光子晶体光纤模拟
- 格式:ppt
- 大小:10.76 MB
- 文档页数:183
自从1992年St. J. Russell等人提出光子晶体光纤的概念来,众多的大学、科研机构投入了大量的人力物力对光子晶体光纤在理论和实际应用方面进行了深入的研究。
光子晶体光纤是一种将光子晶体结构引入光纤中而制成的新型光纤。
许多理论和实验结果都表明这种光纤具有很多优良的性能,如;不截止的单模特性、可控的模场面积、灵活的色散特性、高非线性等,在特种光纤、光电子器件等方面将具有广阔的应用前景,是光纤技术发展的一个新方向。
光子晶体光纤由于结构上的特点,从而具有两种不同的导光机制,即:全内反射型和光子带隙型。
全内反射型光子晶体光纤和普通光纤的工作原理是基本一样的,但也有区别。
光子带隙型光子晶体光纤依靠的是一种全新的导光机制,它是光子晶体光纤周期性介质结构所特有的。
在周期性的介质材料里,当波长与介质材料的尺寸可以比拟的时候,就会形成光子禁带。
而引入线性缺陷,某种频率的光就可以限制在其中传播。
正是光子晶体光纤具有不同于传统光纤的导光原理,使得其具有上面提到的很多新特性。
不同的导光原理使得分析方法也不尽相同,对于光子晶体光纤的分析比普通光纤的更为复杂。
从刚刚开始研究到现在人们一直在寻求简单、快捷而有效的方法来分析光子晶体光纤的特性,其中出现了大量的计算方法,如:等效折射率模型、平面波展开法、时域有限差分法、有限元法等。
本位在深入研究波动理论的基础上,通过依次对波动方程的场变量和折射率函数展开的方法,推导出了光子晶体光纤的矩阵形式的本征方程,从而建立了模拟光子晶体光纤的正交函数展开模型,并详细推导了求解的步骤。
基于该模型,我们对全内反射型光子晶体光纤的模式特性、色散特性等方面进行了详细的分析,得到了一些有益的结论。
从该模型出发,可以直接从数学上推导出光子晶体光纤波导色散的比例性质,这对于设计光纤的色散特性具有重要的意义。
关键词:光子晶体光纤;本征方程;正交函数展开法;模场分布;色散AbstractSince St. J. Russell proposed theconception of photonic crystal fibers, PCFs, a lot of universities and institutes have been spending great deal of manpower and material resourceon the theory and application research for the PCFs. The PCFs are a new kind of optical fibers thatemploy the structured arrangement of the photonic crystals(PC).The results of theory and experimentation show that the PCFs have many unique opticalcharacteristics, such as endless single mode, manipulablemode areas, flexible dispersions and high non-linear. PCFs are a newdeveloping direction of the optical fiber technology and theywould have good application prospects in the special fibers and photonic &electronic devices.Because of the structural character, PCFs guide light using two quit different mechanisms, viz. total internal reflection and photonic band gap effects. The total internal reflection PCFs are analogous to the conventional fibers in mechanisms of guiding light, with a little difference. Photonic band gap PCFsareof a new guidance mechanism,which is unique to the PBG-PCFs’periodic construction medium. When thescale length of the medium is comparative with the wavelength, photonic band gapwill be formedin the periodic medium. If a line defection