超声探头
- 格式:doc
- 大小:56.50 KB
- 文档页数:7
医用超声探头的种类
医用超声探头是医学影像诊断中常用的一种设备,它能够通过
超声波来成像人体内部的器官和组织,帮助医生进行诊断和治疗。
根据不同的应用和需要,医用超声探头有多种不同的种类,每种都
有特定的用途和优势。
1. 线阵探头(Linear array transducer),线阵探头适用于
浅表部位的超声检查,如甲状腺、乳腺、肾脏等。
它具有高分辨率
和较宽的成像范围,适合于观察细小结构和进行定位测量。
2. 凸阵探头(Convex array transducer),凸阵探头适用于
深部器官的超声检查,如心脏、肝脏、膀胱等。
它具有较大的成像
深度和较宽的扫描范围,适合于观察大范围的解剖结构和进行动态
观察。
3. 阵列探头(Phased array transducer),阵列探头适用于
需要快速成像和动态观察的情况,如心脏超声检查和血管超声检查。
它具有快速成像和多普勒功能,可以观察心脏和血管的运动和血流
情况。
4. 便携式探头(Portable transducer),便携式探头适用于临床急救和移动医疗的场合,如急诊科、卫生院和野外医疗。
它具有小巧轻便、易于携带和操作的特点,可以在不同场合进行快速的超声检查和评估。
以上是一些常见的医用超声探头种类,它们在临床诊断和治疗中发挥着重要的作用。
随着科技的不断进步,医用超声探头的种类和功能还在不断地发展和完善,为医学影像诊断提供了更多的选择和可能。
超声探头的工作原理及结构超声探头是医疗超声设备中的重要组成部分,主要用于产生和接收超声波信号。
它的工作原理和结构对于超声诊断的精确性和效果起着至关重要的作用。
本文将详细介绍超声探头的工作原理和结构。
超声探头的工作原理是利用声波的传播和回波来获取图像。
当超声波从探头的晶体发射出来时,它会在被检测物体内部产生声波反射,形成回波信号。
探头接收这些回波信号,并将其转化为电信号,经过放大和处理后再转换为声图像。
超声探头的具体工作原理主要取决于其内部的晶体和传感器。
超声探头的结构主要分为三部分:晶体、导电层和壳体。
晶体是探头内最重要的组成部分,通常由压电陶瓷材料制成,如铅锆钛酸盐(PZT)。
晶体的厚度和形状会影响探头的频率和焦距。
当晶体受到电信号的激励时,会产生机械振动,进而发射超声波。
晶体也具有接收回波信号的功能,将回波信号转换为电信号。
导电层位于晶体的表面,主要作用是为探头的电信号提供导电路径。
导电层通常由银或其他导电性材料制成,以确保信号传输的可靠性和稳定性。
它也可以通过改变导电层的形状和布局来调整探头的工作频率和形状。
壳体是超声探头的外部保护层,通常由塑料或金属材料制成。
它起到了保护晶体和导电层的作用,同时还可以起到减少外界干扰的作用。
壳体还可以通过改变其形状和尺寸来调整探头的焦距和探测深度。
除了以上的基本结构,超声探头还可以有其他的功能组件,如阵列式探头、多普勒组件等。
阵列式探头由多个晶体排列组成,可以产生多个散射波束,从而得到更精确的图像。
多普勒组件可以对血流进行测量和分析,是超声心动图和血流图的重要组成部分。
总结起来,超声探头是超声设备中至关重要的组成部分,其工作原理和结构直接决定了超声图像的质量和准确性。
通过晶体的发射和接收声波信号,探头可以产生高频的超声波并获取回波信号。
探头的结构主要包括晶体、导电层和壳体,其中晶体是最关键的部分。
此外,超声探头还可以根据具体的应用需求进行设计和改进,添加其他功能组件,以提高超声诊断的效果。
超声探头是超声诊断仪器中的重要组成部分,用于发射和接收超声波,以获取人体组织的图像信息。
根据不同的应用需求和扫描目标,有多种种类的超声探头可供选择。
以下是一些常见的超声探头种类及其常用手法:
线阵探头(Linear Array Probe):
特点:具有多个发射和接收元素,可以产生长条形的图像区域。
应用:常用于浅部结构的检查,如肝脏、甲状腺、乳腺等。
手法:线性扫描、动态扫描、彩色多普勒等。
凸阵探头(Convex Array Probe):
特点:具有凸面形状的发射和接收元素,可产生弧形图像区域。
应用:常用于腹部、心脏、妇科等部位的检查。
手法:扇形扫描、心脏四腔扫描、血流动力学评估等。
直线阵探头(Phased Array Probe):
特点:具有可调节的扫描角度和深度,适用于深部组织的检查。
应用:常用于心脏、血管、深部肿瘤等部位的检查。
