第3讲 化学反应的速率 工业合成氨
- 格式:ppt
- 大小:1.19 MB
- 文档页数:67
合成氨反应的速率
1 外界条件对合成氨反应速率的影响
2 使用有效的催化剂
合成氨反应的活化能很高,即使在高温、高压下反应速率也非常缓慢,所以应选用合适的催化剂,以降低反应的活化能,提高反应速率。
研究表明,在其他条件相同的情况下,使用催化剂可以使合成氨反应的速率提高上万亿倍。
典例详析
例2-3(北京东城区期末)
工业合成氨反应为N2(g)+3H2(g)2NH3(g),下列措施一定能使合成氨反应速率加快的是()
①升高温度②加入正催化剂③增大反应物浓度④增大压强
A.①②③B.①②④
C.①③④D.①②③④
解析◆影响反应速率的因素有温度、催化剂、浓度、压强等,升高温度、使用正催化剂、增大反应物浓度都可以加快化学反应速率,但增大压强不一定能加快反应速率,如恒容条件下,向体系中充入与反应无关的气体,虽然增大了压强,但各组分的浓度不变,反应速率不变,
A项符合题意。
答案◆A
点评◆压强的改变是否影响反应速率,关键要看是否改变了反应物或反应产物的浓度。
若在恒容条件下,向体系中通入与反应无关的气体,对各物质的浓度无影响,故对化学反应速率无影响。
若在恒压条件下,向体系中通入与反应无关的气体,导致反应混合物中各组分浓度减小,则反应速率减小。
工业合成氨的条件工业合成氨是一种重要的化学反应过程,它是利用化学方法将氮气和氢气合成氨气。
合成氨广泛应用于农业肥料和化工领域。
本文将介绍工业合成氨的条件。
工业合成氨的条件包括适宜的温度、压力、催化剂和气体比例。
首先,合成氨的反应温度通常在300-500摄氏度之间。
在低温下,反应速率较慢,而在高温下,反应速率较快,但同时伴随着副反应的增加。
因此,选择适中的反应温度可以提高合成氨的产率和选择性。
合成氨的反应压力也是一个重要的条件。
氮气和氢气在高压下更容易发生反应生成氨气。
一般来说,较高的压力有利于提高反应速率和产氨量。
然而,过高的压力会增加设备的成本和能耗。
因此,需要根据实际情况选择合适的反应压力。
催化剂是合成氨反应的关键条件之一。
铁、铑、钼等金属催化剂广泛应用于合成氨反应中。
催化剂能够加速反应速率,降低反应活化能,提高反应选择性。
催化剂的选择应考虑其活性、稳定性和成本等因素。
氮气和氢气的比例也是影响合成氨反应的重要条件。
通常采用3:1的氮气和氢气比例进行反应,这是因为氮气和氢气在此比例下反应最为充分,能够达到最高的产氨效率。
如果比例不合适,将导致氮气或氢气的浪费,降低反应效率。
除了上述条件,反应器的设计和操作也对合成氨的产率和选择性产生影响。
合理的反应器设计可以提高反应效率和热能利用率。
同时,合适的操作条件,如适宜的进料速率、混合程度和反应时间等,也能够改善反应效果。
总结起来,工业合成氨的条件包括适宜的温度、压力、催化剂和气体比例。
合理选择这些条件可以提高合成氨的产率和选择性,降低生产成本,推动氨工业的发展。
工业合成氨的过程是复杂而重要的,需要综合考虑各个条件的影响,以实现高效、可持续的氨气生产。
化学反应条件的优化――――工业合成氨[知识要点]:一、合成氨的化学平衡分析:工业合成氨是可逆反应:N2 (g) + 3 H2 (g) 2 NH3 (g) 已知298K时△H=-92.2KJ·mol-1△S=-198.2 J·K―1·mol―1可知,该反应在298K时是一个能进行的反应,同时也是气体的物质的量的减反应。
