中考数学一轮综合复习同步讲义(第13课解直角三角形)
- 格式:docx
- 大小:466.99 KB
- 文档页数:8
浙江考情分析解直角三角形(一)典型考题考点一成比例线段与比例的基本性质若2a=3b=4c,且abc≠0,则a+b的值是( ) c-2bA.2 B.-2 C.3 D.-3变式:(2015·乐山)如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A,B,C 和D,E,F.已知AB=3,则DE的值为( )BC 2 DFA.32B.23C.25D.35考点二 相似多边形的性质如果两个相似多边形面积的比为 1∶5,则它们的相似比为()A .1∶25B .1∶5C .1∶2.5D .1∶ 5变式 1: 如图 1 所示的两个四边形相似,则∠α的度数是()A .87°B .60°C .75°D .120°图 1图 2变式 2:如图 2,四边形 ABCD 与四边形 A 1B 1C 1D 1 相似, AB =12,CD =15,A 1B 1=9,则边 C 1D 1 的长是() A .10B .12C.454考点三 相似三角形的性质与判定D. 365(·庆阳)如图,在△ABC 中,两条中线 BE ,CD相交于点 O ,则 S △DOE ∶S △COB =()A .1∶4B .2∶3C .1∶3D .1∶2变式 1: (2015·重庆)已知△ABC ∽△DEF ,若△ABC 与 △DEF 的相似比为 2∶3,则△ABC 与△DEF 对应边上的中 线的比为.变式2:(·南京)如图,△ABC 中,CD 是边AB 上的高,且CD2=AD·DB.(1)求证:△ACD∽△CBD;(2)求∠ACB 的大小.考点四相似图形的应用(·菏泽)如图,M,N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N 两点之间的直线距离,选择测量点A,B,C,点B,C 分别在AM,AN 上,现测得AM=1 千米、AN=1.8 千米、AB=54 米、BC=45 米、AC=30 米,求M,N 两点之间的直线距离.变式1:如图,在一场羽毛球比赛中,站在场内M 处的运动员林丹把球从N 点击到了对方内的B 点,已知网高OA =1.52 米,OB=4 米,OM=5 米,则林丹起跳后击球点N 离地面的距离NM=米.变式2:有一支夹子如图所示,AB=2BC,BD=2BE,在夹子前面有一个长方体硬物,厚PQ 为6 cm,如果想用夹子的尖端A,D 两点夹住P,Q 两点,那么手握的地方EC 至少要张开cm.随堂巩固1.(·安顺)如图,▱ABCD 中,点E 是边AD 的中点,EC交对角线BD 于点F,则EF∶FC 等于( )A.3∶2 B.3∶1C.1∶1 D.1∶2第1 题第2 题2.如图,等边三角形ABC 的边长为3,P 为BC 上一点,且BP=1,D 为AC 上一点,若∠APD=60°,则CD 的长为.3.如图,在方格纸中,△ABC 和△EPD 的顶点均在格点上,要使△ABC∽△EPD,则点P 所在的格点为( ) A.P1 B.P2 C.P3 D.P4第3 题第4 题4.(2015·南通)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC,交BC 于点E,AB=6,AD=5,则AE 的长为( )A.2.5 B.2.8 C.3 D.3.25.如图,在矩形ABCD 中,F 是DC 上的一点,AE 平分∠BAF 交BC 于点E,且DE⊥AF,垂足为点M,BE=3,AE=2 6,则MF 的长是( )A. 15B.1510C.1 D.1515第5 题第6 题6.(2015·金华外国语学校模拟)如图,已知矩形ABCD 中,AB=1,在BC 上取一点E,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=.7.(·绍兴鲁迅中学模拟)如图,四边形ABCD 中,AC ⊥BD 交BD 于点E,点F,M 分别是AB,BC 的中点,BN 平分∠ABE 交AM 于点N ,AB=AC=BD,连结MF,NF.(1)判断△BMN 的形状,并证明你的结论;(2)判断△MFN 与△BDC 之间的关系,并说明理由.8.(·安徽)如图①,在四边形ABCD 中,点E,F 分别是AB ,CD 的中点.过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G,连结GA,GB,GC,GD,EF.若∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;AD(3)如图②,若AD,BC 所在的直线互相垂直,求的值.EF。
