与垂直
- 格式:ppt
- 大小:4.12 MB
- 文档页数:41
人教版四年级上册《平行与垂直》说课稿范文(精选4篇)四年级上册《平行与垂直》说课稿1一、教材分析“垂直与平行”是人教版四年级上册第四单元第一课时的教学内容。
它是在学生认识了直线、线段、射线的性质、学习了角及角的度量等知识的基础上学习的。
在“空间与图形”的领域中,垂直与平行是学生以后认识平行四边形、梯形以及长方体、正方体等几何形体的基础,也为培养学生空间观念提供了一个很好的载体。
是在学习了单一的直线知识后,开始学习两条直线间的关系,为以后学习复杂的几何图形打下基础。
从学生思维角度看,垂直与平行这些几何图形,在日常生活中应用广泛,学生头脑中已经积累了许多表象,但由于学生生活的局限性,理解概念中的“永不相交”比较困难;由于年龄特点的原因,学生空间想像力不强,想像理解局部不想交,但延长后相交有一定的难度;还有学生年龄尚小,空间观念及空间想象能力尚不丰富,导致他们不能正确理解“同一平面”的本质;再加上以前学习的直线、射线、线段等研究的都是单一对象的特征,而垂线与平行线研究的是同一个平面内两条直线位置的相互关系,这种相互关系,学生还没有建立表象。
这些问题都需要教师帮助他们解决。
二、说教学目标、重点难点本节课我设计的教学目标是:1、让学生通过观察、操作、讨论感知生活中的垂直与平行。
2、帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系。
3、培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。
本节课的教学重点是:正确理解“相交”“互相平行”“互相垂直”等概念,特别要注意对看似不相交,而实际上可以相交现象的理解。
教学难点是:正确理解“在同一平面内”“永不相交”等概念的本质属性。
三、说教法学法在教学过程中,根据教材的特点及学生年年龄特征,我选用了归纳法、比较法和观察分析法。
根据教材的编排意图和学情状况,结合数学知识的生成特点,设计的教学方法主要是分类比较法和观察发现法。
即先让学生想像在一个平面上有两条直线,并记下它们的位置,找出一些有代表性进行分类比较,得出平面内的两条直线的位置关系有“不相交”和“相交”两种情况,然后带领学生逐一进行研究和学习。
《平行与垂直》说课稿《平行与垂直》说课稿篇一一、说教材新数学课程标准将“空间与图形”安排为一个重要的学习领域,强调发展学生的空间观念和空间想象能力。
“垂直与平行”就属于“空间与图形”这一领域的内容,它是学生在认识了线段、射线、直线和角等概念的基础上进行教学的,教材通过具体的生活情境,让学生充分感知同一平面内两条直线平行与垂直的位置关系。
正确认识平行、垂直等概念是学生今后平行四边形、梯形以及长方体、正方体等几何知识的基础。
同时,它也为培养学生的空间观念提供了一个很好的载体。
知识与技能目标:引导学生通过观察、讨论、感知生活中的垂直与平行的现象。
过程与方法目标:帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步认识垂线和平行线。
情感与态度目标:培养学生的空间观念及空间想象能力,引导学生具有合作探究的学习意识。
重点:正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象能力。
难点:相交现象的正确理解(特别是看似不相交,而实际上是相交现象的理解。
)二、说教法和学法课堂教学首先是情感成长的过程,然后才是知识成长的过程,学生的学习过程是一个主动建构、动态生成的过程,教师要激活学生的原有经验,激发学生的学习热情,让学生在经历,体验和运用中真正感悟新知。
基于以上理念:在本节课的教法选择上,我注重体现以下几点:①引导学生采取“观察、想象、分类、比较、操作”等方式进行探究性学习活动。
②组织学生开展有意识的小组合作交流学习活动。
③适时运用多媒体教学手段,充分发挥现代教学手段的优越性。
新课程标准强调指出“动手实际、自主探究、合作交流”是学生学习数学的重要方式,为此,在本课时的学法指导上,我将让学生在感知想象、实际操作、自主探索、合作交流的过程中,经历知识的发生和形成过程,进而使他们在交流中充分体验同一平面内两条直线的位置关系,深刻理解“相交”、“互相平行”、“互相垂直”等概念。
使学生的学习活动成为一个生动、活泼和富有个性的过程。
平行与垂直说课稿平行与垂直说课稿(通用5篇)作为一名教学工作者,总不可避免地需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。
那么问题来了,说课稿应该怎么写?下面是小编为大家收集的平行与垂直说课稿(通用5篇),希望能够帮助到大家。
一、说教材《垂直与平行》是人教版《义务教育课程标准试验教科书数学》四年级第四单元《平行四边形和梯形》的第一课时,直线的平行与垂直是在学生认识了点和线段以及射线、直线的基础上安排的,也是进一步学习空间与图形的重要基础之一。
垂直与平行是同一平面内两条直线的两种特殊的位置关系,在生活中有着广泛的应用,生活中随处可见平行与垂直的原型。
学生的头脑里已经积累了许多表象,因此教学中让学生在具体的生活情境中,充分感知平面上两条直线的平行和垂直关系。
本课时主要解决平行和垂直的概念问题。
二、说教法本节课我依据学生已有的生活经验和知识为基础,从学生出发,以《数学课程标准》的新理念为指导,遵循学生的认知规律,由生活实例引入,通过猜测、动手画线、图形反馈使学生系统深入地掌握知识,以及运用分类、观察、讨论等方法以拉近学生与知识的距离,从而揭示出平行与垂直的概念,最后加以巩固、提高与应用。
本节课的教学力求创造性地使用教材,在课堂教学设计中力求体现1.注意创设生活情境,体现了小课堂、大社会的理念,使数学学习更贴近生活。
2.让学生通过动手操作,自主探索和合作交流的学习方式,亲身体验,自主完成对知识的建构。
3.努力创设新型的师生关系,让学生主动参与,快乐学习,教师适时给予鼓励,让课堂焕发生命活力。