手法:脉冲多普勒、频谱多普勒、彩色多普勒等。
体表探头(Surface Probe):
特点:适用于浅表器官和结构的检查,如甲状腺、淋巴结等。
应用:常用于皮肤、浅表器官和血管的超声检查。
手法:高频成像、高分辨率成像、超声引导穿刺等。
阴道探头(Transvaginal Probe):
特点:设计为适合经阴道插入的探头,适用于妇科检查。
应用:常用于妇科、产科和生殖器官的超声检查。
手法:阴道超声、子宫附件检查、妊娠监测等。
这些是超声探头的常见种类及其常用手法,具体的选择和使用要根据患者的病情、扫描部位和诊断目的进行。
医用超声探头原理
医用超声探头是医学超声成像系统的关键部分,它负责发射和接收超声波信号。
探头内部包含多个发射与接收元件(晶体),一般为聚焦式阵列,通过电信号的控制,能够将超声波束聚焦在感兴趣的区域。
发射元件工作时会产生超声波脉冲,然后通过透明介质如凝胶传入被检查的部位。
当超声波遇到组织或器官时,部分能量会被吸收、反射或折射,形成回波信号。
接收元件则会接收这些回波信号,并将其转化为电信号,再通过探头内部的电路传给超声机进行信号处理。
为了实现更好的成像效果,医用超声探头通常采用多晶元件的阵列形式。
这种设计可以在不同方向上发射和接收超声波,形成多个传感点,从而实现多角度、三维成像。
此外,为了提高成像分辨率和深度,探头通常会采用多频率的工作模式。
不同频率的超声波在组织中的传播速度和散射特性不同,通过组合使用不同频率的超声波可以获取更清晰的图像信息。
总之,医用超声探头通过发送和接收超声波信号,利用回波信号生成组织的图像。
其采用多晶元件的阵列形式,多频率的工作模式和聚焦技术等设计,能够实现更精准、高分辨率的成像效果,为医学诊断提供了重要的技术支持。
医用超声探头分类医用超声探头是超声影像学诊断设备的重要组成部分,利用声波照射人体组织,从而生成影像资料,提供临床医师基于声像图像作出准确诊断的依据。
探头的选择直接影响到诊断效果,因此探头的分类是医用超声技术应用的重要内容之一。
1. 点阵探头点阵式超声探头跟踪被检查物体时,其发出的每个声束均相互平行且均呈同一入射角度,形成了一组平行的声束,从而能够快速依次照亮被探测物的任意部位。
最终形成的声像图像素较高,分辨率高,可供医生对被检查器官进行详细观察和判断。
2. 线阵探头一维线阵式超声探头只能够发射一根声束,但通过不断旋转,得以快速扫过被探查物体的各个部位,形成图像。
它的缺点是成像速度较慢,建议应用于心脏、血管和骨骼关节等器官的检查。
3. 二维阵列探头二维阵列式超声探头由若干个小的发射器和接收器组成,它们互相垂直排列,这种构造方式可以将声波信号发射到任意方向,形成真正意义上的三维图像。
其矩阵密度大,像素及分辨率优越,可对不同深度及方向部位做连续扫描,速度快、成像清晰,非常适合检查胎儿、肝、肾及其他内脏器官。
4. 立体探头立体探头是一种适合于三维成像的探头,它是通过旋转传感器来生成三维图像,这样可以得到更准确、更完整的图像。
其特点是通过快速旋转和非限制性的面积扫描很快就可以生成高质量的三维图像,而且扫描过程中时间很短,极大地减少了对患者的刺激。
5. 内窥镜探头内窥镜探头是一种专用于体腔内脏器官检查的探头,它采用柔性材质制作,并通过细小的气孔缝隙来令声波震动并进行检查。
这种探头使用于检查胃肠道、鼻腔、口腔及阴道等部位。
6. 放大探头放大式超声探头能够放大被探查器官上的硬化度异常,这就有助于医生更准确地确定病灶的位置和大小。
放大式超声探头采用低频和高分辨率技术,有效降低了噪声和影响因素,查看结果更为清晰。
它适用于心脏、肝脏、肾脏和乳腺等器官的检查。
7. 外科探头外科探头适用于外科手术中进行术中超声,目的是探测患者的器官、病变的位置及大小,辅助医生进行手术。
超声探头原理超声探头是超声波传感器的核心部件,是超声波传感器的发射和接收装置,也是超声波传感器能够实现测距、测厚、探伤等功能的关键部件。
超声探头的原理是基于超声波在不同介质中传播时的特性,通过超声波的发射和接收来实现对被测物体的检测和测量。
超声探头的原理主要包括超声波的发射和接收原理、超声波在材料中的传播原理以及超声波的检测原理。
首先,超声探头的发射原理是利用压电效应将电能转换为机械能,通过压电陶瓷产生超声波。
当施加电压时,压电陶瓷会发生形变,产生超声波。
而超声探头的接收原理则是利用压电效应的逆过程,将超声波转换为电信号。