is introduced, certain frequency optical rays will be located in the defection regionand transmit along the defection. For the different mechanisms of guiding light, PCFs have many new features referred in thefirst paragraph.For the different operation mechanism, the analysis methodsof PCFs aredifferent from each other, which are more complex compared with the conventional fibers. Sincethe PCFs’appear, people are looking for simple, rapid and effective methods to deal with the PCFs. In this process lots of methods are presented, such as the effective reflectiveindex approach,plane-wave expansion method, Finite- Difference Time-Domain method (FDTD) and Finite-Element method. In this paper, the orthogonal functions model is employed to modeling PCFs.On the basis of further studyingto the theory of electromagnetic wave, we set up the eigenfunctions in form of matrix by the method of expanding electric field and refractive index function in the wave equation, and the detailed steps of solving the eigenfunctions were introducedtoo. Based on this orthogonal functions model, we analyzed some transmissionfeatures of the TIR-PCFs in details, such as the mode features and dispersion characteristics, having achieved some useful conclusions. And the scale property of waveguide dispersion in PCFs was deduced by a mathematic method, which is very important during the processof the PCFs’dispersion design ing.Keywords:photonic crystal fiber, PCFs, eigenfunctions, orthogonal function methods, dispersion,mode profile.第一章 概 述自从1987年光子带隙(Photonic Bandgap ,PBG)[1,2]的概念提出以来,其理论和应用的研究发展迅速:1990年PBG 计算机论证[3],1991年微波PBG 得到实验论证[4,5],1993年第一块半导体三维光子晶体诞生。
光子晶体光纤空心光纤
光子晶体光纤是一种新型的光纤传输介质,其内部的光子晶体结构能够有效地控制光的传输和传播,提供了更高的传输速率和更低的传输损耗。
空心光纤是另一种特殊的光纤结构,与传统的实心光纤相比,其内部存在空气或真空的空腔,使光能够在空腔内传输,从而减少了光的传播损耗。
光子晶体光纤和空心光纤都具有独特的优势和应用领域。
光子晶体光纤的光子晶体结构可以通过改变晶格常数或填充材料来调控光的传输特性,从而实现对光的波长、偏振和模式等参数的控制。
这使得光子晶体光纤在光通信、光传感和光波导等领域具有广阔的应用前景。
空心光纤的空腔结构使得光能够在空气或真空中传输,减少了光与固体材料之间的相互作用,从而大大降低了传输损耗。
此外,空气或真空的介质使得光在空腔中的传播速度更快,进一步提高了传输效率。
因此,空心光纤在高功率激光传输、光纤传感和气体检测等领域有着广泛的应用。
光子晶体光纤和空心光纤的结合将会进一步扩展光纤传输的应用领域。
通过在空心光纤内部填充光子晶体结构,可以实现对光的更精细的控制和调控。