三、教学目标1、认知目标:让学生结合生活情境,通过自主探究活动,初步认识平行线,垂线。
2、技能目标:使学生经历从现实空间中抽象出平行线的过程,培养空间观念。
3、情感目标:在数学活动中让学生感受到数学知识在生活中的真实存在,增强学生对数学的兴趣,养成独立思考的习惯,培养用数学的意识。
四、教学重难点教学重点:感知平面上两条直线的平行、垂直的关系,认识两线平行垂直。
第2讲空间中的平行与垂直1.线面平行与垂直的判定定理、性质定理2.3.平行关系及垂直关系的转化示意图考点一空间线面位置关系的判断例1(1)l1,l2,l3是空间三条不同的直线,则下列命题正确的是() A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面(2)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m(1)(2013·广东)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α考点二线线、线面的位置关系例2如图,在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,E为PD的中点,P A=2AB.(1)若F为PC的中点,求证:PC⊥平面AEF;(2)求证:EC∥平面P AB.考点三面面的位置关系例3如图,在几何体ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD.M为线段BD的中点,MC∥AE,AE=MC= 2.(1)求证:平面BCD⊥平面CDE;(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.考点四 图形的折叠问题例4 (2012·北京)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.(2013·广东)如图(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G .将△ABF 沿AF 折起,得到如图(2)所示的三棱锥A -BCF ,其中BC =22.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .1.证明线线平行的常用方法(1)利用平行公理,即证明两直线同时和第三条直线平行;(2)利用平行四边形进行转换;(3)利用三角形中位线定理证明;(4)利用线面平行、面面平行的性质定理证明.2.证明线面平行的常用方法(1)利用线面平行的判定定理,把证明线面平行转化为证线线平行;(2)利用面面平行的性质定理,把证明线面平行转化为证面面平行.3.证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行.4.证明线线垂直的常用方法(1)利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;(2)利用勾股定理逆定理;(3)利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可.5.证明线面垂直的常用方法(1)利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;(2)利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;(3)利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面等.6.证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决.1. 如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的距离与△BEF 的面积相等2. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)证明:平面ADC 1B 1⊥平面A 1BE ;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你 的结论.一、选择题1. 已知α,β,γ是三个互不重合的平面,l 是一条直线,下列命题中正确的是( )A .若α⊥β,l ⊥β,则l ∥αB .若l 上有两个点到α的距离相等,则l ∥αC .若l ⊥α,l ∥β,则α⊥βD .若α⊥β,α⊥γ,则γ⊥β2. 已知直线m ,n 和平面α,则m ∥n 的必要不充分条件是( ) A .m ∥α且n ∥α B .m ⊥α且n ⊥α C .m ∥α且n ⊂αD .m ,n 与α成等角3. 如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD .则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC4. 下列命题中,m 、n 表示两条不同的直线,α、β、γ表示三个不同的平面.①若m ⊥α,n ∥α,则m ⊥n ;②若α⊥γ,β⊥γ,则α∥β;③若m ∥α,n ∥α,则m ∥n ;④若α∥β,β∥γ,m ⊥α,则m ⊥γ. 正确的命题是( )A .①③B .②③C .①④D .②④5. 一正四面体木块如图所示,点P 是棱VA 的中点,过点P 将木块锯开,使截面平行于棱VB 和AC ,若木块的棱长为a ,则截面面积为( ) A.a 22 B.a 23 C.a 24D.a 256. 在正三棱锥S -ABC 中,M ,N 分别是SC ,BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正三棱锥S -ABC 外接球的表面积是 ( ) A .12π B .32π C .36πD .48π二、填空题7. 