90道一元一次方程带解过程
- 格式:docx
- 大小:28.88 KB
- 文档页数:27
一元一次方程100道5-(x-1)=8-(6-x)(0.5+x)+x=9.8÷22(X+X+0.5)=9.825000+x=6x3200=450+5X+XX-0.8X=612x-8x=4.87.5*2X=151.2x=81.6x+5.6=9.4x-0.7x=3.691÷x =1.3X+8.3=10.715x =33x-8=167(x-2)=2x+33x+9=2718(x-2)=27012x=300-4x7x+5.3=7.43x÷5=4.830÷x+25=85 1.4×8-2x=66x-12.8×3=0.06 410-3x=1703(x+0.5)=210.5x+8=436x-3x=181.5x+18=3x5×3-x÷2=80.273÷x=0.351.8x=0.972x÷0.756=909x-40=5x÷5+9=2148-27+5x=31 10.5+x+21=56 x+2x+18=78 (200-x)÷5=30 (x-140)÷70=4 0.1(x+6)=3.3×0.44(x-5.6)=1.67(6.5+x)=87.5(27.5-3.5)÷x=4应用题一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是()A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20%C25%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。
一、解方程:(1)=x ﹣.(3).(5).(7)4(x﹣1)﹣3(20﹣x )=5(x﹣2);(9)(11).(13).(2)(x﹣1)=2﹣(x+2).(4)(6)[3(x﹣)+]=5x﹣1 (8)(10)(12)(14)(17)(19)x﹣﹣3(21).(23).20.解方程(1).(2).(I8)12y﹣2.5y=7.5y+5(20).(22).二、计算:(1)(2)÷(4)﹣42×+|﹣2|3×(﹣)3(5)当k为什么数时,式子比的值少3.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1 合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).点:专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x 移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.点评:17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。
一元一次方程应用题归类汇集(含答案)自行车的速度是每小时18km。
当自行车追上行人时,自行车已经行了6km。
求这条公路的长度。
解:设这条公路的长度为x千米,则等量关系为自行车行的路程=行人行的路程+6km列出方程是:x18=3.6x+6解方程可得:x=4因此,这条公路的长度为4千米。
骑自行车的速度为每小时10.8km,通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
现在需要求出行人的速度和火车的车长。
解:行人的速度为:1米/秒,骑自行车的人的速度为:3米/秒。
设火车的速度为x米/秒,则26×(x-3)=22×(x-1),解得x=4.因此,火车的速度为4米/秒。
接下来,设火车的车长为x米,则 x=22×4+26×3÷2=88米。
因此,火车的车长为88米。
一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,XXX比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
求XXX在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)。
解:设XXX在出发后经过x小时与回头接他们的汽车相遇,则5x+60(x-1)=60×2,解得x=6.因此,XXX在出发后经过6小时与回头接他们的汽车相遇。
某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地。
求A、B两地间的距离。
解:设由A地到B地规定的时间是x小时,则 12x=15×(x-1/3),解得x=4/3.因此,由A地到B地的距离为12×4/3=16千米。
一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s。
一元一次方程100道及答案过程本文精心收集了100道一元一次方程题,且每道题均附上清晰的求解步骤和解答,可供学生们在学习中参考。
一元一次方程是高中一类重要的数学问题,在数学测试中出现的频率也比较高。
下面是一元一次方程100道及解答过程:1. x + 2 = 5解答:x = 32. 2x = 4解答:x = 23. x - 3 = 4解答:x = 74. 4x - 5 = 15解答:x = 45. x - 7 = 3解答:x = 106. 5x + 6 = 36 解答:x = 67. 3x = 9解答:x = 38. 7x - 2 = 12 解答:x = 29. 9x - 4 = 16 解答:x = 210. 6x + 3 = 27 解答:x = 411. 4x + 9 = 25 解答:x = 412. 2x - 7 = -5 解答:x = 413. 2x = 10解答:x = 514. 3x - 4 = 6 解答:x = 415. 8x - 3 = 21 解答:x = 316. x = 8解答:x = 817. 5x + 2 = 27 解答:x = 518. 3x - 7 = 6 解答:x = 519. 8x + 4 = 48 解答:x = 620. 4x - 3 = 7 解答:x = 221. x + 5 = 10 解答:x = 522. 2x = 6解答:x = 323. 8x + 9 = 61 解答:x = 724. 4x + 5 = 21 解答:x = 425. x - 4 = 3 解答:x = 726. 7x + 2 = 20 解答:x = 327. 9x = 27 解答:x = 328. 7x - 4 = 10 解答:x = 229. 9x + 7 = 58 解答:x = 630. 3x - 8 = 14 解答:x = 631. 5x + 9 = 44 解答:x = 732. x = 5解答:x = 533. 6x - 8 = 18 解答:x = 434. 8x + 1 = 65 解答:x = 835. 4x - 7 = 11 解答:x = 336. 5x + 3 = 28解答:x = 537. 2x + 7 = 17 解答:x = 538. 8x - 5 = 47 解答:x = 639. 9x - 1 = 80 解答:x = 940. 7x - 3 = 26 解答:x = 441. 4x + 8 = 28 解答:x = 542. 6x + 9 = 51 解答:x = 743. x + 6 = 9 解答:x = 344. 5x = 10解答:x = 245. 9x - 8 = 28 解答:x = 446. x = 12解答:x = 1247. 8x - 6 = 36 解答:x = 548. 5x + 4 = 24 解答:x = 449. x - 5 = 8 解答:x = 1350. 6x + 2 = 42 解答:x = 751. 2x + 9 = 23 解答:x = 752. 3x - 7 = 12 解答:x = 753. 5x + 6 = 30 解答:x = 554. x = 18解答:x = 1855. 7x + 4 = 46 解答:x = 656. 4x + 3 = 19 解答:x = 457. 8x = 64解答:x = 858. 6x - 5 = 21 解答:x = 459. 3x + 8 = 14解答:x = 260. x - 6 = 11 解答:x = 1761. 7x - 9 = 32 解答:x = 562. 2x + 7 = 17 解答:x = 563. 6x + 4 = 38 解答:x = 664. 5x = 30解答:x = 665. 3x + 5 = 20 解答:x = 566. x + 9 = 16 解答:x = 767. 8x - 7 = 21 解答:x = 368. x = 20解答:x = 2069. 4x + 3 = 19 解答:x = 470. 7x - 5 = 25 解答:x = 471. x - 9 = 5 解答:x = 1472. 2x + 8 = 14 解答:x = 373. 8x + 4 = 68 解答:x = 874. 6x - 7 = 11 解答:x = 375. 3x + 9 = 24 解答:x = 576. 5x - 8 = 33 解答:x = 777. x + 4 = 10 解答:x = 678. 7x + 2 = 64 解答:x = 979. 9x - 5 = 44 解答:x = 580. 4x + 8 = 28 解答:x = 581. 3x + 2 = 5 解答:x = 182. x - 8 = 10解答:x = 1883. 5x = 40解答:x = 884. 7x + 6 = 74 解答:x = 1085. 9x = 63解答:x = 786. x = 24解答:x = 2487. 4x + 1 = 17 解答:x = 488. 2x - 6 = 8 解答:x = 789. 7x - 9 = 16 解答:x = 390. 5x + 7 = 47 解答:x = 891. 3x - 7 = 4 解答:x = 792. 8x + 9 = 73 解答:x = 993. x - 4 = 9 解答:x = 1394. 6x = 48解答:x = 895. 4x + 6 = 22 解答:x = 496. x + 8 = 13 解答:x = 597. 7x + 5 = 43 解答:x = 698. 9x - 3 = 36 解答:x = 499. 3x + 6 = 24 解答:x = 6100. x - 9 = 16 解答:x = 25。
