第1章 3时域离散系统
- 格式:ppt
- 大小:713.00 KB
- 文档页数:45
《数字信号处理》课程教学大纲课程编码:课程名称:数字信号处理英文名称: Digital signal processing适用专业:物联网工程先修课程:复变函数、线性代数、信号与系统学分:2总学时:48实验(上机)学时:0授课学时:48网络学时:16一、课程简介《数字信号处理》是物联网工程专业基础必修课。
主要研究如何分析和处理离散时间信号的基本理论和方法,主要培养学生在面对复杂工程问题时的分析、综合与优化能力,是一门既有系统理论又有较强实践性的专业基础课。
课程的目的在于使学生能正确理解和掌握本课程所涉及的信号处理的基本概念、基本理论和基本分析方法,来解决物联网系统中的信号分析问题。
培养学生探索未知、追求真理、勇攀科学高峰的责任感和使命感。
助力学生树立正确的价值观,培养思辨能力、工程思维和科学精神。
培养学生精益求精的大国工匠精神,激发学生科技报国的家国情怀和使命担当。
它既是学习相关专业课程设计及毕业设计必不可少的基础,同时也是毕业后做技术工作的基础。
二、课程目标和任务1.课程目标课程目标1(CT1):运用时间离散系统的基本原理、离散时间傅里叶变换、Z变换、离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、时域采样定理和频域采样定理等工程基础知识,分析物联网领域的复杂工程问题。
培养探索未知、追求真理、勇攀科学高峰的责任感和使命感[课程思政点1]。
助力学生树立正确的价值观,培养思辨能力、工程思维和科学精神[课程思政点2]。
课程目标2 (CT2):说明利用DFT对模拟信号进行谱分析的过程和误差分析、区分各类网络的结构特点;借助文献研究运用窗函数法设计具有线性相位的FIR数字滤波器,分析物联网领域复杂工程问题解决过程中的影响因素,从而获得有效结论的能力。
培养学生精益求精的大国工匠精神,激发学生科技报国的家国情怀和使命担当[课程思政点3]。
2.课程目标与毕业要求的对应关系三、课程教学内容第一章时域离散信号与系统(1)时域离散信号表示;(2)时域离散系统;(3)时域离散系统的输入输出描述法;*(4)模拟信号数字处理方法;教学重点:数字信号处理中的基本运算方法,时域离散系统的线性、时不变性及系统的因果性和稳定性。
数字信号处理教案数字信号处理教案课程特点:本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。
本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。
课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。
本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。
这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。
论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。
因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。
鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。
课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。
基本掌握了课堂教学内容后, 再去做作业。
在学习中, 要养成多想问题的习惯。
课堂讲授方法:1. 关于教材: 《数字信号处理》作者丁玉美高西全西安电子科技大学出版社2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。
.3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述.4. 要求、辅导及考试:a. 学习方法: 适应大学的学习方法, 尽快进入角色。
时域离散信号:§例:已知模拟信号是一个正弦波,将它转换成时域离散信号和数字信号。
} {,0,0.9sin 50,0.9sin100,0.9sin150T T ππ时域离散信号n 只能取整数总结:时域离散信号可以通过对模拟信号得到,如果将它的每一个序列值经过有限位的,得到一个用二进制编码表示的序列,该序列就数字信号。
序列值一般有无限位小数。
如果用四位二进制数表示的幅度,二进制数第一位表示符号位,该二进制编码形成的信号数字信号数字信号编码、量化号之间是有差别的。
总结:随着二进制编码位数增加,数字信号和时域离散信号之间的差别越来越小。