设x ,y ,z 是空间中的不同直线或不同平面,下列条件中能保证“若x ⊥z ,且y ⊥z ,则x ∥y ”为真命题的是________(填出所有正确条件的代号).①x 为直线,y ,z 为平面;②x ,y ,z 为平面;③x ,y 为直线,z 为平面;④x ,y 为平面,z 为直线;⑤x ,y ,z 为直线.8. 如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .9. 如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线P A 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题: ①P A ∥平面MOB ; ②MO ∥平面P AC ; ③OC ⊥平面P AC ; ④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号). 三、解答题10. 如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,P A =23,BC =CD =2,∠ACB =∠ACD =π3.(1)求证:BD ⊥平面P AC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.11.(2012·广东)如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面P AB .12.如图,在平行四边形ABCD 中,AB =2BC =4,∠ABC =120°,E ,M 分别为AB ,DE 的中点,将△ADE 沿直线DE 翻折成△A ′DE , F 为A ′C 的中点,A ′C =4. (1)求证:平面A ′DE ⊥平面BCD ; (2)求证:FB ∥平面A ′DE .。
立体几何平行和垂直知识讲解知识点1 点、线、面一、平面的基本性质二、空间直线的位置关系1.位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.2.平行公理平行于同一条直线的两条直线互相平行.3.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(或夹角)(1)定义:设ba,是两条异面直线,经过空间中任一点O作直线bbaa//',//',把'a与'b所成的锐角(或直角)叫做异面直线a与b所成的角.I,,Pl P l且且三、直线与平面的位置关系llAα//l知识点2 线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指AO PO PA ,,都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。
知识点3 线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面α的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
直线l 与平面α垂直记作:α⊥l 。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
知识点4 面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。
关于平行与垂直教案(精选范文4篇)垂直,是指一条线与另一条线相交并成直角,这两条直线相互垂直。
通常用符号“⊥”表示。
设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。
对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的,以下是为大家整理的关于平行与垂直教案4篇, 供大家参考选择。
平行与垂直教案4篇【篇一】平行与垂直教案第四单元平行四边形和梯形第____课时总序第____个教案编写时间:____年____月____日执行时间:____年____月____日【篇二】平行与垂直教案垂直与平行教学内容:人教版《义务教育课程标准试验教科书·数学》四年级上册64~65页的内容。
教学目标:1.引导学生通过视察、探讨感知生活中的垂直与平行的现象。
2.协助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步相识垂线和平行线。
3.造就学生的空间观念及空间想象实力,引导学生树立合作探究的学习意识。
4、在分析、比拟、综合的视察与思维中渗透分类的思想方法。
教学重点:正确理解“相交”“相互平行”“相互垂直”等概念,开展学生的空间想象实力。
教学难点:相交现象的正确理解〔尤其是对看似不相交而事实上是相交现象的理解〕教学过程:一、画图感知,探究两条直线的位置关系同学们,前面我们相识的直线,知道了直线的特点是可以向两端无限延长,这节课咱们接着探究和直线有关的学问!首先教师向学生出示一个魔方,说怎么玩?生:把一样颜色的方块转到同一个平面上。