一元一次方程的应用题(一)考试要求:内容基本要求略高要求较高要求一元一了解一元一次方会根据具体问题列出一元一次方能运用整式的加减运算次方程程的有关概念程对多项式进行变形,进一步解决有关问题一元一理解一元一次方能熟练掌握一元一次方程的解会运用一元一次方程解次方程程解法中的各个法;会求含有字母系数(无需讨论)决简单的实际问题的解法步骤的一元一次方程的解例题精讲:应用题是中学数学中的一类重要问题,一般通过对问题中量的关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.设未知数的方法一般来讲,有以下几种:直接设未知数解应用题:直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况;间接设未知数解应用题:设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用;引入辅助未知数解应用题:设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去.解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为 x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)模块一和差倍分问题【例1】玻璃缸里养了三个品种的金鱼,分别是“水泡”“朝天龙”“珍珠”.“水泡”的条数是“珍珠”的 3 倍;“朝天龙”的条数是“珍珠”的 2 倍,且“朝天龙”比“水泡”少 1 条,这三种金鱼各有几条呢?【解析】设“珍珠”的条数为x条,则“水泡”“朝天龙”的条数分别为3x条、2x条.依题意得:3x2x1,x1,从而3x3,2x2.【答案】3,2,1x【巩固】甲队有 32 人,乙队有 28 人,现从乙队抽人到甲队,使甲队是乙队人数的 2 倍,依题意,列出方程为【解析】略【答案】32 2(28 ).x x 【巩固】汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有 2 吨运不走;若每辆汽车装 4 吨货物,那么装完这批货物后,还可以装其他货物 1 吨,问汽车有 多少辆?这批货物有多少吨?【解析】设有汽车 辆.依题意得:3.5 2 4 1,解之得: 6 ,41 23,故汽车 x x x x x 有 6 辆,货物有 23 吨.【答案】6 ; 23【例2】 ⑴ 甲仓库有粮120吨.乙仓库有粮90 吨.从甲仓库调运剂后甲仓库存粮是乙仓库的一半.吨到乙仓库,调 ⑵ 甲乙两个圆柱体容器,底面积比为5∶3,甲容器水深20c m ,乙容器水深10c m , 再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?1【解析】⑴ 从甲仓库调运 吨到乙仓库,依题意得120 (90) ,解得 x 50 . x x x 2⑵ 设这时水深 cm ,依题意得 5( 20) 3( 10),解得 35 .若学生不好理x x x x 解,不妨多设一个底面积比为5 ∶3 .方程为5 (20) 3 ( 10) 即可. a a a x a x 【答案】50 ;352【巩固】某公司有甲乙两个工程队,甲队人数比乙队人数的 多 28 人.现因任务需要,从3乙队调走 20 人到甲队,这时甲队人数是乙队人数的 2 倍,则甲乙两队原来的人数 分别是多少人?2【解析】设乙队原来有 x 人,则甲队有 28 人.依题意可列:x 32 2 x 20 x 28 20 ,解得: 66x 3【答案】72,66【巩固】甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2 倍少189千米,乙铁路长比丙铁路少8 千米,求甲铁路的长. 【解析】设丙铁路长为 千米,则乙铁路长x 8 千米,甲铁路长2 x 8 189 千x 米.依题意可列: x x 8 2 x 8189 1191【答案】499,344,352【巩固】如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长1 1度是它的 ,另一根露出水面的长度是它的 .两根铁棒长度之和为55 ,此时cm 3 木桶中水的深度是5. cm1【解析】设此时木桶中水的深度为 c m ,依题意得,两根铁棒的长度为 [ (1 )]cm 和x x 31 1 1[x (1 )]cm ,故[x (1 )] [x (1 )] 55,解得 20.x 5 3 5【答案】20【例3】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有 100 只吧!”牧羊人答道:“如果这群 羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只 羊也算进去,才刚好凑满 100 只.”问牧羊人的这群羊共有多少只?1 2 14【解析】设这群羊共有 只,依题意,有2 1100 ,解之得 36 .x x x x x 【答案】36模块二 行程问题追击问题解决追击问题的一个最基本的公式:追击时间 速度差 追击的路程.于此相关 的问题都可以应用这一公式进行解答.【例4】 敌我两军相距 32 千米,敌军以每小时 6 千米的速度逃窜,我军同时以每小时 16 千米的速度追击在相距 2 千米的地方发生战斗,问战斗是从 开始追击后几小时发生的?【解析】根据追击问题的基本公式:追击时间 速度差 追击的路程.设战斗是从开始追击后 小时发生的.则依题意可列:166 x 32 2 , x 解得: 3. x 【答案】3【巩固】环城自行车赛,最快的人在开始 48 分钟后遇到最慢的人,已知最快的人的速度是3最慢的人速度的 倍,环城一周是 20 千米,求两个人的速度。
一、解方程:(1) =x﹣.(2)(x﹣1)=2﹣(x+2).(3).(4)(6) [3(x﹣) + ] =5x﹣1 (5).(8)(7)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(10)(9)(12)(11).(13).(14)(15) +2 1(I8)12y﹣2.5y=7.5y+5(17)(20).(19)x﹣﹣3(22).(21).二、计算:(1)(23).(2) ÷20.解方程( 1).2 3 3(4)﹣4× +|﹣2|×(﹣)(5)当 k 为何数时,式子比的值少 3.(2).(16)2解一元一次方程(三)参照答案与试题分析一.解答题(共30 小题)1.(2005?宁德)解方程: 2x+1=7考解一元一次方程.点:专计算题;压轴题.题:分本题直接经过移项,归并同类项,系数化为 1 可求解.析:解解:原方程可化为: 2x=7﹣ 1答:归并得: 2x=6系数化为 1 得:x=3点解一元一次方程,一般要经过去分母,去括号,移项,归并同类项,未知数的系数化为 1 等步骤,把一评:个一元一次方程“转变”成 x=a 的形式.2.考解一元一次方程.点:专计算题.题:分这是一个带分母的方程,因此要先去分母,再去括号,最后移项,化系数为 1,进而获得方程的解.析:解解:左右同乘 12 可得: 3[2x ﹣(x﹣1)]=8(x﹣1),答:化简可得: 3x+3=8x ﹣8,移项可得: 5x=11,解可得 x= .故原方程的解为 x= .点假如分式方程,先同分母,转变为整式方程后,再移项化简,解方程可得答案.评:3.(1)解方程: 4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.剖析:(1)先去括号,而后再移项、归并同种类,最后化系数为 1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,而后再按( 1)的步骤求解.解答:解:(1)去括号得: 4﹣x=6﹣3x,3移项得:﹣ x+3x=6 ﹣4,归并得: 2x=2,系数化为 1 得:x=1.(2)去分母得: 5(x﹣1)﹣2(x+1 )=2,去括号得: 5x﹣5﹣2x﹣2=2,移项得: 5x﹣2x=2+5+2 ,归并得: 3x=9,系数化 1 得:x=3.评论:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生惧怕心理.因为看到小数、分数比许多,学生常常不知如何找寻公分母,如何归并同类项,如何化简,因此我们要教会学生疏开进行,进而达到分解难点的成效.(2)本题的此外一个要点是教会学生关于分数的分子、分母同时扩大或减小若干倍,值不变.这一性质在此后常会用到.4.解方程:.考解一元一次方程.点:专计算题.题:分本题两边都含有分数,分母不同样,假如直接通分,有必定的难度,但将方程左右同时乘以公分母 6,难度析:就会降低.