第四章应力与应变关系汇编
- 格式:ppt
- 大小:1.72 MB
- 文档页数:79
4 应力应变关系4.1弹性变形时应力和应变的关系当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即1()1()1()111222x x y z y yx zz z x yxy xy yz yz zx zxE E E G G G εσνσνσεσνσνσεσνσνσετετετ⎧=--⎪⎪⎪=--⎪⎨⎪=--⎪⎪⎪===⎩,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足()21E G ν=+关系。
由上式可得11212()()33m x y z x y z m E E ννεεεεσσσσ--=++=++= (4.2) 于是11()'2x m x m x E G νεεσσσ+-=-= 或1112''22x m x x m G G Eνεεσσσ-=+=+ 类似地可以得到1112''22y m y y m G G E νεεσσσ-=+=+ 1112''22z m z z m G G Eνεεσσσ-=+=+于是,方程(4.1)可写成如下形式1212'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即'1122ij ij m ij ij m G Eνεεεσδσ-'=+=+ (4.3)显然,弹性变形包括体积改变的变形和形状改变的变形。
前者与球应力分量成正比,即12m m E νεσ-= (4.4)后者与偏差应力分量成正比,即''12''12''12111222x x m x G y y m y G z z m z G xy xy yz yz zx zxG G G εεεσεεεσεεεσετετετ⎧=-=⎪=-=⎪⎨=-=⎪⎪===⎩,,或简写为2ij ij G σε''= (4.5)此即为广义Hooke 定律。
(整理)弹性⼒学第四章应⼒和应变关系第四章应⼒和应变关系知识点应变能原理应⼒应变关系的⼀般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式⼴义胡克定理⼀个弹性对称⾯的弹性体本构关系各向同性弹性体的应⼒和应变关系应变表⽰的各向同性本构关系⼀、内容介绍前两章分别从静⼒学和运动学的⾓度推导了静⼒平衡⽅程,⼏何⽅程和变形协调⽅程。
由于弹性体的静⼒平衡和⼏何变形是通过具体物体的材料性质相联系的,因此,必须建⽴了材料的应⼒和应变的内在联系。
应⼒和应变是相辅相成的,有应⼒就有应变;反之,有应变则必有应⼒。
对于每⼀种材料,在⼀定的温度下,应⼒和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理⽅程或者本构关系。
对于复杂应⼒状态,应⼒应变关系的实验测试是有困难的,因此本章⾸先通过能量法讨论本构关系的⼀般形式。
分别讨论⼴义胡克定理;具有⼀个和两个弹性对称⾯的本构关系⼀般表达式;各向同性材料的本构关系等。
本章的任务就是建⽴弹性变形阶段的应⼒应变关系。
⼆、重点1、应变能函数和格林公式;2、⼴义胡克定律的⼀般表达式;3、具有⼀个和两个弹性对称⾯的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。
§4.1 弹性体的应变能原理学习思路:弹性体在外⼒作⽤下产⽣变形,因此外⼒在变形过程中作功。
同时,弹性体内部的能量也要相应的发⽣变化。
借助于能量关系,可以使得弹性⼒学问题的求解⽅法和思路简化,因此能量原理是⼀个有效的分析⼯具。
本节根据热⼒学概念推导弹性体的应变能函数表达式,并且建⽴应变能函数表达的材料本构⽅程。
根据能量关系,容易得到由于变形⽽存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应⼒应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐⼆次函数。
因此由齐次函数的欧拉定理,可以得到⽤应变或者应⼒表⽰的应变能函数。
应变和应力的关系公式应变和应力是力学中非常重要的概念,它们描述了物体在外力作用下的变形和反抗变形的能力。
应变是物体在外力作用下发生变形的程度,而应力是物体对外力的反抗程度。
应变和应力之间存在着一定的关系,下面将通过分析和解释来阐述这一关系。
我们来看一下应变的定义。
应变通常用来描述物体的形变程度。