解直角三角形教案【课标要求】1.掌握直角三角形的判定、性质.2.能用面积法求直角三角形斜边上的高.3.掌握勾股定理及其逆定理,能用勾股定理解决简单的实际问题.4.理解锐角三角函数定义(正弦、余弦、正切、余切),知道四个三角函数间的关系.5.能根据已知条件求锐角三角函数值.6.掌握并能灵活使用特殊角的三角函数值.7.能用三角函数、勾股定理解决直角三角形中的边与角的问题.8.能用三角函数、勾股定理解决直角三角形有关的实际问题.【课时分布】解直角三角形部分在第一轮复习时大约需要5课时,其中包括单元测试,下表为课时安排解直角三角形的应用【12.基础知识直角三角形的特征⑴直角三角形两个锐角互余;⑵直角三角形斜边上的中线等于斜边的一半;⑶直角三角形中30°所对的直角边等于斜边的一半;在Rt △ABC 中,若∠C =90°,则a 2+b 2=c 2;则这个三角形是直角三角形,即:在△ABC 中,若a 2+b 2=c 2⑹射影定理:AC 2=AD AB ,BC 2=BD AB ,CD 2=DA DB .锐角三角函数的定义: 如图,在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a,b,c ,则sinA =a c ,cosA =b c ,tanA =a b ,cotA =ba1 解直角三角形(Rt △ABC ,∠C =90°)⑴三边之间的关系:a 2+b 2=c 2.⑵两锐角之间的关系:∠A +∠B =90°.. ⑶边角之间的关系:sinA =A a c ∠的对边=斜边,cosA = A bc ∠的邻边=斜边.tanA =A a A b ∠∠的对边=的邻边,cotA = A bA a∠∠的邻边=的对边.⑷解直角三角形中常见类型:①已知一边一锐角. ②已知两边.③解直角三角形的应用. 2.能力要求例1 在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB 于点D ,求∠BCD 的四个三角函数值.【分析】求∠BCD 的四个三角函数值,关键要弄清其定义,由于∠BCD 是在Rt △BCD 中的一个内角,根据定义,仅一边BC 是已知的,此时有两条路可走,一是设法求出BD 和CD ,二是把∠BCD 转化成∠A ,显然走第二条路较方便,因为在Rt △ABC 中,三边均可得出,利用三角函数定义即可求出答案.【解】 在Rt △ABC 中,∵ ∠ACB =90°∴∠BCD +∠ACD =90°,∵CD ⊥AB ,∴∠ACD +∠A =90°,∴∠BCD =∠A . 在Rt △ABC 中,由勾股定理得,AB10,∴sin ∠BCD =sinA =BC AB =45 ,cos ∠BCD =cosA =AC AB =35 ,tan ∠BCD =tanA =BC AC =43 ,cot ∠BCD =cotA =AC BC =34.【说明】本题主要是要学生了解三角函数定义,把握其本质,教师应强调转化的思想,即本题中角的转换.(或可利用射影定理,求出BD 、DC ,从而利用三角函数定义直接求出)例2 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪离AB 为1.5米,求拉线CE 的长.(结果保留根号)【分析】求CE 的长,此时就要借助于另一个直角三角形,故过点A 作AG ⊥CD ,垂足为G ,在Rt △ACG 中,可求出CG ,从而求得CD ,在Rt △CED 中,即可求出CE 的长. 【解】 过点A 作AG ⊥CD ,垂足为点G ,在Rt △ACG 中,∵∠CAG =30°,BD =6,∴tan 30°=CG AG ,∴CG =6×33 =2 3∴CD =2 3 +1.5,在Rt △CED 中,sin 60°=CDEC,∴EC =CD sin60°=4+ 3 .答:拉线CE 的长为4+ 3 米.【说明】在直角三角形的实际应用中,利用两个直角三角形的公共边或边长之间的关系,往往是解决这类问题的关键.老师在复习过程中应加以引导和总结.例3 如图,某县为了加固长90米,高5米,坝顶宽为4米的迎水坡和背水坡,它们是坡度均为1∶0.5,橫断面是梯形的防洪大坝,现要使大坝顺势加高1米,求⑴坡角的度数;⑵完成该大坝的加固工作需要多少立方米的土?【分析】大坝需要的土方=橫断面面积×坝长;所以问题就转化为求梯形ADNM 的面积,在此问题中,主要抓住坡度不变,即MA 与AB 的坡度均为1∶0.5. 【解】 ⑴∵i =tanB ,即tanB =10.5=2,∴∠B =63.43⑵过点M 、N 分别作ME ⊥AD ,NF ⊥AD , 垂足分别为E 、F . 由题意可知:ME =NF =5,∴ME AE =10.5, ∴AE=DF =2.5,∵AD =4, ∴MN =EF =1.5,∴S 梯形ADNM =12(1.5+4)×1=2.75.∴需要土方为2.75×90=247.5 (m 3) .【说明】本题的关键在于抓住前后坡比不变来解决问题,坡度=垂直高度水平距离 =坡角的正切值,虽然2007年中考时计算器不能带进考场,但学生应会使用计算器,所以建议老师还是要复习一下计算器的使用方法.例4 某风景区的湖心岛有一凉亭A ,其正东方向有一棵大树B ,小明想测量A 、B 之间的距离,他从湖边的C 处测得A 在北偏西45°方向上,测得B 在北偏东32°方向上,且量得B 、C 间距离为100米,根据上述测量结果,请你帮小明计算A 、B 之间的距离.(结果精确到1米,参考数据:sin 32°≈0.5299,cos 32°≈0.8480,tan s 32°≈0.6249,cot 32°≈1.600) 【分析】本题涉及到方位角的问题,要解出AB 的长,只要去解Rt △ADC 和Rt △BDC 即可.【解】过点C 作CD ⊥AB ,垂足为D . 由题知:∠α=45°,∠β=32°.在Rt △BDC 中,sin 32°=BDBC,∴BD =100sin 32°≈52.99cos32°=CDBC,∴CD =100 cos 32°≈84.80.