解解:去分母得: 3(2﹣x)﹣18=2x ﹣(2x+3),答:去括号得: 6﹣3x﹣18=﹣3,移项归并得:﹣ 3x=9,∴x=﹣3.点本题易在去分母和移项中出现错误,学生常常不知如何找寻公分母,如何归并同类项,如何化简,因此我评:们要教会学生疏开进行,进而达到分解难点的成效.5.解方程(1)4(x﹣1)﹣ 3(20﹣x)=5(x﹣2);(2)x﹣ =2﹣.考点:解一元一次方程.专题:计算题.剖析:(1)先去括号,再移项、归并同类项、化系数为 1,进而获得方程的解;(2)先去分母,再去括号,最后移项,化系数为 1,进而获得方程的解.解答:解:(1)去括号得: 4x﹣4﹣60+3x=5x ﹣10(2 分)移项得: 4x+3x ﹣5x=4+60 ﹣10(3 分)归并得: 2x=54(5 分)系数化为 1 得:x=27;(6 分)(2)去分母得: 6x﹣3(x﹣1)=12﹣2(x+2 )(2 分)去括号得: 6x﹣3x+3=12 ﹣2x﹣4(3 分)移项得: 6x﹣3x+2x=12 ﹣4﹣3(4 分)归并得: 5x=5(5 分)系数化为 1 得:x=1.(6 分)评论:去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个4多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程: 3(x﹣1)=2x+3;(2)解方程: =x﹣.考解一元一次方程.点:专计算题.题:分(1)是简单的一元一次方程,经过移项,系数化为 1 即可获得;析:(2)是较为复杂的去分母,本题方程两边都含有分数系数,假如直接通分,有必定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解解:(1)3x﹣3=2x+3答: 3x﹣2x=3+3x=6;(2)方程两边都乘以 6 得:x+3=6x ﹣3(x﹣1)x+3=6x ﹣3x+3x﹣6x+3x=3 ﹣3﹣2x=0∴x=0.点本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何找寻公分母,如何归并同类项,评:如何化简,因此要学会分开进行,进而达到分解难点的成效.去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)= (3x+1)考解一元一次方程.点:专计算题.题:分这是一个带分母的方程,因此要先去分母,再去括号,最后移项,化系数为 1,进而获得方程的解.析:解解:﹣ 7(1﹣2x)=3×2(3x+1)答:﹣7+14x=18x+6﹣4x=13x= ﹣.点解一元一次方程的一般步骤是去分母、去括号、移项、归并同类项和系数化为 1.本题去分母时,方程两评:端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣ 2(x+1)=3(x﹣1)+x+1 ;(2).考解一元一次方程.5点:专计算题.题:分(1)可采纳去括号,移项,归并同类项,系数化 1 的方式进行;析:(2)本题方程两边都含有分数系数,假如直接通分,有必定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1答: 3x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得: 40x+60=5 (18﹣18x)﹣3(15﹣30x),去括号得: 40x+60=90 ﹣90x﹣45+90x,移项、归并得: 40x=﹣15,系数化为 1 得: x= .点(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生惧怕心理.因为看到小数、分评:数比许多,学生常常不知如何找寻公分母,如何归并同类项,如何化简,因此我们要教会学生疏开进行,进而达到分解难点的成效;(2)本题的此外一个要点是教会学生关于分数的分子、分母同时扩大或减小若干倍,值不变.这一性质在此后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.剖析:这是一个带分母的方程,因此要先去分母,再去括号,最后移项,化系数为1,进而获得方程的解.解答:解:,去分母得: 2x﹣(3x+1)=6﹣3(x﹣1),去括号得: 2x﹣3x﹣1=6﹣3x+3,移项、归并同类项得:2x=10,6评论:去分母时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.剖析:(1)先去括号,再移项,归并同类项,系数化 1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化 1 可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得 4x﹣12+3x=2移项,归并同类项 7x=14系数化 1,得x=2.(2)(x﹣1)=2﹣(x+2)﹣2(x+2)7﹣4移项、归并同类项,得7x=21系数化 1,得x=3.评论:(1)本题主假如去括号,移项,归并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,此外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应当将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混淆运算.专题:计算题.剖析:(1)依占有理数的混淆方、后算乘8减;(2)两边同时乘以最简公分母 4,即可去掉分母.解答:解:(1)原式=,=,= .(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得: x=3 .评论:解答本题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.剖析:(1)这是一个带分母的先去分母,再去括号,最后9移项,化系数为 1,进而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为 1.解答:解:(1)去分母得: 3(3x﹣1)+18=1﹣5x,去括号得: 9x﹣3+18=1 ﹣5x,移项、归并得:14x= ﹣14,系数化为 1得:x=﹣1;(2)去括号得: x﹣x+1= x,移项、归并同类项得:x= ﹣1,系数化为 1得:x=﹣.评论:本题考察解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)10(2)考点:解一元一次方程.专题:计算题.剖析:(1)去分母、去括号、移项、归并同类项、化系数为1.(2)去分母、去括号、移项、归并同类项、化系数为1.解答:(1)解:去分母得: 5(3x+1)﹣2×10=3x ﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x= ﹣8+15,归并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1 )=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.评论:本题考察解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移11项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1 )﹣2(2x﹣3)=6 (2) +2(3) [3(x﹣)+ ] =5x﹣1考点:解一元一次方程.专题:计算题.剖析:(2)经过去括号、移项、归并同类项、系数化为 1,解得 x 的值;(3)乘最小公倍数去分母即可;(4)主假如去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得: 10x+5﹣4x+6=6移项、归并得:6x=﹣5,方程两边都除以 6,得 x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得: 3x﹣6=8﹣6x+24,移项、归并得:9x=38 ,方程两边都x= ;12[3(x﹣)+ ]=5x﹣1,4x﹣2+1=5x﹣1,移项、归并得:x=0.评论:一元一次方程的解法:一般要经过去分母、去括号、移项、合并同类项、未知数的系数化为 1 等步骤,把一个一元一次方程“转变”成 x=a的形式.解题时,要灵巧运用这些步骤.15.(A 类)解方程: 5x﹣2=7x+8 ;(B 类)解方程:(x﹣1)﹣( x+5)=﹣;(C 类)解方程:.考点:解一元一次方程.专题:计算题.剖析:经过去分母、去括号、移项、系数化为1 等方法,求得各方程的解.解答:解:A 类:5x﹣2=7x+8移项: 5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B 类:(x﹣1)﹣(x+5)13=﹣去括号: x﹣﹣x﹣5=﹣化简: x=5即:x=﹣;C 类:﹣=1去分母: 3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣ 7x=﹣4即:x= .评论:本题主要考查一元一次方程的解法,比较简单,但要仔细运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考解一元一次方程.