当超声波作用于压电陶瓷时,压电陶瓷会产生电荷,从而生成电信号。
通过这种方式,超声探头可以实现超声波的发射和接收,从而实现对被测物体的检测和测量。
其次,超声波在材料中的传播原理是超声探头能够实现测距、测厚、探伤等功能的基础。
超声波在材料中传播时会发生折射、反射、衍射等现象,这些现象会受到材料的声速、密度、弹性模量等因素的影响。
通过对超声波在材料中传播过程的分析和处理,可以实现对材料性能的检测和测量。
最后,超声探头的检测原理是利用超声波在材料中传播时的特性,通过对超声波的发射和接收信号进行分析和处理,来获取被测物体的信息。
通过对超声波的传播时间、幅度、频率等参数的测量和分析,可以实现对被测物体的缺陷、厚度、密度等信息的获取。
总的来说,超声探头是超声波传感器的核心部件,其原理是基于超声波在材料中传播的特性,通过超声波的发射和接收来实现对被测物体的检测和测量。
超声探头的原理包括超声波的发射和接收原理、超声波在材料中的传播原理以及超声波的检测原理。
通过对超声探头原理的深入理解,可以更好地应用超声波技术进行检测和测量。
完整超声类型超声探头及其应用超声医学是一种以超声波为工具,通过声波在组织内的传播和反射来实现疾病诊断和治疗的医学技术。
超声波的发射和接收依赖于超声探头的质量和类型。
本文将介绍常见的超声探头类型及其应用。
一、线性探头线性探头是最常见的超声探头之一,也被称为高频探头。
它具有较高的频率和较窄的视野,使其适用于近距离观察和浅部结构的成像。
线性探头常用于乳腺、甲状腺、血管、肌肉骨骼等等浅表器官的成像。
其高频率能够提供更高的分辨率,帮助医生更准确地检测并评估病变。
二、凸面探头凸面探头也被称为低频探头,它的传感器是凸形的,提供更广阔的视线和更强的穿透力。
凸面探头适用于胃肠道、心脏、肝脏等深部器官的成像。
其低频率能够提供更好的组织穿透能力,对于肥胖患者或者深部病变的检测尤为重要。
三、阵列探头阵列探头也被称为多普勒探头,它具有多个发射和接收元件,能够提供三维成像和多普勒测量。
阵列探头适用于心脏、血管、胎儿等需要进行心脏流量和动态观察的情况。
它的多普勒功能可以帮助医生评估血流速度和流向,对于心脏病和血管异常的诊断非常有帮助。
四、阴道探头阴道探头也被称为内窥镜探头,适用于妇科检查和妊娠监测。
阴道探头通过直接放置在阴道内,可以更准确地观察子宫和附件。
它的形状和频率一般适合女性解剖结构,能够提供更清晰和详细的图像。
五、直肠探头直肠探头适用于肛门、直肠和盆腔的检查。
它的形状和频率适合于这些部位的探测,可以提供更深入的成像和更准确的评估。
除了以上介绍的常见超声探头类型,还有其他一些特殊用途的探头,如心内直视探头、神经和骨科探头等。
这些探头都具有特定的形状和功能,适用于特定的临床应用。
超声探头在医学领域的应用非常广泛。
它被用于病灶的检测和定位,如肿瘤、结石等。
超声波成像也在妇产科、心血管病学、肾脏病学等多个领域得到广泛应用。
超声探头的不同类型和特性使得医生能够根据具体情况选择最适合的探头,获得最准确和详细的图像信息,从而提高诊断的准确性。
超声探头的工作原理超声探头是现代医学领域使用广泛的一种医疗设备,它能够通过发送和接收超声波来产生人体内部的图像。
这样的图像可以用于诊断和监测许多不同类型的疾病和疾病。
超声波是一种机械波,它比人耳能听到的声音更高频率。
在医学应用中,超声波通常位于1到20 MHz的频率范围之内。
超声探头主要由三个部分组成:压电晶体、前端电路和后端电路。
首先是超声探头的主要组成部分——压电晶体。
压电晶体是一种特殊的材料,能够在施加外力时产生电荷。
它在超声探头中的作用是将电信号转化为机械振动,并将机械振动转化为电信号。
一般来说,超声探头使用压电陶瓷,如铅锆钛酸钴(PZT)等。
当超声波通过压电晶体时,它会引起晶体的振动,进而产生电信号。
其次是超声探头的前端电路。
前端电路在探头内部接收超声波信号,并将其转化为电信号。
在前端电路中,通常有多个接收通道和预放大器。
每个接收通道都包含一个接收放大器和一个滤波器。
接收放大器负责放大超声波信号,而滤波器负责滤除无关的噪声信号。
前端电路还有一个非常重要的功能是控制超声波的发射和接收的时序。
最后是超声探头的后端电路。
后端电路负责处理和显示超声图像。
它包括一个数字信号处理器(DSP)和一个图像显示设备(如显示器或打印机)。
DSP负责处理和分析前端电路传来的电信号,并将其转化为可视化的图像。