[结论] 因此温度压强将有利于化学平衡向生成的方向移动,在一定的温度、压强下,反应物氮气、氢气的体积比为时,平衡混合物的氨的含量最高。
二、合成氨的反应速率分析:特定条件下,合成氨反应的速率与参与反应的物质的浓度关系为v=kC (N2)C1.5(H2)C―1(NH3),可知,合成氨反应的速率与氨气浓度的次方成,在反应过程中,随着氨气的浓度的增大,反应速率会逐渐,因此为保持足够高的反应速率,应适时将从混和气中分离出来。
使用___________可以使合成氨反应的速率提高上万亿倍,此外温度越高,反应速率。
[结论] 有利于提高合成氨反应速率的措施有:①提高反应温度②使用催化剂③适当提高氮氢比④适时分离反应产物氨三、提高合成氨反应的平衡转化率和反应速率的措施四、实际生产中采取的措施:目前,合成氨生产中一般选择作为催化剂。
控制反应温度在左右,根据反应器可使用的钢材质量及综合指标来选择压强,大致可分为(1×107Pa)、(2×107~3×108Pa)、(8.5×107~1×108Pa)三种类型,通常采用氮气与氢气物质的量之比为的投料比。
且氮气氢气循环使用。
目前的工艺条件下,合成氨厂出口气的氨含量一般为。
五、合成氨生产流程合成氨的整个工业生产包括造气、净化、合成氨三大部分氮气来自于空气,将空气,先得液态,气体为造气氢气来自于含氢的天然气,煤、炼油产品,反应可表示为净化目的氨的分离(方法将液化)合成氨氮气、氢气的循环使用反馈练习1、合成氨工业的生产中,应采取的适宜条件是()A、高温高压B、适宜的温度,高压催化剂C、低温低压D、高温,高压催化剂2、在一定温度和压强下,合成氨反应达到平衡时,下列操作不会使平衡发生移动的是()A、恒温恒压时充入氨气B、恒温恒容时充入氮气C、恒温恒容时充入氦气D、恒温恒压时充入氦气3、工业合成氨一般采用700K左右的温度,其原因是()①适当提高氨的合成速率②提高氢气的转化率③提高氨的产率④催化剂在700K时活性最大A、①B、①②C、②③④D、①④4、在合成氨工业中,达到下列目的的变化过程中与平衡移动无关的是()A、为增加NH3的日厂量,不断将NH3分离出来B、为增加NH3的日产量,使用催化剂C、为增加NH3的日产量而采用1×107Pa~1×108Pa 的压强D、为增加NH3的日产量,采用700K左右的高温5、二氧化氮存在下列平衡:2NO2(g)N2O4(g)(正反应为放热反应)。
高中化学《化学反应条件的优化——工业合成氨》精品教案一、教学目标:1. 让学生了解工业合成氨的反应原理和过程。
2. 使学生掌握化学反应条件的优化方法。
3. 培养学生的实验操作能力和科学思维。
二、教学内容:1. 工业合成氨的反应原理及过程。
2. 影响化学反应速率的因素。
3. 化学反应条件的优化方法。
4. 实验操作技巧及注意事项。
三、教学重点与难点:1. 工业合成氨的反应原理及过程。
2. 影响化学反应速率的因素。
3. 化学反应条件的优化方法。
四、教学方法:1. 采用多媒体课件辅助教学,直观展示反应原理和过程。
2. 进行实验操作演示,引导学生动手实验。
3. 采用问题驱动教学,引导学生思考和探讨。
五、教学过程:1. 导入新课:介绍工业合成氨的重要性和应用领域。
2. 讲解反应原理:阐述工业合成氨的反应过程及化学方程式。
3. 分析影响反应速率的因素:温度、压力、催化剂等。
4. 讲解化学反应条件的优化方法:如何提高反应速率,降低成本。
5. 实验操作演示:引导学生动手进行实验,观察实验现象。
7. 布置作业:巩固所学知识,提高学生的实际应用能力。