点:专计算题.题:分(1)去括号此后,移项,归并同类项,系数化为 1 即可求解;析:(2)(3)第一去掉分母,再去括号此后,移项,归并同类项,系数化为 1 此后即可求解;(4)第一依据分数的基天性质,把第一项分母中的化为整数,再去分母,求解.解解:(1)去括号得: 3x+18=9 ﹣5+10x答:移项得: 3x﹣10x=9﹣5﹣1814归并同类项得:﹣ 7x=﹣14则 x=2;(2)去分母得: 2x+1=x+3 ﹣5移项,归并同类项得: x=﹣3;(3)去分母得: 10y+2(y+2)=20﹣5(y﹣1)去括号得: 10y+2y+4=20 ﹣5y+5移项,归并同类项得: 17y=21系数化为 1 得:;(4)原方程能够变形为:﹣5x=﹣1去分母得: 17+20x﹣15x=﹣3移项,归并同类项得: 5x=﹣20系数化为 1 得:x=﹣4.点解方程的过程中要注意每步的依照,这几个题目都是基础的题目,需要娴熟掌握.评:17.解方程:(1)解方程: 4x﹣3(5﹣x)=13(2)解方程: x﹣﹣3考点:解一元一次方程.专题:计算题.剖析:(1)先去括号,再移项,化系数为 1,进而获得方程的解.(2)这是一个带分母的方程,因此要先去分母,再去括号,最后移项,化系数为 1,进而得到方程的解.解答:解:(1)去括号得: 4x﹣15+3x=13 ,移项归并得:7x=28,系数化为 1得:得 x=4;(2)原式变形为x+3=15,去分母得: 5(2x﹣5)+3(x﹣2)=15(x+3 ),去括号得 10x﹣25+3x ﹣6=15x+45 ,移项归并得﹣2x=76 ,系数化为 1得:x=﹣38.评论:本题考察解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为 1.注意移项要变号.2 33 18.(1)计算:﹣4 × +|﹣2|×(﹣)2 2(2)计算:﹣ 1 ﹣﹣ |÷×[﹣2﹣(﹣ 3)] (3)解方程: 4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混淆运算.剖析:(1)利用平方和立方的定义进行计算.(2)按四则混淆运算的次序进行计算.(3)主假如去括号,移项归并.16乘最小公倍数去分母,再求值.解答:解:(1)﹣24×+|3﹣2|×(﹣)3==﹣1﹣1=﹣2.2(2)﹣1﹣﹣|÷×[﹣2﹣2(﹣3)]==== .(3)解方程:4x﹣3(5﹣x)=2去括号,得 4x﹣15+3x )=2移项,得4x+3x=2+15归并同类项,得 7x=17系数化为 1,得.去分母,得15x﹣3(x﹣172)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x ﹣25﹣45移项,得 15x﹣3x﹣10x=﹣25﹣45﹣6归并同类项,得 2x=﹣76系数化为 1,得 x=﹣38.评论:前两道题考查了学生有理数的混淆运算,后两道考察了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程: 3x+3=2x+7 ;(4)解方程:.考点:解一元一次方程;有理数的混淆运算.专题:计算题.剖析:(1)和( 2)要娴熟掌握有理数的混合运算;(3)和( 4)第一熟习解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为 1.解答:解:(1)(1﹣2﹣4)×18=﹣=﹣13;(2)原式 =﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得 3x﹣2x=7﹣ 3归并同类项,得 x=4;(4)解方程:去分母,得 6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15 ﹣10x+70移项,得6x+10x=15+70﹣90归并同类项,得 16x= ﹣5系数化为 1,得 x= .评论:(1)和( 2)要注意符号的办理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,娴熟掌握去括号法则以及归并同类项法例.20.解方程( 1)﹣(x﹣5)=1;(2).19考点:解一元一次方程.剖析:(1)经过去括号、移项、系数化为 1 等过程,求得 x的值;(2)经过去分母以及去括号、移项、系数化为 1 等过程,求得 x的值.解答:解:(1)﹣(x﹣5)=1;去括号得:﹣0.2x+1=1 ,∴﹣0.2x=0 ,∴x=0 ;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48 ,∴x=﹣.评论:本题主要考查了一元一次方程解法,解一元一次方程常有的过程有去括号、移项、系数化为 1 等.21.解方程:(x+3 )﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.剖析:先去括号得x+3﹣2x+2=9﹣3x,而后移项、归并同类获得 2x=4 ,然20后把 x 的系数化为 1 即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得 x﹣2x+3x=9 ﹣3﹣2,归并得 2x=4,系数化为 1 得x=2.评论:本题考察了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左侧,不含未知数的项移到方程右侧,而后合并同类项,最后把未知数的系数化为 1获得原方程的解.22.8x﹣3=9+5x .5x+2(3x﹣7)=9﹣4(2+x )...考点:解一元一次方程.专题:方程思想.剖析:本题是解 4 个不一样的一元一次方程,第一个经过移项、归并同类项及系数化 1求解.第二个先去括号再经过移项、合并同类项及系数化 1 求21解.第三个先去分母再同第二个.第四个先分子分母乘以 10,再同第三个求解.解答: 8x﹣3=9+5x ,解: 8x﹣5x=9+3,3x=12,∴x=4 .∴x=4 是原方程的解;5x+2(3x﹣7)=9﹣4( 2+x),解: 5x+6x ﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1 .∴x=1 是原方程的解..解:3( x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2 ,﹣x=17,∴x=﹣17.∴x=﹣17 是原方程的解.,解:,22=4(10x+1 )+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x= .∴x= 是原方程的解.评论:本题考察的知识点是解一元一次方程,要点是注意解方程时的每一步都要认真认真,如移项时要变符号.23.解以下方程:(1)﹣﹣(x﹣1);(2) = ﹣2.考点:解一元一次方程.剖析:(1)第一去括号,而后移项、归并同类项,系数化成1,即可求解;(2)第一去分母,而后去括号,移项、归并同类项,系数化成 1,即可求解解答:解:(1)去括号,得:归并同类项,则 x=4;移项,得:(2)去分母0.5x+1.3x=5.23得:7(1﹣2x)(4)第一去=3(3x+1)﹣分母,而后去42,括号、移项,去括号,得:归并同类项,7﹣14x=9x+3而后系数化﹣42,成 1 即可求移项,得:﹣解.解答:解:(1)14x﹣9x=3﹣42﹣7,,归并同类项,;得:﹣23x=﹣(2)3x﹣46,则 x=2 .2x=6﹣8,评论:本题考察解 x=﹣2;一元一次方程,解一元一(3)次方程的一 2x+3x+3=5 ﹣般步骤是:去 4x+4,分母、去括 2x+3x+4x=5+号、移项、合 4﹣3,并同类项、化 9x=6,系数为 1.注x= ;意移项要变号.(4)2(x+1 )24.解方程: +6=3(3x﹣(1)﹣0.5+3x=10 ;2),(2)3x+8=2x+6 ;2x+2+6=9x ﹣(3)2x+3 (x+1 )=5﹣4(x﹣1);6,2x﹣9x=﹣6 (4).﹣2﹣6,﹣7x=﹣14,考点:解一元一次 x=2.方程.评论:本题考察解剖析:(1)移项,一元一次方归并同类项,程,解一元一而后系数化次方程的一成 1 即可求般步骤是:去解;分母、去括(2)移项,号、移项、合归并同类项,并同类项、化而后系数化系数为 1.注成 1 即可求意移项要变解;号.(3)去括号、移项,归并同25.解方程:.类项,而后系数化成 1即可求解;考点:解一元一次24方程. 5x=12+15,专题:计算题.归并同类项,剖析:方程两边乘得以 10 去分母5x=27,后,去括号,方程的两边移项归并,将同时除以 5,x 系数化为 1,得即可求出解.x= ;解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)(2)去括号,=2,得去括号得:=15x﹣5﹣10x+12=2 ,,移项归并得:方程的两边同时乘以 6,5x=﹣5,解得:x=﹣1.得评论:本题考察了 x+1=4x ﹣2,解一元一次移项、归并同方程,其步骤类项,得为:去分母, 3x=3,去括号,移项方程的两边归并,将未知同时除以 3,数系数化为得1,求出解. x=1.评论:本题考察解26.解方程:(1)10x﹣12=5x+15 ;(2)一元一次方程,解一元一次方程的一般步骤:去分考点:解一元一次母、去括号、方程.移项、归并同专题:计算题.类项、化系数剖析:(1)先移项,为 1.注意移再归并同类项要变号.项,最后化系数为 1,进而27.解方程:获得方程的(1)8y﹣3(3y+2)=7解;(2).(2)先去括号,再移项、归并同类项,考点:解一元一次最后化系数方程.为 1,进而得专题:计算题.到方程的解.剖析:(1)依据一解答:解:(1)移项,元一次方程得的解法,去括10x﹣号,移项,合25。