它可以执行诸如滤波、增益调节和颜色编码等操作。
最终,图像显示设备将图像呈现给医生和患者,以便进行诊断。
超声探头的工作原理可以总结为以下几个步骤:首先,前端电路控制超声波的发射,并将其发送到体内。
超声波在不同组织和器官之间以不同的速度传播,并与组织与组织之间的界面发生反射、折射和散射。
其次,前端电路接收到反射的超声波信号,并将其转化为电信号。
然后,后端电路进行信号处理和图像生成,最后将图像显示给医生。
超声探头具有许多优点,使其成为医学影像学中常用的工具之一。
首先,它是一种非侵入性的成像技术,无辐射和无痛苦。
超声探头的基本结构
超声探头是超声成像技术中重要的组成部分,它通过向被检测物体发射超声波并接收回波信号,实现对被检测物体的成像和诊断。
超声探头的基本结构包括压电陶瓷、导电层、聚焦透镜、声阻抗匹配层、保护层等部分。
压电陶瓷是超声探头中最核心的部件,它可以将电信号转化为机械振动,并产生超声波。
导电层则用于向压电陶瓷施加电信号,从而控制超声波的产生和传播。
聚焦透镜用于控制超声波的聚焦,使其在被检测物体内部形成清晰的图像。
声阻抗匹配层则用于匹配超声波的声阻抗,提高超声波的传播效率。
保护层则用于保护超声探头免受损坏和污染。
超声探头的种类繁多,根据其结构和应用领域的不同可分为线性探头、阵列探头、凸面探头、内窥镜探头等多种类型。
线性探头适用于对平面物体的成像和诊断,阵列探头可以实现三维成像和多角度扫描,凸面探头则适用于对曲面物体的成像和诊断,内窥镜探头则用于人体内腔的成像和诊断。
超声探头的性能直接影响着超声成像的效果和诊断的准确性。
目前,超声探头的发展趋势是向着高频、多元化、小型化、集成化等方向发展。
高频探头可以提高超声波的分辨率,多元化探头可以实现多种成像方式的切换,小型化探头可以实现对微小结构的观察,集成
化探头可以将多种功能集成在一个探头中,提高整个超声成像系统的性能和便利性。
超声探头作为超声成像技术的核心部件,其结构和性能的优化不断推动着超声成像技术的发展和应用。
随着科技的不断进步,超声探头的发展前景将更加广阔。
简述超声探头的基本结构、材质和基本原
理
超声探头是一种用于超声检测的设备,它的基本结构包括探头壳体、压电陶瓷、导电线和连接器等部分。
探头壳体通常由金属或塑料材料制成,用于保护压电陶瓷和导电线。
压电陶瓷是超声探头的核心部分,它能够将电信号转换成机械振动,产生超声波。
导电线则用于将电信号传输到压电陶瓷上,连接器则用于将超声信号传输到超声检测仪上。
超声探头的材质通常选择高强度、高温度稳定性和良好的耐腐蚀性能的材料。
常用的材料包括铝合金、不锈钢、钛合金、陶瓷和聚合物等。
不同的材料具有不同的特性,可以根据不同的应用场景选择合适的材料。
超声探头的基本原理是利用压电效应将电信号转换成机械振动,产生超声波。
当电信号通过压电陶瓷时,压电陶瓷会发生形变,产生机械振动。
这种机械振动会产生超声波,超声波会在被检测物体内部反射和散射,然后被探头接收。
探头接收到的超声信号会被传输到超声检测仪上进行处理和分析,从而得到被检测物体的内部结构和缺陷信息。
超声探头是一种用于超声检测的设备,它的基本结构包括探头壳体、压电陶瓷、导电线和连接器等部分。
超声探头的材质通常选择高强度、高温度稳定性和良好的耐腐蚀性能的材料。
超声探头的基本原
理是利用压电效应将电信号转换成机械振动,产生超声波。
超声探头在工业、医疗、航空航天等领域有着广泛的应用。
医学超声探头的原理和作用医学超声探头原理和作用医学超声探头是医学超声仪器中的重要组成部分,其主要原理是利用超声波在人体组织中的传播和反射特性,通过探头的发射和接收功能,得到图像,以实现医学诊断和治疗。
一、医学超声探头的原理医学超声探头的原理可以分为以下几个方面:1. 压电效应:医学超声探头通常采用压电材料,如石英晶体、陶瓷等。
在电场刺激下,这些材料会发生压电效应,即产生机械变形。
利用这种效应,可以通过电场激励使压电材料振动,进而产生超声波。
2. 脉冲波发射:医学超声探头通过脉冲波发射超声波。
当材料受到电场激励时,它会发生机械振动,从而产生超声波脉冲。
脉冲的形状和振动频率取决于探头的设计和驱动电压。
3. 脉冲波接收:医学超声探头除了用于发射超声波,还用于接收反射回来的超声信号。
当超声波穿过组织时,会发生反射和散射,返回探头的接收元件上。
接收元件可以将机械振动转化为电荷信号,然后通过信号处理电路将其转化为图像。