这种结合将使光纤传输在光通信、光传感和激光
加工等领域发挥更大的作用。
光子晶体光纤和空心光纤作为两种新型的光纤传输介质,分别具有独特的优势和应用领域。
它们的结合将会进一步推动光纤技术的发展,为光通信、光传感和光波导等领域提供更加高效和可靠的解决方案。
光子晶体光纤的制备与应用随着信息技术的不断进步,对于光通信领域的研究也越来越深入。
而在光学通信中,光纤起到了至关重要的作用,然而,传统的光纤略显单调。
因此,科研人员们又开始寻找新的光纤材料,其中,光子晶体光纤被认为是最具有潜力的新光纤材料。
光子晶体光纤的制备光子晶体光纤是一种新型的光导材料,其中包含了空气和玻璃两种材料。
光子晶体由于其结构具有带隙效应(能量隙),因此它能够将光能够束缚在其中,从而形成光波导。
与传统的光纤材料不同,光子晶体光纤的表面是需要精确控制的,因为它们的结构是有序的,其中的控制尺寸的缺陷锁定了光子在其中的传播路径,因此具有更高的光传输效率,且能够将波长的选择性强制约束在更窄的区域之内。
在光子晶体的制备中,首先需要确定其结构,这样有助于确定制备过程中所需要的材料和技术。
除此之外,光子晶体中的结构是需要全息光阻控制技术来保证其制备质量和形貌的。
最终制备出的光子晶体光纤极具有光学性质,因此极具潜力。
光子晶体光纤的应用对于光子晶体光纤,它在不同应用场景下能够发挥出不同的作用。
具体而言,光子晶体光纤的应用有以下几个方面:1.传感:光子晶体光纤能够用于传感器中,通过其光学结构可以感知光的强度、波长以及光的方向等信息,从而实现温度、压力、湿度等物理或化学量的测量。
2.激光:光子晶体光纤还可以作为纳秒脉冲激光器的中心材料用于激光加工等领域。
光子晶体光纤和其他的激光产生材料相比,具有更高的激光输出功率,更长的寿命和更大的波长范围。
3.光子晶体光纤传输线:光子晶体光纤可以用作长距离信号传输的媒介,它在传输行程中能够减少光信号的损失,同时也可以帮助用户在一定的范围内扩展传递的信号。
4.光纤光栅:光子晶体光纤可以用于光纤光栅的制作,光纤光栅是通常用于传感和滤波的一种传感器,能够运用其制作材料的反射光线频率信息进行信号检测。
因此,可见光子晶体光纤在不少领域有广泛的应用。
虽然其制备和生产工艺较为复杂,但是其高的光学质量和光学性能的同时也表明了它具有广阔的研究和应用前景。
光子晶体光纤传感研究与应用光子晶体光纤是一种新型的传输光信号的光纤,它不仅具有传统光纤的传输功能,还可以在光子晶体内产生一系列的光学效应。
近年来,光子晶体光纤传感成为研究热点,主要因为光子晶体光纤可以在光谱、成像、波导、量子信息等领域得到广泛的应用。
本文将主要从光子晶体光纤传感的研究及其在应用方面进行探讨。
一、光子晶体光纤传感技术的研究光子晶体光纤传感的研究,主要通过改变光子晶体的周期结构和形状等参数来调控其传播性能,实现对不同环境条件下物质与光子晶体的相互作用,进而实现对环境参数的检测和探测。
光子晶体光纤的传感性能与光子晶体的周期、衬底的折射率、孔隙的形状和孔隙填充物等参数密切相关。
研究光子晶体光纤传感技术的关键在于如何通过光学传输的方式获取传感信号,并对这些信号进行监测和解码。
其中,最常用的技术是基于光谱分析和光纤头结合的方法。
光子晶体光纤传感的研究方向主要包括基于色散、基于谐振、基于干涉等多种技术,其中基于色散的光子晶体光纤传感方法是最常用的一种。
在此方法中,通过在光子晶体中注入环境介质,改变其光学性能而导致色散谱的位移。
通过对此位移进行测量,即可获得环境参数的信息。
另外,基于谐振和干涉的光子晶体光纤传感方法也有其独特的优势,例如谐振结构的传感精度更高,干涉结构可以达到更高的灵敏度和分辨率。
二、光子晶体光纤传感的应用目前,光子晶体光纤传感在生物、化学、环境和工程等领域得到了广泛的应用,已经成为传统传感技术无法比拟的强大工具。
下面将从几个方面介绍光子晶体光纤传感的应用。
1、生物医学传感生物医学传感是光子晶体光纤传感的应用之一,其主要用于检测生物体内的物质,如葡萄糖、脂肪酸等,进而实现疾病的诊断和治疗。
在此应用中,光子晶体光纤的高灵敏度和快速响应特性使其成为不可替代的工具。
例如,利用光子晶体光纤来检测血糖水平,可以避免血液采样的疼痛和创伤,大大提高糖尿病患者的生活质量。
2、环境监测传感环境监测传感是光子晶体光纤传感的另一应用方向,主要用于监测城市污染、生态环境以及工业废气等方面。
光子晶体光纤模式特性研究摘要:利用有限元法对PCF进行经过简化的矢量波动方程模拟计算,获得了所需要的模场分布、有效折射率、色散等参数,并与实验数据相参照验证了这种方法的准确性和精度。
与其他方法相比具有更快的计算速度,计算所得到的结果对将来设计和拉制微结构光纤很有帮助,并且这种方法在设计不规则的微结构光纤方面具有很好的优势。
关键词:光电子学光子晶体光纤微结构光纤有限元法光子晶体光纤(photonic crystal fiber—PCF)的概念,最早是由J.Russell等人于1992年提出的。