1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km 的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75(a—1)=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+(40-10)×(a—3+3/4)40a=120+30a—67.510a=52.5a=5。
25=5又1/4小时=21/4小时所以甲乙距离40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a—16=1/2×(a+16)—34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人现在乙队有14+16=30人,甲队有28-16=12人4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点。
求3月份的月增长率.解:设四月份的利润为x则x*(1+10%)=13。
2所以x=12设3月份的增长率为y则10*(1+y)=xy=0。
2=20%所以3月份的增长率为20%5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。
如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。
求有多少人?解:设有a间,总人数7a+6人7a+6=8(a-5—1)+47a+6=8a-44a=50有人=7×50+6=356人6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?按比例解决设可以炸a千克花生油1:0。
一元一次方程知识点总结及应用题详细解析1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?解:设这种皮鞋标价是x元8/10x=60×(1+40%)解得:x=105105×8/10=84(元)答:这种皮鞋标价是105元,优惠价是84元3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( B )A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 50解析: 因为自行车按进价提高45%后标价,已经设过自行车进价是X元了所以X(1+45%)=145%X ——也就是标价因为(标价)又以八折优惠卖出所以标价×八折=销售价145%X × 0.8 = 1.16 X 因为结果每辆获利50元(获益= 销售价- 进价)所以获利的50元= 销售价1.16X元- 进价X元上为解题思路,得到方程:145%X • 0.8 - X =504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.解析:按最少利润为800*5%=40,则出售价为800+40=840,则打折为840/1200=70%,最低可以打七折5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电零售价为x.[(1+40%)×80%]x-x=2700÷10x=2250答:每台彩电零售价为2250元.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?方案三获利多方案一:140*4500=630000方案二:15*6=90 90*7500=675000 (140-90)*1000=50000 675000+50000=725000方案三:设粗加工x天16*x+6*(15-x)=140 x=5天精加工15-5=10天5*16*4500+10*6*7500=360000+450000=8100007.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?(1)全球通:50+0.2*X神州行:0.4X(2) 50+0.2X=0.4X 得X=250(3)50+0.2*120=740.4*120=48选择神州行更优惠!8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
精心整理一百道题3X+5X=4814X-8X=126*5+2X=4420X-50=5028+6X=8832-22X=1024-3X=310X*(5+1)=6099X=100-XX+3=18X-6=1256-2X=204y+2=6x+32=763x+6=1816+8x=402x-8=84x-3*9=298x-3x=105x-6*5=42x+5=72x+3=1012x-9x=96x+18=4856x-50x=305x=1578-5x=2832y-29=35x+5=1589x-9=80100-20x=2055x-25x=6076y-75=123y-23=234x-20=080y+20=10053x-90=162x+9x=1112y-12=2480+5x=1007x-8=665x+35=10019y+y=4025-5x=1579y+y=8042x+28x=1403x-1=890y-90=9080y-90=7078y+2y=16088-x=809-4x=120x=4065y-30=10051y-y=10085y+1=-8645x-50=4010*+6=26*=224:8*=1*=3%8*+23=39*=2004*+9=21*=36:2*=3*=15%*-3=2*=1006×+8=68×=108:6×=1/3×=4.x-3/0.5-x+4/0.2=1.6x=-9.22.2x/0.3+8/3-(1.4-3x)/0.2=2(x=1/5)3.(4-6x)/0.01-6.5=(0.02-2x)/0.02-7.5(x=4/5)4.x/0.7-(0.17-0.2x)/0.03=1(x=14/17)14.59+x-25.31=0 x=10.72②x-48.32+78.51=80x=49.81③820-16x=45.5×8x=28.5④(x-6)×7=2xx=8.4⑤3x+x=18x=4.5⑥0.8+3.2=7.2x=5⑦12.5-3x=6.5x=2⑧1.2(x-0.64)=0.54x=1.092x=3+5x=2*33x=x+1x=2x-2x=32+32x=1+42x=x+13x=3=x4x=4x=56+4x=2*1x=3*42x=5*610x=15x=106x=710x=1010=x+110=2x+1 10=3x+111=4x+1 11=2x+1 11=3x+1 11=5x+23 11=6x+123 11=7x+2 11=12x+34 11=9x+1 11=9x+221=4x+1 21=2x+1 21=3x+1 21=5x+23 21=6x+123 21=7x+2 21=12x+34 21=9x+1 21=9x+231=4x+1 31=2x+1 31=3x+1 31=5x+23 31=6x+123 31=7x+2 31=12x+34 31=9x+1 31=9x+212=4x+112=2x+112=3x+112=5x+231=6x+12312=7x+212=12x+3412=9x+112=9x+23X+5X=4814X-8X=126*5+2X=4420X-50=5028+6X=8832-22X=1024-3X=310X*(5+1)=6099X=100-X X+3=18X-6=1256-2X=204y+2=6x+32=763x+6=1816+8x=402x-8=84x-3*9=298x-3x=105x-6*5=42x+5=72x+3=1012x-9x=96x+18=4856x-50x=305x=1578-5x=2832y-29=35x+5=1589x-9=80100-20x=2055x-25x=6076y-75=1 23y-23=234x-20=080y+20=10053x-90=162x+9x=1112y-12=2480+5x=1007x-8=665x+35=10019y+y=4025-5x=1579y+y=8042x+28x=1403x-1=890y-90=9080y-90=7078y+2y=16088-x=809-4x=120x=4065y-30=10051y-y=10085y+1=-8645x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题 100 道问题补充:第 3 章一元一次方程全章综合测试(时间 90 分钟,满分 100 分)一、填空题.(每小题 3 分,共 24 分)1.已知 4x2n-5+5=0 是关于 x 的一元一次方程,则 n=.2.若 x=-1 是方程 2x-3a=7 的解,则 a=.3.当 x=时,代数式 x-1 和的值互为相反数.4.已知 x 的与 x 的 3 倍的和比 x 的 2 倍少 6,列出方程为.5.在方程 4x+3y=1 中,用 x 的代数式表示 y,则 y=.6.某商品的进价为 300 元,按标价的六折销售时,利润率为 5%,则商品的标价为元.7.