六、教学评价:1. 采用课堂问答、讨论的形式,评估学生对工业合成氨反应原理的理解程度。
2. 通过实验操作,评价学生对化学反应条件优化方法的掌握情况。
3. 布置课后作业,评估学生对课堂所学知识的吸收和应用能力。
七、教学资源:1. 多媒体课件:用于展示工业合成氨的反应原理、过程及影响因素。
2. 实验器材:用于引导学生动手实验,优化化学反应条件。
3. 教学参考书:提供更深入的理论知识,帮助学生拓展视野。
八、教学进度安排:1. 第1-2课时:介绍工业合成氨的反应原理及过程。
2. 第3-4课时:分析影响化学反应速率的因素。
3. 第5-6课时:讲解化学反应条件的优化方法。
4. 第7-8课时:实验操作演示与实践。
九、教学反思:在教学过程中,关注学生的学习反馈,及时调整教学方法和节奏。
针对学生的薄弱环节,加强针对性辅导。
化学反应条件的优化—工业合成氨发展目标体系构建1.结合生产实例,讨论化学反应条件的选择和优化,形成从限度、速率、能耗的多角度综合调控化学反应的基本思路,发展“绿色化学”的观念和辩证思维的能力。
2.能运用温度、浓度、压强和催化剂对化学反应速率的影响规律解释生产、生活、实验室中的实际问题。
1.合成氨反应的限度(1)反应原理N2(g)+3H2(g)2NH3(g)ΔH=-92.2 kJ·mol-1,ΔS=-198.2 J·K-1·mol-1。
(2)反应特点(3)影响因素①外界条件:温度、压强,有利于化学平衡向生成氨的方向移动。
②投料比:温度、压强一定时,N2、H2的体积比为时平衡混合物中氨的含量最高。
微点拨:合成氨反应中,为了提高原料转化率,常采用将未能转化的N2、H2循环使用的措施。
2.合成氨反应的速率(1)提高合成氨反应速率的方法(2)浓度与合成氨反应速率之间的关系在特定条件下,合成氨反应的速率与参与反应的物质的浓度的关系式为v=kc(N2)·c1.5(H2)·c-1(NH3),由速率方程可知:N2或H2的浓度,NH3的浓度,都有利于提高合成氨反应的速率。
微点拨:温度升高k值增加,会加快反应速率;同时加入合适的催化剂能降低合成氨反应的活化能,使合成氨反应的速率提高。
3.合成氨生产的适宜条件(1)合成氨反应适宜条件分析工业生产中,必须从和两个角度选择合成氨的适宜条件,既要考虑尽量增大反应物的转化率,充分利用原料,又要选择较快的反应速率,提高单位时间内的,同时还要考虑设备的要求和技术条件。
(2)合成氨的适宜条件序号影响因素选择条件1 温度反应温度控制在左右2 物质的量N2、H2投料比3 压强1×107~1×108 Pa4 催化剂选择铁做催化剂5 浓度使气态NH3变成液态NH3并及时分离出去,同时补充N2、H2(3)合成氨的生产流程的三阶段1.判断对错(对的在括号内打“√”,错的在括号内打“×”。
合成氨的反应原理合成氨是一种重要的化学工业反应,其原理是将氢气和氮气在一定的条件下进行结合反应,生成氨气。
合成氨的反应原理是依据哈柏法的原理。
哈柏法是由德国化学家哈柏于1905年提出的,该法以铁为催化剂,将氮气和氢气在高温高压下进行反应,生成氨气。
在反应中,氢气和氮气的物质性质发生了变化。
氢气是无色无味的气体,在常温下为不活泼的分子气体,由两个氢原子组成。
氮气是一种无色无味的气体,也是不活泼的分子气体,由两个氮原子组成。
合成氨的反应物为氮气和氢气,反应物中氢气和氮气的化学键发生了断裂和形成的过程。
在背景条件下,铁催化剂有助于降低反应的活化能,促进氮气与氢气发生相互作用。
反应物中的氮气与氢气经过一系列的反应过程,最终会转化为氨气。