4. 声束特性:医学超声探头的发射和接收元件的几何形状和排列方式会直接影响声束的特性。
声束是指超声波在媒质中传播时的能量密度分布。
医学超声探头通常采用聚焦技术来改善声束的聚焦能力,从而获得更清晰的图像。
5. 多普勒效应:医学超声探头还可以利用多普勒效应来测量流体的速度和方向。
当超声波遇到流体运动时,会发生频率移动,这个频率移动与流体速度成正比。
通过测量频率移动的大小和方向,可以得到流体运动的信息。
二、医学超声探头的作用医学超声探头在医学领域起到了重要的作用,主要有以下几方面:1. 诊断:医学超声探头可以用于各种疾病的诊断,如肿瘤、器官疾病、血管病变等。
通过探头的发射和接收功、处理信号,可以获得人体内部组织的图像,从而帮助医生做出准确的诊断。
2. 导向:医学超声探头可以用于手术导向。
在一些手术过程中,医生需要直观地了解手术操作区域的情况,以确保手术的准确性和安全性。
通过超声探头的实时成像功能,医生可以清晰地看到手术区域的结构,以进行精确的操作。
超声探头的种类及常用手法超声探头是超声医学中非常重要的工具,被广泛应用于临床诊断和研究。
本文将介绍超声探头的不同种类以及常用的手法。
超声探头根据其工作原理和应用领域的不同,可以分为以下几种常见的类型:线阵探头:线阵探头由多个发射和接收元件组成,能够提供高分辨率的图像,适用于心脏、肝脏等器官的成像。
行阵探头:行阵探头具有更大的扫描范围和较高的成像速度,适用于观察血流动力学和评估器官功能。
轴向探头:轴向探头适用于___的成像,如腹部和盆腔。
表面探头:表面探头适用于皮肤深度成像,如乳腺和甲状腺。
腔体探头:腔体探头适用于腔内器官的成像,如子宫和胃。
超声探头的应用手法根据不同的临床需求和研究目的而异。
以下是一些常见的超声探头应用手法:B超成像:B超成像是超声医学中最常见和基础的成像手法,通过测量超声波在组织结构中的反射来获得图像。
彩色多普勒:彩色多普勒是通过分析血液流动的速度和方向,将血流显示为彩色图像。
它可用于血管的评估和异常血流的检测。
三维超声成像:三维超声成像可以提供更全面和立体的图像信息,有助于进行器官结构和体积的评估。
弹性成像:弹性成像可以评估组织的硬度和弹性特性,可用于肿瘤的鉴别和评估。
组织多普勒:组织多普勒可以评估组织的血液灌注情况和运动状态,适用于心肌功能和肌腱病变的评估。
总之,超声探头的种类和应用手法多种多样,根据具体的临床需求选择合适的探头和手法,能够更准确地进行诊断和研究。
超声探头是超声诊断中的核心设备,主要有以下几种类型:线性探头:线性探头是一种矩形的超声探头,适用于浅表部位的检查,如甲状腺、乳腺等。
它具有高分辨率和较大的视野角,能够清晰显示组织结构。
凸面探头:凸面探头呈拱形,适用于检查深部器官,如心脏、肝脏等。
它能够产生较好的声像质量,并且具有较大的探查深度。
阵列探头:阵列探头由多个小探头组成,可以同时发射和接收超声波,具有较高的帧率和较好的分辨率。
它适用于实时成像和血流成像,常用于脑部和心脏的检查。
超声探头的种类及常用手法1. 超声探头的种类超声探头是超声诊断仪器的重要组成部分,用于产生和接收超声波信号,并将其转化为数字信号进行图像处理。
根据应用需求和使用环境的不同,超声探头可以分为以下几种类型:1.1 线性探头线性探头也称为直线探头或排列探头,采用一维排列的方式进行成像。
它的特点是像素密度高,图像分辨率高,适用于浅部组织的成像。
线性探头常用于乳腺、甲状腺、血管等部位的检查。
1.2 凸面探头凸面探头也称为凸透镜探头,采用弧面设计,可以提供较宽的视场和较大的深度范围。
凸面探头适用于腹部、胸部、心脏等器官的检查,特别适用于肝脏、胰腺等深部组织的成像。
1.3 阵列探头阵列探头又称为多普勒探头,具有多个元件组成的阵列,能够进行多个方向的扫描,实现多角度成像。
阵列探头适用于心脏、子宫、胎儿等需要动态观察的器官。
1.4 直视探头直视探头是一种特殊的探头,通常用于内窥镜超声检查。
它通过插入体腔或组织进行检查,可以直接观察到内部结构。
2. 超声探头的常用手法超声探头在医学检查中有多种应用手法,包括以下几种常见手法:2.1 B超成像B超成像是超声诊断中最常用的手法之一,通过对组织的回声进行分析,可以获得图像信息。
B超成像适用于几乎所有部位的检查,包括肝脏、肾脏、胸部、盆腔等。
2.2 彩色多普勒超声彩色多普勒超声是一种结合了多普勒效应和超声成像的技术,可以显示血流和血流速度信息。