已知三个连续的偶数的和为 60,则这三个数是.8.一件工作,甲单独做需 6 天完成,乙单独做需 12 天完成,若甲、乙一起做,则需天完成.二、选择题.(每小题 3 分,共 30 分)9.方程 2m+x=1 和 3x-1=2x+1 有相同的解,则 m 的值为(). A.0B.1C.-2D.-10.方程│3x│=18 的解的情况是(). A.有一个解是 6B.有两个解,是±6 C.无解 D.有无数个解11.若方程 2ax-3=5x+b 无解,则 a,b 应满足().A.a≠,b≠3B.a=,b=-3C.a≠,b=-3D.a=,b≠-312.把方程的分母化为整数后的方程是().13.在 800 米跑道上有两人练中长跑,甲每分钟跑 300 米,乙每分钟跑 260 米,两人同地、同时、同向起跑,t 分钟后第一次相遇,t 等于().A.10 分 B.15 分 C.20 分 D.30 分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了 10%,三月份比二月份减少了 10%,则三月份的销售额比一月份的销售额(). A.增加 10%B.减少 10%C.不增也不减 D.减少 1%15.在梯形面积公式 S=(a+b)h 中,已知 h=6 厘米,a=3 厘米,S=24 平方厘米,则 b=()厘米.A.1B.5C.3D.416.已知甲组有 28 人,乙组有 20 人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调 12 人去乙组 B.从乙组调 4 人去甲组C.从乙组调 12 人去甲组D.从甲组调 12 人去乙组,或从乙组调 4 人去甲组17.足球比赛的规则为胜一场得 3 分,平一场得 1 分,负一场是 0 分,一个队打了 14 场比赛,负了 5 场,共得 19 分,那么这个队胜了()场.A.3B.4C.5D.618.如图所示,在甲图中的左盘上将 2 个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3 个 B.4 个 C.5 个 D.6 个三、解答题.(19,20 题每题 6 分,21,22 题每题 7 分,23,24 题每题 10 分,共 46 分)19. 解方程:7(2x-1)-3(4x-1)=4(3x+2)-120.解方程:(x-1)-(3x+2)=-(x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10 厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大 1,个位上的数字比十位上数字的3 倍少 2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是 1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知 A 站至 H 站总里程数为 1500 千米,全程参考价为 180 元.下表是沿途各站至 H 站的里程数:车站名 ABCDEFGH各站至 H 站里程数(米)15001130910622402219720例如:要确定从 B 站至 E 站火车票价,其票价为=87.36≈87(元).(1)求 A 站至 F 站的火车票价(结果精确到 1 元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66 元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50 人 51~100 人 100 人以上票价 5 元 4.5 元 4 元某校初一甲、乙两班共 103 人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付 486 元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3(点拨:将 x=-1 代入方程 2x- 3a=7,得-2-3a=7,得 a=-3)3.(点拨:解方程 x-1=-,得 x=)4.x+3x=2x-65.y=-x6.525(点拨:设标价为 x 元,则=5%,解得 x=525 元)7.18,20,228.4[点拨:设需 x 天完成,则 x(+)=1,解得 x=4]二、 9.D 10.B(点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当 x<0 时,-3=18,∴x=-6 故本题应选 B)11.D(点拨:由 2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使 2a-5=0,a=,b+3≠0,b≠-3,故本题应选 D.) 12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C(点拨:当甲、乙两人再次相遇时,甲比乙多跑了 800 米,列方程得260t+800=300t,解得 t=20)14.D15.B(点拨:由公式 S=(a+b)h,得 b=-3=5 厘米)16.D17.C18.A(点拨:根据等式的性质 2)三、19.解:原方程变形为200(2-3y)-4.5=-9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为 x 厘米,根据图意和题意,得5x=3(x+10),解得 x=15所以需配正方形图片的边长为 15-10=5(厘米)答:需要配边长为 5 厘米的正方形图片.22.解:设十位上的数字为 x,则个位上的数字为 3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得 x=3答:原三位数是437. 23.解:(1)由已知可得=0.12 A 站至 H 站的实际里程数为1500- 219=1281(千米)所以 A 站至 F 站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为 x 千米,根据题意,得=66解得 x=550,对照表格可知,D 站与 G站距离为 550 千米,所以王大妈是在 D站或 G 站下的车. 24.解:(1)∵103>100∴每张门票按 4 元收费的总票额为103×4=412(元)可节省 486-412=74(元)(2)∵甲、乙两班共 103 人,甲班人数>乙班人数∴甲班多于 50 人,乙班有两种情形:①若乙班少于或等于 50 人,设乙班有 x 人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得 x=45,∴103-45=58(人)即甲班有 58 人,乙班有 45 人.②若乙班超过 50 人,设乙班 x 人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58 人,乙班为 45 人.3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点 1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从 3x-8=2,得到 3x=2-8;(2)从 3x=x-6,得到 3x-x=6.2.下列变形中:①由方程=2 去分母,得 x-12=10;②由方程 x=两边同除以,得 x=1;③由方程 6x-4=x+4 移项,得 7x=0;④由方程 2-两边同乘以 6,得 12-x-5=3(x+3).错误变形的个数是()个.A.4B.3C.2D.13.若式子 5x-7 与 4x+9 的值相等,则 x 的值等于(). A.2B.16C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=;(2)5y+3y-4y=;(3)4y-2.5y-3.5y=.5.解下列方程.(1)6x=3x-7(2)5=7+2x3)y-=y-2(4)7y+6=4y-36.根据下列条件求 x 的值:(1)25 与 x 的差是-8.(2)x 的与 8 的和是 2.7.如果方程 3x+4=0 与方程 3x+4k=8 是同解方程,则 k=.8.如果关于 y 的方程 3y+4=4a 和 y-5=a 有相同解,则 a 的值是.知能点 2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重 8 千克,从桶中取出一半油后,毛重 4.5 千克,桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有 50 克,45 克盐,问应该从盘 A 内拿出多少盐放到盘 B 内,才能使两盘内所盛盐的质量相等.11.小明每天早上 7:50 从家出发,到距家 1000 米的学校上学,每天的行走速度为 80 米/分.一天小明从家出发 5 分后,爸爸以 180 米/分的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知 y1=2x+8,y2=6-2x.(1)当 x 取何值时,y1=y2?(2)当 x 取何值时,y1 比 y2 小 5?13.已知关于 x 的方程 x=-2 的根比关于 x 的方程 5x-2a=0 的根大 2,求关于 x 的方程-15=0 的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图 3-2 是某风景区的旅游路线示意图,其中 B,C,D 为风景点,E 为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从 A 处出发,以 2 千米/时的速度步行游览,每个景点的逗留时间均为 0.5 小时.