然后教师又拿出一张白纸,我们把这张白纸看成一个平面,闭上眼睛想象在这个平面上出现了一条直线,又出现了一条直线,你想象的这两条直线是什么样儿呢?睁开眼睛!把他们用直尺和彩色笔画在纸上!〔生画直线,师巡察〕二、视察分类,了解平行的特征师:好多同学都已经画完坐端正了,你们都画完了吗?好!刚刚教师收集了几幅作品,我们贴黑板上吧!师:你们看,同学们的想象真丰富,我们在同一个平面内想象两条直线,竟然出现了这么多不同的样子,真不简洁!师:细致看看,能不能给他们分分类呢?好!为了大家表达起来便利,咱们给他们编上号,一起来吧!师:下面请你把分类的状况写在练习本上,用序号表示〔小组合作完成〕〔起先吧!〕师:都分好了吗?谁情愿到前面来分给大家看看!给大家说说你分的理由!1、教学相交师:这个同学把黑板上的分成了两类!对于这样的分发你有没有不同的想法?这个同学的观点认为4号是穿插的,你们认为呢?为什么?谁能再说说理由?大家说能再画长一些吗?〔能〕师小结:也就是说这幅作品把穿插的局部没画出来,它穿插了吗?〔穿插了〕嗯!它看似不穿插实际却是穿插了的!此时此刻我们可以把它放到哪一类?〔穿插的一类〕师总结:好!大家看,我们把黑板上的作品分成了两类,这一类是两条直线相互穿插了,这一类就是相交〔板书:相交〕2、教学相互平行师:那这一类相交了吗?是不是因为这两条直线画的太短了呢?那是为什么?你从哪儿看出来再画也不会相交呢?师:也就是说这边的宽窄和这边儿的宽窄一样,对吗?那你用什么方法证明这两边的宽窄一样呢?〔用尺子量〕谁情愿上来量?这一幅谁来量?师:这两个同学量了这边儿是3厘米,这边儿也是3厘米,这幅这边是2厘米,这边儿也是2厘米,把它们画的再长些,这两条直线会相交吗?为什么?谁能再说说理由!师小结:也就是说这两条直线之间必需一样宽窄!那么像这样在同一平面内的两条直线画的再长、再长也不会相交。
四年级数学《平行与垂直》教案设计精选10篇《垂直与平行》的教案1一、三维目标1、知识与技能目标:掌握平行线与垂直线的概念,能准确作出判断,会动手画出平行线与垂直线。
2、过程与方法目标:通过独立思考、小组交流合作、动手操作,提高学生的总结归纳、小组协作、解决实际问题的能力。
3、情感态度与价值观目标:感受数学的魅力,激发学生学习数学的兴趣,在解决实际问题体会到成功的喜悦。
二、教学重难点教学重点:理解平行与垂直等概念,会进行判断;教学难点:理解平行与垂直的本质特征三、教学过程1、创设情境,导入新知教师带领学生回忆直线的相关内容,提问学生:我们生活中常见的直线都有哪些?学生仔细思考,回答教师问题,同时教师在多媒体上展示多张生活中常见的直线,如栏杆,电线,筷子等等,提问学生:它们在位置上有什么关系呢?学生对于平行的'能回答它们朝着相同的方向,相交的能回答朝着不同的方向。
从而引入本节课学习的内容:平行与垂直。
2、师生合作,探究新知首先,教师让学生用直尺在纸上任意画出两条直线,提问学生:仔细观察任意两条直线在位置上有什么关系呢?一共都有哪些情况?接下来教师讲授,我们发现两条直线有相交和不相交的情况,我们知道直线是可以无限延长的,那么没有相交的直线再画长一些它们会相交吗?如果不相交它们还会相交吗?我们生活中有这种不相交的例子吗?请学生回答并板书总结。
之后教师讲解在同一个平面不相交的两条直线叫做平行线,也可以说这两条直线互相平行,如直线a与直线b平行,记作a//b,读作a平行于b。
结合平行直线的概念,提问学生:直线相交有什么哪些情况呢?引导学生用三角尺对直线夹角进行测量,我们生活中有这样的例子吗?学生用三角板对4个夹角进行测量,发现有60°和120°,有4个角相等,即4个角都是90度。
教师讲授特殊情况,两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,两条垂线的交点叫做垂足。
平行与垂直教案3篇最新垂直与平行线教案精品文档,仅供参考平行与垂直教案3篇最新垂直与平行线教案一般地说,教案要包括4个基本部分:教学目标、教学过程、板书设计、结语(总结)。
以下是本站小编为大家带来的平行与垂直教案3篇,希望能帮助到大家!平行与垂直教案1《垂直与平行》教案教学目标1.引导学生通过观察、讨论感知生活中的垂直与平行的现象。
2.帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步认识垂线和平行线。
3.培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。
教学重点:正确理解相交互相平行互相垂直等概念,发展学生的空间想象能力。
教学难点相交现象的正确理解(尤其是对看似不相交而实际上是相交现象的理解)。
教学过程一、导入导入:同学们,今天我们老见一位老朋友,(画直线)大家认识它吗?直线有哪些特征?看来大家对直线都很熟悉,今天我们继续研究和直线有关的知识。
二、新授1、出示一张白纸(1)同学们拿出一张白纸,摸一摸这个面。
现在同学们闭上眼睛,想象一下,这个面变大了,又变大了,变得无限大,在这个面上出现了一条直线,又出现了一条直线,你能想象这两条直线的位置关系是怎样的吗?睁开眼睛吧,把你想象到的两条直线画在纸上吧。
(通过想象、操作,初步建立了垂线与平行线的表象同一个平面内、两条直线,同时培养了学生的空间观念及空间想象能力。
)(2)同学们画完了吗?你们画的一样吗?同桌互相看看,举起手来给老师看看,哦,真的不一样,同学们的想象力可真丰富。
想出这么多的样子,哪个同学愿意把你的.作品展示给大家看看。
(贴图片)(3)这么多的图片,你能给他们分分类吗?小组交流一下。
(小组讨论、交流)(4)指生汇报,并说说你的分类理由。
学生可能出现以下几种情况:分为两类:交叉的一类,不交叉的一类;分为三类:交叉的一类,快要交叉的一类,不交叉的一类;当学生说出第一种情况时,教师适时引导,你们说的交叉是说两条直线碰在一块儿了,这种现象在数学上称为相交。
《平行与垂直》说课稿(5篇) 《平行与垂直》说课稿篇一一、从角考虑通过证明被第三条直线截得的同位角相等、内错角相等、同旁的内角互补确定两直线平行二、从线考虑证明两直线同垂直(或者同平行)另一条直线三、从形考虑通过证两直线上的线段是某些特殊图形,如平行四边形、()、()、()的一组对边三角形或者梯形的中位线和底边等来确定平行。
四、从比例式考虑通过证对应线成比例来确定过对应分点的直线平行(平行线分线段成比例定理)《平行与垂直》说课稿篇二一、说教材(一)教材分析:《探索直线平行的条件(一)》是六年级下册第八章《平行线与相交线》中的第三课时。
在上学期,学生已经学习了平行线的定义、性质(过直线外一点有且只有一条直线与已知直线平行)、以及平行线的传递性(平行于同一条直线的两条直线是平行线)。
会用三角板过直线外一点作已知直线的平行线,在前一节课又学习了对顶角的概念和性质,这些为本节课的学习起着铺垫作用。