彩色多普勒超声广泛应用于心脏、血管、肝脏等器官的检查,对于血液循环和血流动力学的评估具有重要意义。
2.3 弹性成像弹性成像是一种用于评估组织弹性和硬度的技术。
通过对组织的变形或位移进行测量,可以获取组织的弹性特性,用于肿瘤、乳腺、甲状腺等病变的鉴别诊断。
2.4 三维超声三维超声是一种在平面成像基础上增加了深度信息的技术,可以提供更准确的空间结构信息。
三维超声广泛应用于胎儿、子宫、卵巢等器官的检查,对于胎儿的发育观察具有重要意义。
结论超声探头的种类和常用手法多样,适用于各种器官和组织的检查与诊断。
超声探头句光宇1、超声波传感器工作的原理1)压电效应某些晶体材料受到外力作用时,不仅发生变形,而且内部被极化表面产生电荷;当外力去掉后,又回到原来状态,这种现象称为压电效应。
在自然界中大多数晶体具有压电效应, 但压电效应十分微弱。
随着对材料的深入研究, 发现石英晶体、钛酸钡、锆钛酸铅等材料是性能优良的压电材料。
●正压电效应:⏹一些晶体结构的材料,当沿着一定方向受到外力作用时,内部产生极化现象,同时在某两个表面上产生符号相反的电荷;⏹而当外力去掉后,又恢复不带电的状态;⏹当作用力方向改变时,电荷的极性也随着改变;⏹晶体受作用力产生的电荷量与外力的大小成正比,这种机械能转换为电能的现象称为正压电效应。
●逆压电效应:⏹如果给晶体施加以交变电场,晶体本身则产生机械变形,这种现象称为逆压电效应,又称电致伸缩效应。
⏹压电效应具有可逆性。
2)石英与压电陶瓷的压电效应机理压电式超声波传感器(超声波探头)是利用压电元件的逆压电效应,将高频交变电场转换成高频机械振动而产生超声波(发射探头);再利用正压电效应将超声振动波转换成电信号(接收探头)。
发射探头和接收探头结构基本相同,有时可用一个探头完成两种任务。
●石英晶体的压电效应X 轴:电轴或1轴; Y 轴:机械轴或2轴; Z 轴:光轴或3轴。
◆ “纵向压电效应”:沿电轴(X 轴)方向的力作用下产生电荷◆ “横向压电效应”:沿机械轴(Y 轴)方向的力作用下产生电荷◆ 在光轴(Z 轴)方向时则不产生压电效应。
⏹ 当沿x 轴方向加作用力Fx 时,则在与x 轴垂直的平面上产生电荷x x F d Q ∙=11 d 11——压电系数(C/N ) ⏹ 作用力是沿着y 轴方向电荷仍在与x 轴垂直的平面 y y x F ba d Fb a d Q 1112-== (1112d d -=) ⏹ 切片上电荷的符号与受力方向的关系图(a )是在X 轴方向受压力,图(b )是在X 轴方向受拉力,图(c )是在Y 轴方向受压力,图(d )是在Y 轴方向受拉力。
超声波探头探头一、压电效应与压电材料某些单晶体和多晶体陶瓷材料在应力(压缩力和拉伸力)作用下产生异种电荷向正反两面集中而在晶体内产生电场,这种效应称为正压电效应。
相反,当这些单晶体和多晶体陶瓷材料处于交变电场中时,产生压缩或拉伸的应力和应变,这种效应称为负压电效应,如图所示。
负压电效应产生超声波,正压电效应接收超声波并转换成电信号。
常用的压电单晶有石英又称二氧化硅(SiO2)、硫酸锂(LiS04H20)、碘酸锂LiIO3)、铌酸锂(LiNbO3)等,除石英外,其余几种人工培养的单晶制造工艺复杂、成本高。
常用的压电陶瓷有钛酸钡(BaTi03)、锆钛酸铅(PZT)、钛酸铅(PbTiO3)、偏铌酸铅(PbNb2O4)等。
二、探头的编号方法三、探头的基本结构压电超声探头的种类繁多,用途各异,但它们的基本结构有共同之处,如图所示。
它们一般均由晶片、阻尼块、保护膜(对斜探头来说是有机玻璃透声楔)组成。
此外,还必须有与仪器相连接的高频电缆插件、支架、外壳等。
四、直探头(一)直探头的保护膜1.压电陶瓷晶片通常均由保护膜来保护晶片不与工件直接接触以免磨损。
常用保护膜有硬性和软性两类。
氧化铝(刚玉)、陶瓷片及某些金属都属于硬性保护膜,它们适用于工件表面光洁度较高、且平整的情况。
用于粗糙表面时声能损耗达20~30dB。
2.软性保护膜有聚胺酯软性塑料等,用于表面光洁度不高或有一定曲率的表面时,可改善声耦合,提高声能传递效率,且探伤结果的重复性较好,磨损后易于更换,它对声能的损耗达6~7dB。
3.保护膜材料应耐磨、衰减小、厚度适当。
为有利于阻抗匹配,其声阻抗Zm应满足一定要求。
4.试验表明:所有固体保护膜对发射声波都会产生一定的畸变,使分辨率变差、灵敏度降低,其中硬保护膜比软保护膜更为严重。
因此,应根据实际使用需要选用探头及其保护膜。