(1)当他沿路线 A—D—C—E—A 游览回到 A 处时,共用了 3 小时,求 CE 的长.(2)若此学生打算从A 处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A 处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).答:案1.(1)题不对,-8 从等号的左边移到右边应该改变符号,应改为 3x=2+8.(2)题不对,-6 在等号右边没有移项,不应该改变符号,应改为 3x-x=-6.2.B[点拨:方程 x=,两边同除以,得 x=)3.B[点拨:由题意可列方程 5x-7=4x+9,解得 x=16)4.(1)3x(2)4y(3)-2y5.(1)6x=3x-7,移项,得 6x-3x=- 7,合并,得 3x=-7,系数化为 1,得x=-.(2)5=7+2x,即 7+2x=5,移项,合并,得 2x=-2,系数化为 1,得 x=-1.(3)y-=y-2,移项,得 y-y=-2+,合并,得 y=-,系数化为 1,得 y=-3.(4)7y+6=4y-3,移项,得 7y-4y=-3-6,合并同类项,得 3y=-9,系数化为 1,得 y=-3. 6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得 x=33.(2)根据题意可得方程:x+8=2,移项,得 x=2-8,合并,得 x=-6,系数化为 1,得 x=-10.7.k=3[点拨:解方程 3x+4=0,得 x=- ,把它代入 3x+4k=8,得-4+4k=8,解得 k=3]8.19[点拨:∵3y+4=4a,y-5=a 是同解方程,∴y==5+a,解得 a=19] 9.解:设桶中原有油 x 千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为 4.5 千克,因为余下的色拉油的毛重是一个定值,所以可列方程 8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油 7千克.[点拨:还有其他列法]10.解:设应该从盘 A 内拿出盐 x 克,可列出表格:盘 A 盘 B原有盐(克)5045现有盐(克)50-x45+x设应从盘 A 内拿出盐 x 克放在盘 B 内,则根据题意,得 50-x=45+x.解这个方程,得 x=2.5,经检验,符合题意.答:应从盘 A 内拿出盐 2.5 克放入到盘B 内.11.解:(1)设爸爸追上小明时,用了x 分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得 x=4.所以爸爸追上小明用时 4 分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有 280米.12.(1)x=-[点拨:由题意可列方程 2x+8=6-2x,解得 x=-](2)x=-[点拨:由题意可列方程 6-2x-(2x+8)=5,解得 x=-]13.解:∵x=-2,∴x=-4.∵方程 x=-2 的根比方程 5x-2a=0 的根大 2,∴方程 5x-2a=0 的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设 CE 的长为 x 千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得 x=0.4,即 CE 的长为 0.4 千米.(2)若步行路线为 A—D—C—B—E—A(或 A—E—B—C—D—A),则所用时间为( 1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为 A—D—C—E—B—E—A(或 A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为 A—D—C—E—B—E—A(或 A—E—B—E—C—1.7(2x-1)-3(4x-1)=4(3x+2)-12.(5y+1)+(1-y)=(9y+1)+(1-3y)3.[(-2)-4]=x+24.20%+(1-20%)(320-x)=320×40%5.2(x-2)+2=x+16.2(x-2)-3(4x-1)=9(1-x)7.11x+64-2x=100-9x8.15-(8-5x)=7x+(4-3x)9.3(x-7)-2[9-4(2-x)]=2210.3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2)(5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2)(x-y)2-(x-y)2-[(x-y)2-(x-y)2](2k-1)x2-(2k+1)x+32(x-2)-3x-22y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b5b+2c-7b+4z-3z3b+3c-6a+8b-7c-2a3c-7b+5z-7b+4a-6n+8b-3v+9n-7v。
一元一次方程50道过程
1.解一元一次方程3x-5=2:
解:将所有项移至一边,将变量一边,将常数一边。
即3x-2=5 2.解一元一次方程5x+1=3:
解:将所有项移至一边,将变量一边,将常数一边。
即5x=3-1 3.解一元一次方程3x+2=6:
解:将所有项移至一边,将变量一边,将常数一边。
即3x=6-2 4.解一元一次方程4x-3=5:
解:将所有项移至一边,将变量一边,将常数一边。
即4x=5+3 5.解一元一次方程7x+4=10:
解:将所有项移至一边,将变量一边,将常数一边。
即7x=10-4 6.解一元一次方程6x+3=9:
解:将所有项移至一边,将变量一边,将常数一边。
即6x=9-3 7.解一元一次方程8x-7=3:
解:将所有项移至一边,将变量一边,将常数一边。
即8x=3+7 8.解一元一次方程5x+4=2:
解:将所有项移至一边,将变量一边,将常数一边。
即5x=2-4。
一元一次方程式标准解英文回答:The standard form of a linear equation is given by Ax + By = C, where A, B, and C are constants. To solve a linear equation in one variable, we need to isolate the variable on one side of the equation. This can be done by performing various operations such as addition, subtraction, multiplication, and division.Let's consider an example to illustrate the process. Suppose we have the equation 3x + 2 = 8. To isolate the variable x, we first need to get rid of the constant term on the left side of the equation. We can do this by subtracting 2 from both sides:3x + 2 2 = 8 2。
3x = 6。
Next, we can divide both sides of the equation by the coefficient of x, which in this case is 3:(3x)/3 = 6/3。
x = 2。
Therefore, the solution to the equation 3x + 2 = 8 is x = 2.中文回答:一元一次方程式的标准形式为Ax + By = C,其中A、B和C是常数。