本节课《探索直线平行的条件(一)》是本章的重点,在处理同位角概念及三线八角上也是本章的难点,而且为后面学习习近平行四边形起着重要的铺垫作用。
(二)教学目标:知识与能力目标1.掌握直线平行的条件:同位角相等.2.会用三角板过已知直线外一点画这条直线的平行线.过程与方法目标1.经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.2.会用三角板过已知直线外一点画这条直线的平行线.3.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.情感与态度目标1.在探索和交流的活动中,培养学生与人协作的习惯.2.培养学生理论联系实际的观点.(三)教学重点难点动手实践、自主探索、合作交流是重要的数学学习方式,因此我认为本节课的重点是在操作、观察的基础上总结出直线平行的条件.在我十多年的几何教学中,学生对“三线八角”很头疼,有的学生到了初四还区分不清,因此我把同位角的概念确定为本节课的难点。
四年级上《平行与垂直》教学设计四年级上《平行与垂直》教学设计(精选6篇)平行与垂直是两种不同的空间关系,在四年级上册我们会接触到这门课程的学习,那么老师应该怎样进行课程设计呢?下面店铺带大家了解一下。
四年级上《平行与垂直》教学设计篇1【教学内容】人教版四年级上册教材第64,65页。
【教学目标】知识与技能目标:1、使学生初步理解垂直与平行是同一个平面内两条直线的两种特殊的位置关系。
2、学生结合生活情境,通过自主探究活动,初步认识平行线、垂线。
过程与方法目标:学生在小组合作学习的过程中理解垂直与平行是同一平面内两条直线的两种特殊的位置关系,培养学生的空间观念及空间想象能力,合作探究能力。
情感、态度与价值观目标:1、通过讨论交流,使学生独立思考能力与合作精神得到和谐发展。
2、学生在具体的情境中感受“垂直与平行”来源于生活,在知识形成过程中体验数学的价值。
【教学重点】正确理解“同一个平面”“相交” “互相平行” “互相垂直” “平行线” “垂线”等概念,发展学生的空间想象能力。
【教学难点】正确判断两条直线之间的位置关系(尤其是对看似不相交而实际上是相交现象的理解)和对“同一平面”的正确理解。
【教学用具】白纸、尺子、三角板、水彩笔一支、小棒、多媒体教学过程:一、画图感知、研究两条直线在同一平面内的位置关系。
1、今天这节课老师请来了一个老朋友,他是一条直线,那么直线有什么特点呢? (没有端点,可以向两边无限延伸)师:直线就像孙悟空的…?生:金箍棒。
2、想象活动(想象纸面上两条直线的位置关系)师:老师和同学们都有同样的一张纸,现在请大家拿出来平放在桌上摸一摸这纸,然后谈谈你的发现。
生:这张纸很薄。
生:这张纸的表面是平平的。
师:也就是说我们手中的这张纸的面是一个平面。
(学生活动感知纸面是一个平面。
)师:同学们我们现在来想象一下,如果把这个面无限扩大,闭上眼睛想象一下,它是什么样子?生:很大很大,越来越大。
(学生闭上眼睛想象)师:如果在这个无限大的平面上,出现了一条直线,又出现一条直线,现在请你想一想这两条直线的位置关系是怎样的?会有哪几种不同的情况呢?(学生想象)3、在纸上画出想象中的两条直线。
知识图谱-利用向量证明空间中的平行关系-利用向量证明空间中的垂直关系直线的方向向量与直线的向量方程利用向量方法证明线面平行关系利用向量方法证明线线与面面的平行关系利用向量方法证明线线垂直平面的法向量利用向量方法证明线面垂直利用向量方法证明面面垂直第02讲_向量法证明平行与垂直错题回顾利用向量证明空间中的平行关系知识精讲一.直线的方向向量与直线的向量方程1.点的位置向量在空间中,我们取一定点作为基点,那么空间中任意一点的位置就可以用向量来表示,我们把向量称为点的位置向量.2.直线的方向向量空间中任一直线的位置可以由上的一个定点以及一个定方向确定,如图,点是直线上的一点,向量表示直线的方向向量,则对于直线上任一点,有,这样点和向量,不仅可以确定直线的位置,还可具体表示出上的任意点;直线上的向量以及与共线的向量叫做的方向向量.3.直线的向量方程直线上任意一点,一定存在实数,使得①,①式可以看做直线的参数方程,直线的参数方程还可以作如下表示:对空间中任意一确定点,点在直线上的充要条件是存在唯一的实数满足等式②,如果在上取,则上式可以化为③;①②③都叫做空间直线的向量参数方程.二.平面的法向量1.平面法向量的定义已知平面,如果向量的基线与平面垂直,则向量叫作平面的法向量或者说向量与平面正交.2.平面法向量的性质(1)平面上的一个法向量垂直于平面共面的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.三.用向量方法证明空间中的平行关系1.线线平行设直线的方向向量分别是,则要证明或与重合,只需要证明,即.2.线面平行(1)设直线的方向向量是,平面的法向量是,要证明,只需要证明;(2)根据线面平行的判定定理:如果直线(平面外)与平面内的一条直线平行,那么这条直线与这个平面平行;所以,要证明一条直线和一个平面平行,也可以在平面内找到一个向量与已知直线的方向向量是共线向量即可;(3)根据共面向量定理可知:如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共面向量确定的平面一定平行.已知两个不共线向量与平面共面,一条直线的一个方向向量为,则由共面向量定理,可得或在内存在两个实数,使.3.面面平行(1)若能求出平面的法向量,要证明,只需要证明即可.(2)由面面平行的判定定理:要证明面面平行,只要转化为相应的线面平行、线线平行即可,已知两个不共线的向量与平面共面,则由两平面平行的判定与性质,得.三点剖析一.方法点拨1.在平面内,直线的向量方程可类比点斜式方程,直线的方向向量、斜率都是刻画直线方向的量,只是从不同角度引入,它们有一定的关系:斜率为的直线,其方向向量为,反之,方向向量为的直线不一定存在斜率;在空间中,用方向向量刻画直线较为方便.2.空间中建系描述选取三条两两相交的直线的交点作为原点,以哪三条直线为轴,建立空间直角坐标系.