[x n 换算成十进制,则x(n 位数有关,如果用换算成十进制,则时域离散信号的来源有两类:¾¾例:每天上午压均正常,收缩压不正常,仅记录收缩压并用时域离散信号号也称为时域离散信号表示方法(((x(n)……¾,如果将它的每一个序列值经过有限位的,得到一个用二进制编码表示的序列,该序列就是字信号¾号之间的差别越来越小。
110()00n n n δ=⎧=⎨≠⎩δδ()t δ10 ()00nu nn≥⎧=⎨<⎩101()0n N n N R n ≤≤−⎧=⎨⎩其它4、实指数序列()()nx n a u n =a 为实数5、复指数序列00()()j n j n nx n e e eσωωσ+==⋅00cos()sin()n ne n je n σσωω=+0ω为数字域频率j n n 3x(n)=0.9e π例:6、正弦序列0()sin()x n A n ωφ=+()()sin()a t nTx n x t A nT φ===Ω+0/sT f ω=Ω=Ω0ω:数字域频率Ω:模拟域频率T :采样周期s f :采样频率()sin()a x t A t φ=Ω+模拟正弦信号:数字域频率是模拟域频率对采样频率的归一化频率弧度弧度/秒(x n8x 要使表示成取(3)任何整数例:判断解:如果一个正弦型序列是由一个连续信号采样而得到的,那么,时间间隔得到的采样序列是周期序列呢?设连续正弦信号信号的周期为ω频率乘以频率。
第1章 时域离散信号和时域离散系统 1.1.2 重要公式(1) ∞-∞==-=m n h n x m n h m x n y )(*)()()()( 这是一个线性卷积公式, 注意公式中是在-∞~∞之间对m 求和。
如果公式中x(n)和h(n)分别是系统的输入和单位脉冲响应, y(n)是系统输出, 则该式说明系统的输入、 输出和单位脉冲响应之间服从线性卷积关系。
(2)x(n)=x(n)*δ(n)该式说明任何序列与δ(n)的线性卷积等于原序列。
x(n -n0)=x(n)*δ(n -n0)(3)∞-∞=-=k a n k X T X )j j (1)j (ˆs ΩΩΩ这是关于采样定理的重要公式, 根据该公式要求对信号的采样频率要大于等于该信号的最高频率的两倍以上, 才能得到不失真的采样信号。
∞-∞=--=n a a T nT t T nT t nt x t x /)(π]/)(πsin[)()(这是由时域离散信号理想恢复模拟信号的插值公式。
1.2 解线性卷积的方法解线性卷积是数字信号处理中的重要运算。
解线性卷积有三种方法, 即图解法(列表法)、 解析法和在计算机上用MA TLAB 语言求解。
它们各有特点。
图解法(列表法)适合于简单情况, 短序列的线性卷积, 因此考试中常用, 不容易得到封闭解。
解析法适合于用公式表示序列的线性卷积, 得到的是封闭解, 考试中会出现简单情况的解析法求解。
解析法求解过程中, 关键问题是确定求和限, 求和限可以借助于画图确定。
第三种方法适合于用计算机求解一些复杂的较难的线性卷积, 实验中常用。
解线性卷积也可用Z 变换法,以及离散傅里叶变换求解, 这是后面几章的内容。
下面通过例题说明。
设x(n)=R 4(n), h(n)=R 4(n), 求y(n)=x(n)*h(n)。
该题是两个短序列的线性卷积, 可以用图解法(列表法)或者解析法求解。
表1.2.1给出了图解法(列表法), 用公式可表示为y(n)={…, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, …}下面用解析法求解, 写出卷积公式为∑∞-∞=∞-∞=-=-=m m m n R m R m n h m x n y )()()()()(44在该例题中, R 4(m)的非零区间为0≤m ≤3, R 4(n -m)的非零区间为0≤n -m ≤3,或写成n -3≤m ≤n ,这样y(n)的非零区间要求m 同时满足下面两个不等式:0≤m ≤3 m -3≤m ≤n上面公式表明m 的取值和n 的取值有关, 需要将n 作分段的假设。
《数字信号处理Ⅰ》作业姓名:学号:学院:2012 年春季学期第一章 时域离散信号和时域离散系统月 日一 、判断:1、数字信号处理和模拟信号处理在方法上是一样的。
( )2、如果信号的取值和自变量都离散,则称其为模拟信号。
( )3、如果信号的取值和自变量都离散,则称其为数字信号。
( )4、时域离散信号就是数字信号。
( )5、正弦序列都是周期的。
( )6、序列)n (h )n (x 和的长度分别为N 和M 时,则)n (h )n (x *的长度为N+M 。
( )7、如果离散系统的单位取样响应绝对可和,则该系统稳定。
( )8、若满足采样定理,则理想采样信号的频谱是原模拟信号频谱以s Ω(采样频率)为周期进行周期延拓的结果。
( )9、序列)n (h )n (x 和的元素个数分别为21n n 和,则)n (h )n (x *有(1n n 21-+)个元素。