在Rt △ADC 中,∵∠ACD =45°,∴AD =DC =84.80. ∴AB =AD +BD ≈138米.答:AB 间距离约为138米.【说明】本题中涉及到方位角的问题,引导学生画图是本题的难点,找到两个直角三角形的公共边是解题的关键,教师在复习中应及时进行归纳、总结由两个直角三角形构成的各种情形. 例5 在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P 处,并以20千米/ 时的速度向西偏北25°的PQ 的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 千米;又台风中心移动t 小时时,受台风侵袭的圆形区域半径增大到 千米.(2)当台风中心移动到与城市O 距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参1.41 1.73≈). 【分析】⑴由题意易知. ⑵先要计算出OH 和PH 的长,即可求得台风中心移动时间,而后求出台风侵袭的圆形区域半径,此圆半径与OH 比较即可.【解】⑴100; (6010)t +.⑵作OH ⊥PQ 于点H ,可算得141OH =≈(千米),设经过t 小时时,台风中心从P 移动到H ,则20PH t ==得t =,此时,受台风侵袭地区的圆的半径为:6010130.5+⨯(千米)<141(千米).B∴城市O 不会受到侵袭.【说明】本题是在新的情境下涉及到方位角的解直角三角形问题,对于此类问题常常要构造直角三角形,利用三角函数知识来解决.例6 如图所示:如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60° ,沿山坡向上走到P 处再测得点C 的仰角为45° ,已知OA =100米,山坡坡度为 12 ,(即tan ∠PAB = 12)且O 、A 、B 在同一条直线上。
2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。
若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。
2023年中考数学一轮复习考点过关解直角三角形的应用1. 3月份,长江重庆段开始进入枯水期,有些航道狭窄的水域通航压力开始慢慢增加.为及时掌握辖区通航环境实时情况,严防船舶搁浅、触礁等险情事故发生,沿江海事执法人员持续开展巡航检查,确保近七百公里的长江干线通航安全.如图,巡航船在一段自西向东的航道上的A处发现,航标B在A处的北偏东45°方向200米处,以航标B为圆心,150米长为半径的圆形区域内有浅滩,会使过往船舶有危险.(1)由于水位下降,巡航船还发现在A处北偏西15°方向300米的C处,露出一片礁石,求B、C两地的距离;(精确到1米)(2)为保证航道畅通,航道维护项目部会组织挖泥船对该条航道被浅滩影响的航段进行保航施工.请判断该条航道是否被这片浅滩区域影响?如果有被影响,请求出被影响的航道长度为多少米?如果≈)2 1.4147 2.6462. 如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.3. 为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:23)4. 如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西60︒的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.(1)求观测站A、B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西15︒的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C 处,请问补给船能否在83分钟之内到达C3 1.73≈)5. 为做好疫情防控工作,确保师生生命安全,学校每日都在学生进校前进行体温检测.某学校大门AB高6.5米,学生DF身高1.5米,当学生准备进入体温检测有效识别区域时,在点D处测得摄像头A的仰角为30︒,当学生刚好离开体温检测有效识别区域CD段时,在点C处测得摄像头A的仰角为60︒,求体温检测有效识别区域CD 段的长(结果保留根号)6. 数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin340.56︒≈,cos340.83︒=,tan340.67︒≈3 1.73)7. 如图1,和平大桥是徐州市地标建筑,也是国内跨铁路最多的大桥,某数学小组的同学利用课余时间对该桥进行了实地测量,如图2所示的测量示意图,测得如下数据;∠A =27°,∠B =31°,斜拉主跨度AB =368米.(1)过点C 作CD ⊥AB ,垂足为D ,求CD 的长(结果精确到0.1);(2)若主塔斜拉链条上的LED 节能灯带每米造价90元,求斜拉链条AC 上灯带的总造价是多少元?(参考数据tan27°≈0.5,sin27°≈0.45,cos27°≈0.9:tan31°≈0.6)8. 