例如:正方体中,建系的描述为:以点为坐标原点,分别以所在直线为轴,建立空间直角坐标系.3.用空间向量证明平行关系需要注意的问题(1)用空间向量的方法证明立体几何中的平行问题,主要运用了直线的方向向量和平面的法向量,同时也要借助空间中已有的一些关于平行的定理.(2)用向量方法证明平行问题的步骤①建立空间图形与空间向量的关系,用空间向量表示问题中涉及的点、直线、平面;②通过向量运算研究平行问题;③根据运算结果解释相关问题.4.平面法向量的求法(1)建立适当的坐标系;(2)设出平面法向量为;(3)找出(求出)平面内的两个共线的向量的坐标;(4)根据法向量的定义建立关于的方程组;(5)解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量.有时候,题目中的线面垂直条件比较明显,可以将垂线的方向向量作为平面的法向量来解决问题.题模精讲题模一直线的方向向量与直线的向量方程例1.1、已知向量=(2,4,5),=(3,x,y)分别是直线l1、l2的方向向量,若l1∥l2,则()A、x=6,y=15B、x=3,y=C、x=3,y=15D、x=6,y=例1.2、从点沿向量的方向取线段长,则B点的坐标为( )A、B、C、D、题模二平面的法向量例2.1、在空间直角坐标系内,设平面经过点,平面的法向量为,为平面内任意一点,求满足的关系式.例2.2、(1)设平面的法向量为,平面的法向量为,若,则__________;则__________.(2)若的方向向量为,平面的法向量为,若,则__________;若,则__________.题模三利用向量方法证明线面平行关系例3.1、已知正方形和正方形相交于分别在上,且,求证平面.例3.2、在正方体中,的中点,求证:.题模四利用向量方法证明线线与面面的平行关系例4.1、在正方体中,分别是的中点.证明:.例4.2、如右图所示,在平行六面体中,分别是的中点.求证:平面∥平面..随堂练习随练1.1、已知,,则直线的模为的方向向量是________________.随练1.2、已知点若点为直线上任意一点,则直线的向量参数方程为______________,当时,点的坐标为______________.随练1.3、已知,且均与平面平行,直线的方向向量,则()随练1.4、若两个不同平面的法向量分别为,则( )A、B、C、相交但不垂直D、以上均不正确随练1.5、已知平面经过三点,试求平面的一个法向量.随练1.6、在正方体中,分别是的中点,求证:.随练1.7、已知正方体的棱长为2,分别是的中点,求证:(1);(2).利用向量证明空间中的垂直关系知识精讲一.直线方向向量与平面法向量在确定直线、平面位置关系中的应用设空间两条直线的方向向量分别是,两个平面的法向量分别是,则有下表与与与二.用向量方法证明空间中的垂直关系1.线线垂直设直线的方向向量分别是,则要证明,只需要证明,即.2.线面垂直(1)设直线的方向向量是,平面的法向量是,要证明,只需要证明.(2)根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直.3.面面垂直(1)根据面面垂直的判定定理转化为证相应的线面垂直,线线垂直;(2)证明两个平面的法向量互相垂直.一、方法点拨1.平面法向量可以不唯一,只要是垂直于平面的直线,其方向向量都可以当作法向量进行运算.2.平面中的平行、垂直关系的向量论证,注意复习线面、面面平行与垂直的判定定理,将这种位置关系的判断转化为向量间的代数运算,体现了向量的工具性功能.题模精讲题模一利用向量方法证明线线垂直例1.1、设的方向向量,的方向向量,若,则( )A、1B、2C、D、3例1.2、在正三棱柱中,.求证:.题模二利用向量方法证明线面垂直若直线的方向向量为,平面的法向量为,则( )A、B、C、D、斜交例2.2、在正方体中,分别是棱的中点,试在棱上找一点,使得.题模三利用向量方法证明面面垂直例3.1、若两个不同平面的法向量分别为,则( )A、B、C、相交但不垂直D、以上均不正确例3.2、在长方体中,,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.随堂练习随练2.1、如图所示,已知空间四边形的各边和对角线的长都等于,点分别是的中点.求证:随练2.2、如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.随练2.3、在正棱锥中,三条侧棱两两互相垂直,的重心,分别为上的点,且(1)求证:平面;(2)求证:的公垂线段.自我总结课后作业作业1、已知,把按向量平移后所得的向量是( )A、B、C、D、作业2、正四面体的高的中点为,则平面的一个法向量可以是________,平面的一个法向量可以是________.作业3、若直线是两条异面直线,它们的方向向量分别是,则直线的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.作业4、是正四棱柱,侧棱长为3,底面边长为2,E是棱BC的中点,求证:.作业5、如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求二面角C1-AB-C的余弦值.作业6、已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)求:(1)求以向量,为一组邻边的平行四边形的面积S;(2)若向量分别与向量,垂直,且||=,求向量的坐标.作业7、如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.作业8、在直三棱柱中,底面是以为直角的等腰直角三角形,,的中点,在线段,使?若存在,求出;若不存在,请说明理由.作业9、如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BA D=∠FAB=90°,BC AD,BE AF,G,H分别为FA,FD的中点(Ⅰ)证明:四边形BCHG是平行四边形;(Ⅱ)C,D,F,E四点是否共面?为什么?(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.。