在外观上PCF和传统光纤极为相似,但是横截面结构十分独特,是由石英棒或是石英毛细管排列而成的,在中心形成缺陷。
PCF可分为两种。
一种称为全内反射型光子晶体光纤(TIR-PCF),其纤心“缺陷”为石英的实心光纤。
另一种称为光子带隙型光子晶体光纤(PBG-PCF),其纤心“缺陷”为空气孔的空心光纤。
由于PCF这种带孔的包层结构可以人工改变和拉制它的一些参数,因而也可以改变和控制光子晶体光纤的一些性质。
PCF的这些新奇的性质在很多领域中广泛地应用,引起了人们极大的关注。
近年来,微结构光纤的制造技术、理论研究方法以及在不同科学领域的广泛应用都取得了很大的进步,国内也在这方面开始了一系列的研究工作。
1 分析方法的选择PCF问世后,人们先后提出了多种数值模拟方法对其进行分析,如:有效折射率法、平面波法、边界元方法、有限元方法、有限差分法等.这些方法对于PCF的模拟分析各有优缺点和适用范围。
主要分两大类数值方法研究光子晶体光纤,第一类是已有的用于分析光波导的通用的数值方法。
这类方法通用性强、结果可靠等特点,很快被应用于研究光子晶体光纤,其主要缺点是由于未考虑光子晶体光纤的特点,因而计算量较大,精度方面一般也稍差一些。
第二类是专门针对光子晶体光纤或光子晶体提出来的新方法,针对性强,在计算方面有其优势,如平面波展开法在计算光子带隙,周期孔包层模的有效折射率效果好、计算量小;多极法可以获得很高精度的模式有效折射率和损耗值等。
光子晶体光纤制备原理
光子晶体光纤的制备原理基于光子晶体的概念。
光子晶体是一种具有周期性折射率变化的介质,能够控制光的传播。
在光子晶体光纤中,包层由规则排列的空气孔构成,这些空气孔的排列方式决定了光的导光特性。
光纤的核心则由破坏包层结构周期性的缺陷构成,这个缺陷可以是固体硅,也可以是空气孔。
对于核心为空气孔的情况,光的导光机制主要是布拉格衍射。
当一定波长的光通过作为包层的二维光子晶体时,光被陷获在作为核心的空气孔中,并通过布拉格衍射实现光的传输。
这种光子晶体光纤的导光机制使光纤设计更灵活,因为光子带隙条件只依赖于包层的性质,纤芯折射率可以自由选择,从而将光波限制在空纤芯中。
对于核心为固体硅的情况,包层不存在光子带隙,其有效折射率是硅和空气的体平均,小于核心硅的折射率。
因此,这种光纤的导光机制是全内反射。
只要满足全反射的条件,光完全可以局限在“纤芯”范围内传播。
与全内反射光纤相比,光子带隙导向给予了额外的自由度。
光子晶体光纤的制备过程涉及复杂的微纳加工技术。
首先,制备出一簇细小的毛细管,并使其周期性排列。
然后,通过特定的技术将这些毛细管组装起
来,形成光子晶体光纤的结构。
这种光纤具有优良的传输特性,因此在全球范围内受到了广泛的关注和应用。
光子晶体光纤(PCF).光纤的种类:光纤按光在物质中的传输模式可分为:单模光纤和多模光纤多模光纤传输的距离比较近,光纤一般只有几公里。
单模光纤只能传一种模式的光,其模间色散很小,适用于远程通讯。
多孔光纤是一种全新的工艺技术。
自从1996年第一根多孔光纤诞生以来,就受到了广泛关注,并于近几年取得了许多极有价值的成果。
多孔光纤包括两种材料:一种材料为透明的固体——通常为玻璃,另一种材料为空气——沿着光纤长度的方向填充在孔中。
多孔光纤的制作方法是:将玻璃管紧密捆扎成一束进行拉丝制成光纤,具有截面成蜂窝状,在石英玻璃中有许多空孔呈周期性存在的结构。
多孔光纤分为两类:光子晶体光纤和光子带隙光纤。
光子晶体(photonic crystal)的概念于1987年提出,1991年制造出世界上第一根光子晶体光纤。
光子晶体光纤(photonic crystal fiber,PCF),又称为微结构光纤(micro-structured fiber)或中空光纤光子晶体(photonic crystal)是由一种单一介质构成,并由波长量级的空气孔构成微结构包层的新型光纤。
光子晶体光纤呈现出许多在传统光纤中难以实现的特性,它受到了广泛关注并成为近年来光学与光电子学研究的一个热点。
90年代后光子晶体光纤(PCF)被日益关注,它的分类,独特的性能,制备方法和潜在的应用先后被提出。
光子晶体光纤在外观上和传统的普通单模光纤非常相似,但微观上光子晶体光纤的横截面完全不同。
光子晶体光纤的横截面由非常微小的孔阵列组成,类似于晶体中的晶格,实际上这些小孔是一些直径为光波长量级的毛细管,平行延伸在光纤中。
光子晶体光纤(PCF)的纤芯是固体芯,芯外为包层,包层内含有一定数量的沿光纤长度方向延伸的空孔(见图1)。
包层为光子带隙材料,它的平均折射率低于纤芯。
多孔包层的有效折射率随波长而发生变化,且与孔的尺寸和间隔有关。
光子晶体光纤和普通单模光纤相比有3个突出的优点:第一,光子晶体光纤可以在很大的频率范围内支持光的单模传输;第二,光子晶体光纤允许改变纤芯面积,以削弱或加强光纤的非线性效应;第三,光子晶体光纤可灵活地设计色散和色散斜率,提供宽带色散补偿。