为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速,如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的中点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ的长(结果保留根号);(2)当下引桥坡度1:23i AB的长(结果保留根号).9. 某购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡AD与地平线的夹角为18°,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米.(1)应在地面上距点B多远的A处开始斜坡施工?(精确到0.1米)(2)如果给该购物广场送货的货车高度为2.5米,那么按这样的设计能否保证货车顺利进入地下停车场?请说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)10. 如图,某城市的一座古塔CD 坐落在湖边,数学老师带领学生隔湖测量古塔CD 的高度,在点A 处测得塔尖点D 的仰角∠DAC 为31°,沿射线AC 方向前进35米到达湖边点B 处,测得塔尖点D 在湖中的倒影E 的俯角∠CBE 为45°,根据测得的数据,计算这座灯塔的高度CD (结果精确到0.1).参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60.(结果精确到0.1)11. 如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长AB =17cm ,支撑板长CD =16cm ,底座长DE =14cm ,托板AB 联结在支撑板顶端点C 处,且CB =7cm ,托板AB 可绕点C 转动,支撑板CD 可绕D 点转动.如图2,若70,60DCB CDE ∠=︒∠=︒,求点A 到直线DE 的距离(精确到0.1cm )(参考数值sin 400.64,cos400.77,tan 403 1.73︒︒︒≈≈≈)12. 图①是某车站的一组智能通道闸机,图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角∠ABC =∠DEF =20°,半径BA =ED =60cm ,点A 与点D 在同一水平线上,且它们之间的距离为10cm .求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).13. 如图,1号楼在2号楼的南侧,两楼高度均为90,m 楼间距为AB .冬至日正午,太阳光线与水平面所成的角为32.3︒.1号楼在2号楼墙面上的影高为CA ,春分日正午,太阳光线与水平面所成的角为55.7︒,1号楼在2号楼墙面上的影高为DA .已知42CD m =.(1)求楼间距AB ;(2)若2号楼共30层,层高均为3,m 则点C 位于第几层? ( 参考数据:32.30.53,sin ︒≈32.30.85cos ︒≈,32.30.6355.70.83tan sin ︒≈︒≈,,55.70.5655.7 1.47cos tan ︒≈︒≈,)14. 如图,小明站在江边某瞭望台DE 的顶端D 处,测得江面上的渔船A 的俯角为40°.若瞭望台DE 垂直于江面,它的高度为3米,CE =2米,CE 平行于江面AB ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE 的顶端D 到江面AB 的距离;(2)求渔船A 到迎水坡BC 的底端B 的距离.(结果保留一位小数)15. 如图,小锋将一-架4米长的梯子AB 斜靠在竖直的墙AC 上,使梯子与地面所成的锐角α为60°.(1)求梯子的顶端与地面的距离AC (结果保留根号)(2)为使梯子顶端靠墙的高度更高,小锋调整了梯子的位置使其与地面所成的锐角α为70°,则需将梯子底端点B 向内移动多少米(结果精确到0.1米)?参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈.。
专题18 解直角三角形1.理解正弦、余弦、正切的概念,并能运用.2.掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;3.理解直角三角形的概念,灵活运用直角三角形中边与角的关系和勾股定理解直角三角形,提高把实际问题转化为解直角三角形问题的能力;一、直角三角形的性质1、直角三角形的两个锐角互余 可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
可表示如下:3、直角三角形斜边上的中线等于斜边的一半可表示如下:4、勾股定理 直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、射影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项6、常用关系式由三角形面积公式可得: AB •CD=AC •BC二、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
