离散系统的时域分析共67页
- 格式:ppt
- 大小:4.01 MB
- 文档页数:67
第六章 离散时间系统的时域分析6.1离散时间信号—序列(一)序列运算[1] 相加()()()z n x n y n =+[2] 相乘()()()z n x n y n =[3] 延时()()z n x n m =-[4] 反褶()()z n x n =-[5] 前向差分()()()1x n x n x n ∆=+-[6] 后向差分()()()1x n x n x n ∇=--[7] 累加()()NK z n x K =-∞=∑[8] 倍乘序列的尺度倍乘将波形压缩或拓展,若将自变量n 乘以正整数a ,构成()x an 为压缩,而n x a ⎛⎫⎪⎝⎭则为波形扩展。
必须注意,这时要按规律去除某些点或者补足相应的零值。
因此,也称这种运算为序列的“重排”。
(二)常见序列1. 单位样值信号()()()1000n n n δ=⎧⎪=⎨≠⎪⎩2. 单位阶跃序列()()()1000n u n n ≥⎧⎪=⎨<⎪⎩ 3. 矩形序列()()()10100,N n N R n n n N ≤≤-⎧⎪=⎨<≥⎪⎩4. 斜变序列()()x n nu n =5. 指数序列()()n x n a u n =6. 正余弦序列()()0sin x n n ω= ()()0cos x n n ω=7. 复指数序列()()()0j 00cos jsin nx n e n n ωωω==+6.2离散时间系统的数学模型(一)三种方框图在时间域描述中,以符号1E表示单位延时(也可用符号“T ”或者符号“D ”表示单位延时);以符号∑表示两个序列相加;以符号⊗表示序列与系数相乘。
三种运算的方框图如下:单位延时相加乘系数例 一个离散时间系统如下图所示,写出描述系统工作的差分方程。
解 延时器的输入端应为序列()1y n +。
于是,围绕相加器可以写出()()()1y n ay n x n +=+或者()()()11y n y n x n a=+-⎡⎤⎣⎦a()y n ()ay n6.3常系数线性差分方程的求解(一)求解常系数线性差分方程的方法[1]时域经典法与微分方程的时域经典法类似,先分别求齐次解与特解,然后代入边界条件求待定系数。