限时规范训练(十二)(建议限时45分钟,实际用时________分钟) 解答题(本题共5小题,每小题12分,共60分)1.(2019·长春调研)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.证明:(1)因为PA=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD.所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面PAD,且PD⊂平面PAD.所以AB⊥PD.又因为PA⊥PD,且PA∩AB=A,所以PD⊥平面PAB.又PD⊂平面PCD,所以平面PAB⊥平面PCD.(3)如图,取PC中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=12BC.因为ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=12BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形.所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD ,所以EF ∥平面PCD .2.(2019·江西八校联考)如图1,在矩形ABCD 中,AB =12,AD =6,E ,F 分别为CD ,AB 边上的点,且DE =3,BF =4,将△BCE 沿BE 折起至△PBE 的位置(如图2所示),连接AP ,PF ,其中PF =2 5.(1)求证:PF ⊥平面ABED ;(2)求点A 到平面PBE 的距离.解:(1)证明:连接EF ,由翻折不变性可知,PB =BC =6,PE =CE =9,在△PBF 中,PF 2+BF 2=20+16=36=PB 2,所以PF ⊥BF .利用勾股定理,得EF =62+(12-3-4)2=61,在△PEF 中,EF 2+PF 2=61+20=81=PE 2,所以PF ⊥EF .又因为BF ∩EF =F ,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .(2)由(1)知PF ⊥平面ABED ,所以PF 为三棱锥P -ABE 的高.设点A 到平面PBE 的距离为h ,由等体积法得V A -PBE =V P -ABE ,即13×12×6×9×h =13×12×12×6×25,所以h =853,即点A 到平面PBE 的距离为853. 3.(2019·桂林模拟)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,四边形ACC 1A 1是边长为2的菱形,∠A 1AC =60°,AB =BC ,AB ⊥BC ,E ,F 分别为AC ,B 1C 1的中点.(1)求证:直线EF ∥平面ABB 1A 1;(2)设P ,Q 分别在侧棱AA 1,C 1C 上,且PA =QC 1,求平面BPQ 分棱柱所成两部分的体积比.解:(1)证明:取A 1C 1的中点G ,连接EG ,FG ,由于G ,F 分别为A 1C 1,B 1C 1的中点,所以FG ∥A 1B 1.又A 1B 1⊂平面ABB 1A 1,FG ⊄平面ABB 1A 1,所以FG ∥平面ABB 1A 1.又AE ∥A 1G 且AE =A 1G ,所以四边形AEGA 1是平行四边形.则EG ∥AA 1.又AA 1⊂平面ABB 1A 1,EG ⊄平面ABB 1A 1,所以EG ∥平面ABB 1A 1.又因为FG ∩EG =G ,所以平面EFG ∥平面ABB 1A 1.又EF ⊂平面EFG ,所以直线EF ∥平面ABB 1A 1.(2)四边形APQC 是梯形,其面积S =12(AP +CQ )AC ·sin 60°=12×2×2×sin 60°= 3. 由于AB =BC ,E 为AC 的中点.所以BE ⊥AC .因为侧面ACC 1A 1⊥底面ABC ,所以BE ⊥平面ACC 1A 1.即BE 是四棱锥B -APQC 的高,可得BE =1.所以四棱锥B -APQC 的体积为V 1=13×3×1=33. 棱柱ABC -A 1B 1C 1的体积V =12×2×1×3= 3. 所以平面BPQ 分棱柱所成两部分的体积比为1∶2(或者2∶1).4.(2019·昆明三模)如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,AD =BD =6,AB =62,E 是棱PC 上的一点.(1)证明:BC ⊥平面PBD ;(2)若PA ∥平面BDE ,求PE PC 的值; (3)在(2)的条件下,三棱锥P -BDE 的体积是18,求点D 到平面PAB 的距离. 解:(1)证明:由已知条件可知AD 2+BD 2=AB 2,所以AD ⊥BD .因为PD ⊥平面ABCD ,所以PD ⊥AD .又PD ∩BD =D ,所以AD ⊥平面PBD .因为四边形ABCD 是平行四边形,所以BC ∥AD ,所以BC ⊥平面PBD .(2)如图,连接AC 交BD 于F ,连接EF ,则EF 是平面PAC 与平面BDE 的交线.因为PA ∥平面BDE ,所以PA ∥EF .因为F 是AC 的中点,所以E 是PC 的中点,所以PE PC =12. (3)因为PD ⊥平面ABCD ,所以PD ⊥AD ,PD ⊥BD ,由(1)(2)知点E 到平面PBD 的距离等于12BC =3. 因为V 三棱锥E -PBD =V 三棱锥P -BDE =18,所以13×12×PD ×BD ×3=18,即PD =6. 又AD =BD =6,所以PA =62,PB =62,又AB =62,所以△PAB 是等边三角形,则S △PAB =18 3.