三、锐角三角函数的概念 1、如图,在∠ABC 中,∠C=90°∠锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即casin =∠=斜边的对边A A∠锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即cbcos =∠=斜边的邻边A A∠锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即b atan =∠∠=的邻边的对边A A A∠锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值 三角函数 0° 30°45°60° 90° sinα21 22 23 1cosα 123 22 21 0tanα 0 33 13 不存在cotα 不存在31 33 04、各锐角三角函数之间的关系 (1)互余关系sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系1cos sin 22=+A A(3)倒数关系 tanA •tan(90°—A)=1 (4)弦切关系 tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大) 四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
2024中考数学一轮复习核心知识点精讲—直角三角形1.了解直角三角形的概念;2.证明并掌握直角三角形的性质定理:直角三角形的两个锐角互余(无需证明);直角三角形斜边上的中线等于斜边的一半;3.掌握直角三角形的判定定理:有两个角互余的三角形是直角三角形;4.掌握勾股定理;会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形;5.掌握直角三角形全等的判定定理:斜边和一组直角边对应相等的两个直角三角形全等;考点1:直角三角形的性质与判定直角三角形性质1.两锐角之和等于90°2.斜边上的中线等于斜边的一半3.30°角所对的直角边等于斜边的一半1.若有一条直角边等于斜边的一半,则这条直角边所对的锐角等于30°(应用时需先证明)2.勾股定理:若直角三角形的两直角边分别为a,b,斜边为c,则cba222=+判定1.有一个角为90°的三角形时直角三角形2.有两个角的和时90°的三角形是直角三角形1.一边上的中线等于这条边的一半的三角形是直角三角形考点2:勾股定理及逆定理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方如图:直角三角形ABC 的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.(2)勾股定理的逆定理:如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形.(3)勾股数:像15,8,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数。
勾股数满足两个条件:①满足勾股定理②三个正整数【题型1:直角三角形的性质与判定】【典例1】(2022•绍兴)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,∠C =30°,AC ∥EF ,则∠1=() 2.勾股定理的逆定理:如果三角形的三边长分别为a,b,c 若满足,那么这个三角形为直角三角形。
c b a 222=+面积公式,其中a 是底边常,hs 是底边上的高ch S 21ab 21==A.30°B.45°C.60°D.75°【答案】C【解答】解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.1.(2022•岳阳)如图,已知l∥AB,CD⊥l于点D,若∠C=40°,则∠1的度数是()A.30°B.40°C.50°D.60°【答案】C【解答】解:在Rt△CDE中,∠CDE=90°,∠DCE=40°,则∠CED=90°﹣40°=50°,∵l∥AB,∴∠1=∠CED=50°,故选:C.2.(2023•贵州)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是()A.4m B.6m C.10m D.12m【答案】B【解答】解:如图,作AD⊥BC于点D,在△ABC中,∠BAC=120°,AB=AC,∴∠B=∠C=(180°﹣∠BAC)=30°,又∵AD⊥BC,∴AD=AB=12=6(m),故选:B【题型2:勾股定理及逆定理】【典例2】(2023•恩施州)《九章算术》被称为人类科学史上应用数学的“算经之首”.书中记载:“今有户不知高、广,竿不知长短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?”译文:今有门,不知其高宽;有竿,不知其长短,横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少(如图)?答:门高、宽和对角线的长分别是8,6,10尺.【答案】8,6,10.【解答】解:设门对角线的长为x尺,则门高为(x﹣2)尺,门宽为(x﹣4)尺,根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:8,6,10.1.