与陶瓷晶片相比,石英晶片不易磨损,故所有石英晶片探头都不加保护膜。
(二)直探头的吸收块为提高晶片发射效率,其厚度均应保证晶片在共振状态下工作,但共振周期过长或晶片背面的振动干扰都会导致脉冲变宽、盲区增大。
为此,在晶片背面充填吸收这类噪声能量的阻尼材料,使干扰声能迅速耗散,降低探头本身的杂乱的信号。
目前,常用的阻尼材料为环氧树脂和钨粉。
五、斜探头(一)结构与类型(二)透声楔斜探头都习惯于用有机玻璃作斜楔,以形成一个所需的声波入射角,并达到波型转换的目的。
一发一收型分割式双直探头和双斜探头也都以有机玻璃作为透声楔,这是因为有机玻璃声学性能良好、易加工成形,但它的声速随温度的变化有所改变又易磨损,所以对探头的角度应经常测试和修正。
水浸聚焦探头常以环氧树脂等材料作为声透镜材料。
六、晶片的厚度压电晶片的振动频率f即探头的工作频率,它主要取决于晶片的厚度T和超声波在晶片材料中的声速。
晶片的共振频率(即基频)是其厚度的函数。
可以证明,晶片厚度T为其传播波长一半时即产生共振,此时,在晶片厚度方向的两个面得到最大振幅,晶片中心为共振的驻点。
七、晶片的厚度通常把晶片材料的频率f和厚度T的乘积称为频率常数Nt,若T=λ/2,则Nt = f T = C/2式中:C为晶片材料中的纵波声速。
常用晶片材料如PZT的Nt=1800~2000m/s,石英晶片的Nt=285Om/s,钛酸钡晶片的Nt=2520m/s,钛酸铅晶片的Nt=2120m/s。
由式(2.65)可知,频率越高,晶片越薄,制作越困难,且Nt小的晶片材料不宜用于制作高频探头。
八特殊探头(一)水浸聚焦探头(二)可变角探头(三)充水探头(四)双晶探头:a.双晶纵波探头 b.双晶横波探头(纵波全反射)(五)表面波探头第四节:试块一、试块的用途1.测试或校验仪器和探头的性能;2.确定探测灵敏度和缺陷大小;3.调整探测距离和确定缺陷位置;4.测定材料的某些声学特性。
二、试块的分类(主要分二类)1.标准试块2.对比试块(参考试块)3.其他叫法:校验试块、灵敏度试块;平底孔试块、横孔试块、槽口试块;锻件试块、焊缝试块等。
三、试块简介1.荷兰试块1.1955年荷兰人提出;1958年国际焊接学会通过并命名为IIW试块;ISO组织推荐使用。
2.类似的有:中国CSK-IA、日本STB-A1、英国BS-A、西德DIN54521……2.IIW2试块(三角形试块、牛角试块)1.适用于现场检验(体积小、轻、方便);2.用途较IIW少3.CSK-IA试块:中国的改型试块三、试块简介1.荷兰试块1.1955年荷兰人提出;1958年国际焊接学会通过并命名为IIW试块;ISO组织推荐使用。
2.类似的有:中国CSK-IA、日本STB-A1、英国BS-A、西德DIN54521……2.IIW2试块(三角形试块、牛角试块)1.适用于现场检验(体积小、轻、方便);2.用途较IIW少3.CSK-IA试块:中国的改型试块1.CSK-IA试块的主要用途:① R50、R100圆弧:-斜探头入射点、前沿测定;-扫描线比例校准;②上下表面刻度:斜探头K值校准;③φ50、φ44、φ40孔:斜探头分辨率测定;④89、91、100mm 台阶:直探头分辨率测定;⑤φ50孔:盲区测定。
4.CS-1和CS-21.1986年通过,CS-1全套26块,CS-2全套66块;2.要求:(1)D/L比不能太小,否则产生侧壁效应;(2)平底孔应足以分辨;(3)材质衰减要小。
注:铸钢件试块与此形状相同、尺寸不同5.CSK-IIA / CSK-IIIA6.RB-1、RB-2、RB-37. 钢板试块8. 半圆试块9. 管子试块3.4第四节:组合性能测试(检测系统的校准)一、水平线性1.定义:仪器水平线性是示波屏上时基线的水平刻度与实际声程之间成正比的程度,即示波屏上多次底波等距离的程度。
水平线性对缺陷定位有较大的影响。
水平线性用水平线性误差表示。
2.测试步骤:(1)将直探头置于CSK--1A试块的25mm厚大平底面上;(2)通过[微调][水平][脉冲位移]等按钮,使屏上出现5次底波B1--B5,当底波B1和B5的幅度分别为50%满刻度时,将它们的前沿分别对准刻度2.0和10.0。
B1和B6的前沿位置在调整中如相互影响,则应反复进行调整。
a2、a3、a4分别为B2、B3、B4与4.0、6.0、8.0的偏差。