合成氨的反应需要在高温高压的条件下进行。
通常情况下,反应温度为400-500,压力约为150-200atm。
高温高压的条件对于将氢气和氮气转化为氨气非常重要,可以提高反应速率和产率。
此外,配合性的铁催化剂也是合成氨反应的关键。
反应中,氢气和氮气发生反应生成氨气的过程可以用以下化学方程式表示:N2 + 3H2 > 2NH3在这个方程式中,氮气与氢气的反应生成了氨气。
根据化学方程式可以看出,氮气和氢气的消耗是按照比例的。
每一摩尔的氮气需要消耗3摩尔的氢气才能生成2摩尔的氨气。
合成氨的反应发生在一个封闭的反应器中。
反应器内部有很强的耐压性,以承受高温高压条件下的反应过程。
反应器内的铁催化剂可以促进反应的进行,提高反应速率和产率。
同时,反应器内要保持一定的温度和压力条件,以便使反应物充分反应,生成氨气。
合成氨是一种重要的化学反应,广泛应用于化学工业的领域。
氨气是一种重要的化学原料,用于制造肥料、塑料等化学产品。
合成氨的反应原理和条件对于合成氨的产量和质量有着重要的影响,因此需要掌握合成氨的反应原理和工艺条件。
第43讲 化学反应速率 工业合成氨[复习目标] 1.了解化学反应速率的概念和定量表示方法。
2.了解反应活化能的概念。
3.理解外界条件(浓度、温度、压强、催化剂等)对反应速率的影响,能用相关理论解释其一般规律。
4.了解化学反应速率的调控在生活、生产和科学研究领域中的重要作用。
考点一 化学反应速率的概念及计算1.化学反应速率2.化学反应中各物质浓度的计算模式——“三段式” (1)写出有关反应的化学方程式。
(2)找出各物质的起始量、转化量、某时刻量。
(3)根据已知条件列方程式计算。
例如:反应m A + n B === p Ct 0 s/(mol·L -1) a b 0 转化/(mol·L -1) xnx m pxmt 1 s/(mol·L -1) a -x b -nx m px m则v (A)=x t 1-t 0 mol·L -1·s -1,v (B)=nx m (t 1-t 0)mol·L -1·s -1,v (C)=px m (t 1-t 0) mol·L -1·s -1。
3.比较化学反应速率大小的常用方法(1)先换算成同一物质、同一单位表示,再比较数值的大小。
(2)比较化学反应速率与化学计量数的比值,即对于一般反应a A(g)+b B(g)===c C(g)+d D(g),比较v (A )a 与v (B )b ,若v (A )a >v (B )b ,则不同情况下,用A 表示的反应速率比用B 表示的大。
应用举例已知反应4CO +2NO 2=====催化剂N 2+4CO 2在不同条件下的化学反应速率如下: ①v (CO)=1.5 mol·L -1·min -1 ②v (NO 2)=0.7 mol·L -1·min -1 ③v (N 2)=0.4 mol·L -1·min -1 ④v (CO 2)=1.1 mol·L -1·min -1 ⑤v (NO 2)=0.01 mol·L -1·s -1请比较上述5种情况反应的快慢:________________(由大到小的顺序)。
工业合成氨的基本原理化学工业合成氨是指通过工业方法将氮气和氢气反应得到氨气的过程。
这个过程通常采用的是哈伯-博士过程,也被称为氨合成反应,是在高温高压条件下进行的。
以下将详细介绍工业合成氨的基本原理化学。
工业合成氨的基本原理化学是指通过以下两步反应实现氮气和氢气的转化。
第一步反应是氮气的活化,也称为氮气的固氮。