(2023•天津)如图,在△ABC中,分别以点A和点C为圆心,大于的长为半径作弧(弧所在圆的半径都相等),两弧相交于M,N两点,直线MN分别与边BC,AC相交于点D,E,连接AD.若BD=DC,AE=4,AD=5,则AB的长为()A.9B.8C.7D.6【答案】D【解答】解:由题意得:MN是AC的垂直平分线,∴AC=2AE=8,DA=DC,∴∠DAC=∠C,∵BD=CD,∴BD=AD,∴∠B=∠BAD,∵∠B+∠BAD+∠C+∠DAC=180°,∴2∠BAD+2∠DAC=180°,∴∠BAD+∠DAC=90°,∴∠BAC=90°,在Rt△ABC中,BC=BD+CD=2AD=10,∴AB===6,故选:D.2.(2023•东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为50km.【答案】50.【解答】解:如图:由题意得:∠DAB=60°,∠FBC=30°,AD∥EF,∴∠DAB=∠ABE=60°,∴∠ABC=180°﹣∠ABE﹣∠FBC=90°,在Rt△ABC中,AB=30km,BC=40km,AC===50(km),∴A,C两港之间的距离为50km,故答案为:503.(2023•安徽)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=1.【答案】1.【解答】解:∵BD=(BC+),AB=7,BC=6,AC=5,∴BD=(6+)=5,∴CD=BC﹣BD=6﹣5=1,故答案为:1.4.(2023•广安)如图,圆柱形玻璃杯的杯高为9cm,底面周长为16cm,在杯内壁离杯底4cm的点A处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所走的最短路程为10cm.(杯壁厚度不计)【答案】10.【解答】解:如图:将杯子侧面展开,作B关于EF的对称点B′,连接B′A,则B′A即为最短距离,B′A===10(cm).故答案为:10.【题型3:勾股定理与弦图、拼图】【典例3】(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有3个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=m2;②b与c的关系为b=c,a与d的关系为a+d=m.【答案】见试题解答内容【解答】解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)①三个图形中面积关系满足S1+S2=S3的有3个;故答案为3;②结论:S1+S2=S3.∵S1+S2=()2+()2+S3﹣()2,∴S1+S2=π(a2+b2﹣c2)+S3,∴a2+b2=c2.∴S1+S2=S3.(3)①a2+b2+c2+d2=m2;②b与c的关系为b=c,a与d的关系为a+d=m.故答案为:m2;b=c,a+d=m.1.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tanα=()A.2B.C.D.【答案】A【解答】解:由已知可得,大正方形的面积为1×4+1=5,设直角三角形的长直角边为a,短直角边为b,则a2+b2=5,a﹣b=1,解得a=2,b=1或a=1,b=﹣2(不合题意,舍去),∴tanα===2,故选:A.2.(2022•永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是25,小正方形的面积是1,则AE=3.【答案】3.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,∴(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),∴x﹣1=3,故答案为:3.一.选择题(共7小题)1.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°【答案】C【解答】解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:C.2.如图,在△ABC中,∠ACB=90°,点D在AB上,沿CD折叠,使A点落在BC边上的E点,若∠B=2 6°,则∠CDE的度数为()A.52°B.71°C.72°D.81°【答案】B【解答】解:∵∠ACB=90°,∠B=26°,∴∠A=90°﹣26°=64°,根据折叠,∠CDE=∠ADC,∠ACD=∠BCD=45°,∴∠ADC=180°﹣45°﹣64°=71°,∴∠CDE=∠ADC=71°,故选:B.3.如图,在△ABC中,∠C=90°,∠A=15°,点D是AC上一点,连接BD,∠DBC=60°,BC=2,则A D长是()A.4B.5C.6D.8【答案】A【解答】解:∵∠C=90°,∠DBC=60°,∴∠BDC=90°﹣∠DBC=30°,∴BD=2BC=4,∵∠A=15°,∴∠ABD=∠BDC﹣∠A=15°,∴∠A=∠ABD=15°,∴AD=BD=4,故选:A.4.以2,3为直角边的直角三角形斜边长为()A.B.C.4D.5【答案】B【解答】解:以2,3为直角边的直角三角形斜边长==,故选:B.5.