设点D 到平面PAB 的距离为d ,因为V 三棱锥D -PAB =V 三棱锥P -ABD ,所以13×183×d =13×12×6×6×6,解得d =2 3. 所以点D 到平面PAB 的距离为2 3.5.(2019·福州模拟)如图,在多面体,ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF=3,G ,H 分别是CE ,CF 的中点.(1)求证:AC ⊥平面BDEF ;(2)求证:平面BDGH ∥平面AEF ;(3)求多面体ABCDEF 的体积.解:(1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH,如图.在△ACF中,因为O,H分别为CA,CF的中点,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,矩形BDEF的面积S矩形BDEF=3×22=62,×AO=4.所以四棱锥A-BDEF的体积V1=13×S矩形BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.。
四年级数学《平行与垂直》教案设计(优秀15篇)作为一位优秀的人民教师,时常需要编写教案,借助教案可以有效提升自己的教学能力。
来参考自己需要的教案吧!《垂直与平行》的教案1教学目标1、通过观察、操作等活动,帮助学生认识平行与垂直的概念,进一步引导学生在合作中理解平行与垂直的特点。
2、通过想象活动,培养学生空间观念和空间想象能力。
3、让学生在生活中体会学习数学的价值,激发学习数学的兴趣。
教学重点帮助学生建构平行与垂直的概念。
教学难点经历概念生成的过程,培养学生学习数学的能力。
教学具准备课件、白纸;直尺、三角板、量角器、记号笔。
教学流程教学流程一、画图引入师:请你闭上眼睛,想象一下,在一张纸上任意画两条直线,会有哪几种情况?师:现在把你想到的情况画在纸上。
(学生画图,老师巡视,画垂直的指导标上直角符号,找出典型作品6幅贴在黑板上)1 2 3 5 4 6师:为了方便后面的研究,给每一个图形编上号。
二、探究新知(一)图形分类,认识“平行”与“垂直”1、独立分类师:(课件出示)谁把研究建议读一读?研究建议:请你根据两条直线的位置关系把这些图形分类。
(用序号表示)(2)想一想:你为什么这样分类?师:要求明白了吗?独立完成在练习本上。
学生独立完成分类。
(师巡视了解分类情况)2、分层展示,交流中认识。
第一层:处理延长后相交。
师:(四类)把你的分类结果摆一摆、说一说分类理由。
1 2 3 5 4 6师:对于这样的分类,你有什么想法?或者是问题?(课件演示)你怎么知道这两条直线会相交?预设:两条直线之间的距离越来越窄。
师:看来两条直线相交与延长后相交,这样的两种位置关系可以分成同一类。
第二层:处理相交成直角师:谁还想谈谈自己的看法?(二类):相交成直角也是两条直线相交。
师:确实如此,两条直线相交成直角只是相交中的一种特殊情况。
第三层:分类认识“平行”与“垂直” 1 2 3 5 4 6师:怎样分类才合理呢?(正确):摆图片,说一说分类理由。
第02讲一向量法证明平行与垂直知识图谱-利用向量证明空间中的平行关系-利用向星证明空间中的垂直关系宜线的方向向量与直线的向量方程利用向量方法证明线面平行关系利用向星方法证明线线与面面的平行关系利用向星方法证明线线垂直平面的法向星利用向星方法证明线面垂直利用向量方法证明面面垂直第02讲-向量法证明平行与垂直错题回顾利用向量证明空间中的平行关系知识Si井一・直线的方向向量与直线的向量方程1.点的位置向量在空间中,我们取一定点0作为基点,那么空间中任意一点P的位置就可以用向量成来表示,我们把向量质称为点P的位置向量.2.直线的方向向量空间中任一直线I的位置可以由I上的一个定点A以及一个定方向确定,如图,点村是直线,上的一点,向量或表示直线[的方向向量,则对于直线[上任一点户,有步弟,这样点工和向量成,不仅可以确定直线,的位置,还可具体表示出/上的任意点;直线I上的向量S以及与3共线的向量叫做i的方向向量・3.直线I的向量方程直线上任意一点P定存在实数,,使得衣=龙①,①式可以看做直线[的参数方程,直线f的参数方程还可以作如下表示:对空间中任意一确定点。
,点户在直线[上的充要条件是存在唯一的实数,满足等式灵=鬲*②,如果在,上取后=株,则上式可以化为灸=扇以刀=函硕赤-&)=(1-!)宓H房①;①②③都叫做空间直线的向量参数方程.二•平面的法向量1.平面法向量的定义已知平面a,如果向量成的基线与平面a垂直,则向量成叫作平面”的法向量或者说向量成与平面a正交.2.平面法向量的性质(1)平面“上的一个法向量垂直于平面“共面的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.三.用向量方法证明空间中的平行关系1.牺平行设直线4房的方向向量分别是',5,则要证明4"《或4与"重合,只需要证明加,即M疗.2.线面平行(1)设直线,的方向向量是a,平面。
的法向量是元,要证明〃r/,只需要证明Sz;=o;(2)根据线面平行的判定定理:如果直线(平面夕卜)与平面内的一条直线平行,那么这条直线与这个平面平行;所以,要证明2直线和一个平面平行,也可以在平面内找到一个向量与已知直线的方向向量是共线向量即可;(3)根据共面向量定理可知:如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共面向量确定的平面一定平行.已知两个不共线向量名逡与平面“共面,一条直线]的一个方向向量为亍,则由共面向量定理,可得E或[在位内9存在两个实数W,使土戒+>£.3平行(1借能求出平面s月的法向量元足,要证明耻,只需要证明河即可.(2)由面面平行的判定定理:要证明面面平行,只要转化为相应的线面平行、线线平行即可,已知两个不共线的向量相与与平面“共面,则由两平面平行的判定与性质,得。