当物体受到外力作用时,它的形状会发生改变,这种形变程度就是应变。
应变可以分为线性应变和非线性应变。
线性应变是指物体的形变与受力成正比,比如拉伸或压缩后物体的长度或体积的变化。
非线性应变则是指物体的形变与受力不成正比,比如物体的弯曲或扭转。
而应力则是物体对外力的反抗程度。
当物体受到外力作用时,它会产生内部的应力,以抵抗外力的作用。
应力可以分为正应力和剪应力。
正应力是指物体内部的应力沿着受力方向的成分,比如拉伸或压缩时物体内部的张力或压力。
剪应力则是指物体内部的应力与受力方向垂直的成分,比如物体发生弯曲或扭转时的切向应力。
应变和应力之间的关系可以通过胡克定律来描述。
胡克定律是力学中一个重要的定律,它描述了弹性体的应力和应变之间的线性关系。
根据胡克定律,当外力作用于弹性体时,弹性体产生的应变与外力成正比,且比例常数为弹性模量。
弹性模量是描述物体抵抗形变能力的物理量,通常用符号E表示。
胡克定律的数学表达式为:应力=弹性模量×应变。
这个关系可以简洁地表示了应变和应力之间的关系。
根据这个关系,我们可以推导出应变和应力之间的其他关系。
比如,如果已知应变和弹性模量,可以通过应变乘以弹性模量来计算应力。
同样地,如果已知应力和弹性模量,可以通过应力除以弹性模量来计算应变。
除了胡克定律,还有其他的应变与应力之间的关系,比如柯西应变与柯西应力之间的关系、拉梅应变与拉梅应力之间的关系等。
这些关系都是通过实验和理论推导得到的,它们描述了不同应变与应力之间的关系,适用于不同的物体和力学问题。
总结起来,应变和应力之间存在着一定的关系,可以通过胡克定律或其他相关定律来描述。
第四章应力与应变关系§4-1 应力和应变的最一般关系式§4-2 弹性体变形过程中的功和能§4-3 各向异性弹性体§4-4 各向同性弹性体§4-5 弹性常数的测定§4-6 各向同性体应变能密度的表达式显然有5225C C =同理可证nmmn C C =这样就证明了极端各向异性体,只有6+30/2=21个独立的弹性常数。
⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ66564636266156554535255146454434244 136353433233 126252423222 16 15 14 13 12 111②具有一个弹性对称面的各向异性弹性体如果物体内的每一点都具有这样一个平面,关于该平面对称的两个方向具有相同的弹性,则该平面称为物体的弹性对称面,而垂直于弹性对称面的方向,称为物体的弹性主方向。
这样,物体的弹性常数从21个变为13个。
若Oyz 为弹性对称面,则(可用坐标变换公式得到)⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ665656554434244 13433233 1242322214 13 1211100000000000000如果互相垂直的3个平面中有2个式弹性对称面,则第3个平面必然也是弹性对称面。
应力与应变的关系
你想啊,咱们每天上班下班,跟个陀螺似的转个不停,这不就是生活中的“应力”嘛!有时候,老板给的任务多了点,压力山大啊,感觉就像是被压得喘不过气来。
这时候,咱们不能硬扛,得学会“应变”。
比如,合理安排时间,提高工作效率,或者偶尔偷个闲,跟同事开个玩笑,放松放松心情,这不就是咱们应对压力的“应变”小妙招嘛!
再瞅瞅咱们身边的朋友圈,有时候也会遇到点小摩擦,比如意见不合啦,误会啥的。
这时候,如果都死磕着不放,那友谊的小船说翻就翻。
所以啊,咱们得学会变通,学会理解,学会包容,就像弹簧一样,压一下,弹回来,还能更加紧密。
这就是友情里的“应力与应变”,相互磨合,才能更加坚固。
还有啊,咱们对待自己的身体也得这样。
工作再忙,也不能忽视了健康。
不然,身体一出问题,那可就是大问题了。
这时候,咱们得赶紧调整作息,均衡饮食,适当运动,给身体减减压,让它也能“应变”过来,继续活力满满地陪咱们闯荡江湖。
说到底,应力与应变,就像是生活中的一场场小考,考验着咱们的智慧和心态。
咱们不能一味地逃避,也不能硬碰硬,得学会灵活应对,找到最适合自己的方式去化解压力,享受生活的乐趣。
毕竟,人生嘛,就是一场修行,一场关于如何在压力中成长,在变化中前行的修行。
所以啊,下次当你觉得压力山大的时候,不妨换个角度想想,这也许是个机会,让你学会更多,变得更加强大。
毕竟,没有压力,哪来的动力呢?咱们啊,就在这应力与应变的交织中,一步步成长,一步步走向更加美好的未来!。