(3)水平线性误差计算:ZBY230--84规定:仪器的水平线性误差≤2%例:用IIW或CSK-1A试块测仪器的水平线性,现测得B1对准2.0,B5对准10.0时,B2、B3、B4与4.0、6.0、8.0的偏差分别为0.5、0.6、0.8;求其水平误差为多少?解:0.8δ=------×100%=1%0.8×100二、垂直线性1.定义:仪器垂直线性是示波屏上波高与探头接收的信号幅值之间成正比的程度。
它取决于仪器放大器的性能。
垂直线性用垂直线性误差表示。
垂直线性影响缺陷的检出和定量。
2.测试步骤:(1)[抑制]至零,[衰减器]保留30dB衰减余量;(2)将直探头置于CSK--1A试块的25mm厚大平底面上,????? 恒定压力压住;(3)调节仪器使试块上某次底波位于示波屏中央,并达到100%幅度,作为“0”dB;(4)固定[增益]和其他旋钮,调衰减器,每次衰减2dB,并记下相应的波高H 填入表中,直到底波消失;上表中:理想相对波高是△i=2、4、6dB……时的波高比(如△i=6dB时的理想相对波高是50.1%)三、计算垂直线性误差D=(|d1|+|d2| )式中:d1--实测值与理想值的最大正偏差d2--实测值与理想值的最大负偏差ZBY230--84规定:仪器的垂直线性误差D≤8%三.探头灵敏度1.调节灵敏度的几个旋钮1.[发射强度] 调节发射脉冲的输出幅度,发射强度大灵敏度高,但分辨率低;2.[增益] 调节接收放大器的放大倍数,增益大灵敏度高;3.[抑制]限制检波后信号的输出幅度,主要用于抑制杂波、提高信噪比。
使用[抑制]会使仪器的垂直线性变坏,动态范围变小。
[抑制]增加,灵敏度降低,尽量不要用[抑制];4.[衰减器] 电路内专用器件,用于定量地调节示波屏上的波高,它是步进旋钮。
分:[粗调][细调]二档,[粗调]步长10-20dB,[细调]步长1-2dB。
CTS-6型总衰减量50db;CTS-22型则为80dB;调节灵敏度的几个旋钮1.《ZB Y230--84? A型脉冲反射超声探伤通用技术条件》中规定:总衰减量不小于60dB;衰减误差:1dB/12dB.四、直探头+ 仪器的灵敏度余量测试1.探头对准200 / Φ2平底孔;2.[抑制]:0;[发射强度] [增益]:最大;3.调[衰减器]使Φ2孔最高回波达满刻度的50%(基准高),这时衰减量为N1dB;4.提起探头,用[衰减器]将电噪声电平衰减到10%以下,这时衰减量为N2dB;5.灵敏度余量N=N1-N2(dB);直探头的灵敏度余量要求≥30dB五、斜探头+ 仪器的灵敏度余量测试1.探头对准IIW试块R100园弧面;2.[抑制]:0;[发射强度] [增益]:最大;3.调[衰减器]使R100回波达满刻度的50%(基准高),这时衰减量为N1dB;4.提起探头,用[衰减器]将电噪声电平衰减到10%以下,这时衰减量为N2dB;5.灵敏度余量N=N1-N2(dB);斜探头的灵敏度余量要求≥40dB七、探头盲区测定1 概念1.盲区是指从探测面到能够发现缺陷处的最小距离,即始脉冲宽度覆盖区的距离。
2.盲区与近场区的区别:盲区是始脉冲宽度与放大器引起的,而近场区是波的干涉引起的。
盲区内缺陷一概不能发现,而近场区内缺陷可以发现但很难定量。
2 测定方法方法(1):1.先将直探头在灵敏度试块上用φ1平底孔调80%基准高。
2.将直探头放于盲区试块上,能独立显示φ1平底孔回波的最小深度为盲区。
方法(2):1.用IIW试块估算2.将直探头放于IIW上方:能独立显示回波的,盲区≤5mm。
无独立回波的,盲区>5mm。
3.将直探头放于IIW左侧:能独立显示回波的,盲区5~10mm。
无独立回波的,盲区>10mm。
八探头分辨率一、概念:示波屏上区分相邻二缺陷的能力,能区分的相邻二缺陷的距离愈小,分辨率就愈高。
分辨率与仪器和探头的质量有关。
二、纵波直探头分辨率测定1.直探头放于IIW试块85、91、100处,[抑制]为0,左右移动探头,使屏上出现A、B、C波;2.若A、B、C不能分开,先将A、B等高,并取a1、b1值求:a1X=20 lg---- (dB)b1然后用[衰减器]使B、C等高,取相应的a2、b2值求:a2Y=20 lg---- (dB)b2X、Y值愈大分辨率愈高,一般X、Y ≥ 15dB九、横波斜探头分辨率测定1.如图,平行移动探头,使A、B等高则分辨率:h1X=20lg-------(dB)h21.平行移动探头,使B、C等高则分辨率:h3Y=20lg------ (dB)h4要求:X或Y≥ 6dB实测时,[衰减器]将h1衰减到h2即为X值,将h3衰减到h4即为Y值。