90道一元一次方程带解过程1. 2(x-2)-3(4x-1)=9(1-x)2x-4-12x+3=9-9xx=-102. 11x+64-2x=100-9x18x=36x=23. 15-(8-5x)=7x+(4-3x)15-8+5x=7x+4-3xx=-34. 3(x-7)-2[9-4(2-x)]=223x-21-2(9-8+4x)=223x-21-2-8x=22-5x=55x=-115. 2(x-2)+2=x+12x-4+2=x+1x=36. 30x-10(10-x)=100 30x-100+10x=100 40x=200x=507. 4(x+2)=5(x-2)4x+8=5x-10x=188. 120-4(x+5)=28 120-4x-20=28-4x=-72x=189. 15x+854-65x=54 -50x=-800x=1610. 3(x-2)+1=x-(2x-1)3x-6+1=x-2x+14x=6x=3/211. 11x+64-2x=100-9x 18x=36x=212. 14.59+x-25.31=0 x=10.7213. (x-6)×7=2x -27x-42=2x-25x=40x=814. 3x+x=184x=18x=9/215. 12.5-3x=6.5x=216. 1.2(x-0.6)=4.8 1.2x- 7.2=4.8 1.2x=12x=1017. x+12.5=3.5x 2.5x=12.5x=518. 8x-22.8=1.2 8x=21.6x=2.719. 2x=5x-33x=3x=120. x+5=8甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48,一列快车从乙站开出,每小时走60公里,试问:若两车相向而行,慢车先开出1小时,再用多少小时,两车才能相遇?(一元一次方程解)解:设再用x小时两车相遇48(x+1)+60x=16248x+48+60x=162108x=114x=57/53两车同时同行(快车在后面),几小时可以追上慢车?(一元一次方程解)解:设x小时后追上60x-48x=16212x=162x=13.5小时答:13.5小时后追上一搜客船从A地出发到B地顺流行驶,用了2.5小时;从B地返回A地逆流行驶,用了3.5小时,已知水流的速度是4千米∕时,求客船在静水中的平均速度?(一元一次方程解)解:设客船静水速度为每小时x千米2.5(x+4)=3.5(x-4)2.5x+10=3.5x-143.5x-2.5x=10+14x=24答:客船静水速度为每小时24千米一队学生练习行军,以每小时5公里的速度步行,出发3小时后,学校通讯员以每小时60公里的速度追上去,文通讯员经过多少小时追上学生队伍?(一元一次方程解)解:设x小时后追上60x=5(x+3)60x=5x+1555x=15x=3/11一列慢车从某站开出,每小时行48km,过了一段时间,一列快车从同站出发与慢车通向而行,每小时行72km,又经过1.5小时追上慢车,快车开出前,慢车已行了多少小时?(一元一次方程解)解:设慢车已经行了x小时48x+48×1.5=72×1.548x+72=72*1.548x=36x=0.75答:慢车已经行了0.75小时一个人从甲村走到乙村,如果他每小时走4千米,那么走到预定的时间,离乙村还有1.5千米;如果他每小时走5km,那么比一定时间少用半小时就可以到达乙村。
求预定时间是多少小时,甲村到乙村的路程是多少千米?(一元一次方程解)解:设预定时间为x小时4x+1.5=5(x-0.5)4x+1.5=5x-2.55x-4x=1.5+2.5x=4甲乙路程:4×4+1.5=17.5千米甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么经过2分钟他们两人就要相遇。
如果2人从同一地点同向而行,那么经过20分钟两人相遇。
如果甲的速度比乙的速度快,求两人散步的速度?(一元一次方程)解:设甲速度为每分钟x米,乙速度为每分钟400/2-x米20x-20(400/2-x)=400x-(200-x)=20x-200+x=202x=220x=110400/2-x=200-110=90答:甲速度为每分钟110米,乙速度为每分钟90米某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?解:设小王追上连队需要x小时14x=6*18/60+6x14x=1.8+6x8x=1.8x=0.2250.225小时=13.5分钟<15分钟小王能完成任务一列客车和一列货车在平行的轨道上同向行驶,客车的长是200米,货车的长是280米,客车速度与货车的速度比是5 :3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?(一元一次方程)解:设客车速度为每分钟5x米,货车速度为每分钟3x米5x-3x=200+2802x=480x=2405x=240×5=12003x=240×3=720答:客车速度为每分钟1200米,货车速度为每分钟720米解:设交叉时间为y分钟1200y+720y=200+2801920y=480y=0.25答:相向而行,交叉时间为0.25分钟1、两个仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的5/7 每个仓库各有多少粮食?2、甲乙丙三个乡合修水利工程,按照收益土地的面积比3:2:4分担费用1440元3个乡各分配多少元?3、一个两位数,十位数与个位上的数之和为11,如果把十位上的数与个位上的数对调得到比原来的数大63原来的两个数是?4、一工程甲单独要10天乙要12天,丙要15天,甲丙先做3天甲离开乙参加工作问还!需要几天5、有含盐8%盐水40KG 使盐水含盐20% ①加盐多少②蒸发水分需蒸发多少KG水?6、有含酒精70%及含酒精98%的酒精,问各取多少可调配成含酒精84%的酒精100KG?7、甲乙相距120千米乙速比甲每小时快1千米,甲先从A出发2时后,乙从B出发与甲相向而行经过10时后相遇,求甲乙的速度1.解:设第一仓原有3x吨,第二仓原有x吨(3x-20)*5/7=x+205(3x-20)=7(x+20)15x-100=7x+1408x=240x=303x=3×30=90答:第一仓原有90吨,第二仓原有30吨2.解:设甲乙丙各分担3x,2x,4x元3x+2x+4x=14409x=1440x=1603x=3×160=4802x=2×160=3204x=4×160=640答:甲分担480元,乙分担320元,丙分担640元3.解:设原数十位数字为x,个位数字为11-x10(11-x)+x-(10x+11-x)=63110-10+x-9x-11=6318x=36x=211-x=11-2=9答:原来两位数为29解:设还需要x天(1/10+1/15)*3+(1/12+1/15)x=1 1/2+3/20*x=13/20*x=1/2x=1/2*20/3x=10/3答:还需要10/3天5.1)解:设加盐x千克40×8%+x=(40+x)*20%3.2+x=8+0.2x0.8x=4.8x=6答:加盐6千克2)解:设蒸发水x千克(40-x)*20%=40*8%8-0.2x=3.20.2x=4.8x=24答:需要蒸发水24千克6.解:设需要70%酒精x千克,98%酒精100-x千克7%x+98%(100-x)=100*84%0.07x+98-0.98x=840.91x=14x=200/13100-x=100-200/13=1100/13答:需要70%酒精200/13千克,98%酒精1100/13千克7.解:设甲速度为每小时x千米,乙速度为每小时x+1千米(2+10)x+10(x+1)=12012x+10x+10=12022x=110x=5x+1=5+1=6答:甲速度为每小时5千米,乙速度为每小时6千米1.某中学修整草场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独做,需要5小时完成.如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?设初二学生还要工作x小时。
(1/7.5)+(1/5)x=1x=10/3共需10/3+1=4又1/3小时2.甲骑车从A地到B地,乙骑车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.求AB两地路程.设:AB距离为X,12时-10时=2小时,10时-8时=2小时2*[(36*2)/2]=X-36第一个2是8时到10时,共2小时36*2是10时到12时有两次相距36千米,即两小时二人共走36*2千米(36*2)/2就求出二人一小时共走多少千米,即二人速度和根据“以知两人在上午8时同时出发,到上午10时,两人还相距36千米”这句话列出方程结果X=108答:AB两地相距108千米3一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?解:设甲、乙两站距离为S千米,则有:S/90=(S/2)/90+12/60+(S/2)/(90+10)解得:S=360(千米)答:甲乙两地距离为360千米。
4小明到外婆家去,若每小时行5千米,正好按预定时间到达,他走了全程的五分之一时,搭上了一辆每小时行40千米的汽车,因此比预定时间提前1小时24分钟到达,求小明与他外婆家的距离是多少千米.解:设小明与他外婆家的距离为S千米,则有:S/5=(S/5)/5+(4S/5)/40+(1+24/60)解得:S=10(千米)答:小明与他外婆家的距离为10千米自己试着练习下,祝你成功!新年快乐!1、某单位准备要去某地方旅行该单位正在准备联系旅行社A、B旅行社每位的费用都是300 A旅行社表明全部打8折付费B旅行社表明一人免费其余按9折付费请问当该单位的人数为多少人去旅行时两个旅行社的费用总额一样?2、赵刚期末考试语文、数学、外语的成绩分别为三个连续偶数,其和为270 ,则数学成绩为多少?3、现在对某商品降价百分之十促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?4、甲对乙说:"当我是你现在的年龄,你才4岁."乙对甲说:"当我是你现在的年龄时,你将61岁."问甲,乙现在的年龄各是多少?5、一批文稿,如果甲抄30小时完成,乙抄20小时完成,现由甲抄3小时后该为乙抄余下部分,问乙尚需抄多少小时?6、甲乙两人分别从相距60千米的AB两地骑摩托车出发去某地,甲在乙后面,甲每小时骑80千米,乙每小时骑45千米,若甲比乙早30分出发,问甲出发经过多长时间可以追上乙?7、某飞机原定以每小时495千米的速度飞往目的地,后因任务紧急,飞行速度提高到每小时660千米,结果提前1小时到达,问总的航程是多少千米?8、一瓶酱油先吃去0.6千克,后又吃去余下的3/5,瓶中酱油还有0.8千克。