氮气是一种非常稳定的分子,需要足够的能量才能使其发生反应。
在工业合成氨过程中,一般会使用催化剂来提供活化氮气所需的能量。
常用的催化剂是铁或铁合金,如铁铝合金。
这种催化剂在高温高压下具有较高的活性,能够有效地将氮气分子活化。
活化氮气分子中的电子转移到催化剂上,使氮气分子发生断裂。
第二步反应是氮气和氢气的结合生成氨气。
在活化的氮气与氢气接触催化剂的表面时,它们发生氢化反应。
由于催化剂表面上的氢原子数量较多,氢气在催化剂表面上吸附并被活化。
吸附的氢气分子与活化的氮气分子发生反应,生成氨气。
这个反应是一个可逆反应,同时也是一个放热反应。
在工业合成氨过程中,为了获得较高的氨产率,一般会采用多级反应器和循环气体的方法。
在工业合成氨过程中,除了以上两个基本反应外,还存在一些辅助反应。
例如,氮气和氢气的直接反应是一个较为缓慢的过程,需要高温和高压才能使其反应速率达到一定的程度。
为了提高反应速率,一般会加入一些促进剂,如氨催化剂。
这些促进剂可以提高反应的速率和选择性。
此外,工业合成氨还涉及一系列的工艺。
例如,氮气和氢气的混合需要一定的比例和流动速率,以确保反应的稳定性和高效性。
同时,需要精确控制反应的温度和压力,以提供合适的条件促进反应的进行。
此外,反应产生的氨气还需要经过一系列的分离和纯化步骤,以得到纯度较高的氨气。
总结起来,工业合成氨的基本原理化学是通过催化剂活化氮气,然后与氢气进行反应生成氨气。
这个过程需要高温高压条件,并且还涉及一系列的工艺来保证反应的稳定性和高效性。
通过工业合成氨,可以大量生产氨气,满足农业肥料和化工原料等的需求。
第3节化学反应速率工业合成氨化学反应速率1.表示方法用单位时间内反应物浓度的减少或生成物浓度的增加来表示。
2.计算公式v=ΔcΔt;常用单位:mol·L-1·min-1,或写成mol/(L·min)形式。
3.与化学计量数的关系对于反应m A(g)+n B(g)===p C(g)+q D(g),在同一时间段内化学反应速率v(A)∶v(B)∶v(C)∶v(D)=m∶n∶p∶q。
4.影响因素(1)主要因素:反应物本身的性质。
(2)外因(其他条件不变,只改变一个条件)(3)理论解释——有效碰撞理论①活化分子、活化能、有效碰撞活化分子:能够发生有效碰撞的分子。
活化能(如图):图中E1为活化能,使用催化剂时的活化能为E3,反应热为E1-E2。
有效碰撞:活化分子之间能够引发化学反应的碰撞。
②活化分子、有效碰撞与反应速率的关系(1)不能用固体和纯液体(因其浓度视为常数)表示化学反应速率,改变其用量,反应速率不变。
(2)计算反应速率时,一般用浓度的变化量(取绝对值)来表示,其值为平均反应速率。
(3)压强对反应速率的影响是通过改变反应物总体积进而使浓度改变来实现的,若改变压强后,各气体的浓度不变,则反应速率不变。
(4)温度改变对任何反应的反应速率都有影响。
1.判断正误,正确的打“√”,错误的打“×”(1)对于任何化学反应来说,反应速率越大,反应现象就越明显。
()(2)(2018·高考江苏卷)在酶催化淀粉水解反应中,温度越高淀粉水解速率越快。
()(3)由v=ΔcΔt计算平均反应速率,用反应物表示为正值,用生成物表示为负值。
()(4)同一化学反应,相同条件下用不同物质表示的反应速率,其数值可能不同,但表示的意义相同。
()(5)根据反应速率的大小可以判断化学反应进行的快慢。
()(6)催化剂能降低反应所需的活化能,ΔH也会发生变化。
()(7)温度、催化剂能改变活化分子的百分数。