( )二、选择1、R N (n)和u(n)的关系为( ):A. R N (n)=u(n)-u(n-N)B. R N (n)=u(n)+u(n-N)C. R N (n)=u(n)-u(n-N-1)D. R N (n)=u(n)-u(n-N+1)2、若f(n)和h(n)的长度为别为N 、M ,则f(n)*h(n)的长度为 ( ): A.N+M B.N+M-1 C.N-M D.N-M+13、若模拟信号的频率范围为[0,1kHz],对其采样,则奈奎斯特速率为( ): A.4kHz B. 3kHz C.2kHz D.1kHz4、LTIS 的零状态响应等于激励信号和单位序列响应的( ): A.相乘 B. 相加 C.相减 D.卷积5、线性系统需满足的条件是( ):A.因果性B.稳定性C.齐次性和叠加性D.时不变性 6、系统y(n)=f(n)+2f(n-1)(初始状态为0)是( ): A. 线性时不变系统 B. 非线性时不变系统 C. 线性时变系统 D. 非线性时变系统7、、若模拟信号的频率范围为[0,Fs],对其采样,则奈奎斯特间隔为( ):A.1/4FsB. 1/3FsC.1/2FsD.1/Fs 三、填空题1、连续信号的( )和( )都取连续变量。
《数字信号处理》复习提纲绪论1.数字信号的概念;2.数字信号与模拟信号的优缺点比较。
第1章 时域离散信号和时域离散系统 1.时域离散信号(序列)的三种表示方法。
2.七种常用典型序列。
3.单位采样序列、矩形序列与单位阶跃序列之间的关系(公式表示)。
4.信号分析中一个很有用的公式:对于任意序列)(n x ,可以用单位采样序列的移位加权和表示,即∑∞-∞=-=m m n m x n x )()()(δ5.序列的运算有:加法、乘法、移位、翻转、尺度变换。
其中 对于移位序列)(0n n x -,00>n 时,称为)(n x 的延时序列,0<n 时,称为)(n x 的超前序列。
关于尺度变换,)(mn x 是)(n x 序列每隔m 点取一点形成的序列,相当于n 轴的尺度变换。
6.线性系统和时不变系统的判定依据。
7.线性卷积运算公式:∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(8.计算线性卷积的基本运算有翻转、移位、相乘、相加。
(例题1.3.4) 9.如果两个序列的长度分别为N 和M ,那么线性卷积的长度为1-+M N 。
10.线性卷积的两个重要公式:(1)序列)(n x 与单位脉冲序列的线性卷席等于序列本身)(n x :∑∞-∞==-=m n n x m n m x n x )(*)()()()(δδ(2)如果序列与一个移位的单位脉冲序列)(0n n -δ进行线性卷积,就相当于将序列本身移位0n ,如下式:)()(*)(00n n x n n n x -=-δ11.线性时不变系统具有因果性的充分必要条件是系统的脉冲响应满足公式:00)(<=n n h12.系统稳定的充分必要条件是系统的单位脉冲响应绝对可和,公式为:∞<∑∞-∞=n n h )(13.采样定理:采样信号的频率大于等于原信号最高频率的两倍,即满足c sf f 2≥,则采样信号能够恢复原信号而无混叠现象。
第1章 时域离散信号和时域离散系统1.常用典型序列间的关系:(1)单位采样序列)(n δ可用单位阶跃序列)(n u 表示,即)(n δ=)1()(--n u n u 。
(2)单位阶跃序列)(n u 可用单位采样序列)(n δ表示,即)(n u =∑∑-∞=∞==-nm k m k n )()(0δδ。
(3)矩形序列)(n R N 可用单位阶跃序列)(n u 表示,即=)(n R N )()(N n u n u --。
(4)对任意序列)(n x ,可用单位采样序列)(n δ表示,即)(n x =∑∞-∞=-m m n m x )()(δ。
2.正弦序列和复指数序列周期性的判定(1)关于序列)(n x =cos(n 73π-8π)的周期性的判定,以下说法正确的是( C )。
A. )(n x 是周期序列,周期为3 B. )(n x 是周期序列,周期为7 C. )(n x 是周期序列,周期为14D. )(n x 不是周期序列(2) 关于序列)53sin()(ππ-=n n x 的周期性的判定,以下说法正确的是( C )。
A. )(n x 是周期序列,周期为3 B. )(n x 是周期序列,周期为5 C. )(n x 是周期序列,周期为10D. )(n x 不是周期序列(3)关于序列)81()(π-=n j e n x 的周期性的判定,以下说法正确的是( D )A. )(n x 是周期序列,周期为1B. )(n x 是周期序列,周期为8C. )(n x 是周期序列,周期为1/8D. )(n x 不是周期序列3.序列运算给定信号⎪⎩⎪⎨⎧≤≤-≤≤-+=其它 03031332)(n n n n x (1)画出)(n x 及)1(2-n x 的波形图; (2)画出)(n x 及)1(2+n x 的波形图;(3) 画出)(n x 及)1(2n x -的波形图; (4) 画出)(n x 及)2/(2n x 的波形图; (5) 画出)(n x 及)2(2n x 的波形图。