下列各组数据是勾股数的是()A.,,B.4,5,6C.0.3,0.4,0.5D.9,40,41【答案】D【解答】解:A、()2+()2≠()2,不能构成直角三角形,故不符合题意;B、42+52≠62,不能构成直角三角形,故不符合题意;C、0.32+0.42=0.52,能构成直角三角形,但不是整数,故不符合题意;D、92+402=412,能构成直角三角形,且9,40,41是正整数,故符合题意.故选:D.6.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠C C.BD=DB D.AB=CD【答案】A【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,A.AD=CB,BD=DB,符合两直角三角形全等的判定定理HL,能推出Rt△ABD和Rt△CDB全等,故本选项符合题意;B.∠A=∠C,∠ABD=∠CDB,BD=DB,符合两直角三角形全等的判定定理AAS,不是两直角三角形全等的判定定理HL,故本选项不符合题意;C.∠ABD=∠CDB,BD=DB,不符合两直角三角形全等的判定定理,不能推出Rt△ABD和Rt△CDB 全等,故本选项不符合题意;D.AB=CD,∠ABD=∠CDB,BD=DB,符合两直角三角形全等的判定定理SAS,不是两直角三角形全等的判定定理HL,故本选项不符合题意;故选:A.7.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=()A.28°B.59°C.60°D.62°【答案】B【解答】解:在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,且AE=AE,∴△CAE≌△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∴∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.二.填空题(共6小题)8.如图,在△ABC中,∠ACB=90°,∠A=40°,D为线段AB的中点,则∠BCD=50°.【答案】50.【解答】解:∵在△ABC中,∠ACB=90°,∠A=40°,∴∠B=50°.∵D为线段AB的中点,∴CD=BD,∴∠BCD=∠B=50°.故答案为:50.9.我国古代数学著作《九章算术》记载了这样一个有趣的问题:“有一个水池,水面是边长为10尺的正方形,在水池中央有一根新生的芦苇,它高出水面1尺,如果将这根芦苇垂直拉向岸边,它的顶端刚好达到岸边的水面”,则水池的深度为12尺.【答案】见试题解答内容【解答】解:设水池的深度为x尺,由题意得:x2+(10÷2)2=(x+1)2,解得:x=12,答:水的深度是12尺.故答案为:12.10.如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D=40°.【答案】见试题解答内容【解答】解:∵∠FCD=75°,∴∠A+∠B=75°,∵∠A:∠B=1:2,∴∠A=×75°=25°,∵DE⊥AB于E,∴∠AFE=90°﹣∠A=90°﹣25°=65°,∴∠CFD=∠AFE=65°,∵∠FCD=75°,∴∠D=180°﹣∠CFD﹣∠FCD=180°﹣65°﹣75°=40°.故答案为:40°11.如图,在一个三角形的纸片(△ABC)中,∠C=90°,则图中∠1+∠2的度数为270°.【答案】270.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°,故答案为:270.12.如图,在Rt△ACB中,∠ACB=90°,以AC为边向外作正方形ADEC,若图中阴影部分的面积为9cm2,BC=4cm,则AB=5cm.【答案】5.【解答】解:∵正方形ADEC的面积为9,∴AC2=9,在Rt△ABC中,由勾股定理得,AB===5(cm),故答案为:5.13.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若BD=1,BC=3,则AC的长为5.【答案】5.【解答】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵BD=1,BC=3,∴CE=3,∴AE=BE=2,∴AC=AE+EC=2+3=5.故答案为:5.三.解答题(共4小题)14.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,且DE=DF.求证:Rt △BDE≌Rt△CDF.【答案】见解析.【解答】证明:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵D是BC的中点,∴BD=CD,在Rt△BDE与Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL).15.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC 是直角三角形.(2)请求图中阴影部分的面积.【答案】见试题解答内容【解答】(1)证明:∵在Rt △ADC 中,∠ADC =90°,AD =8,CD =6,∴AC 2=AD 2+CD 2=82+62=100,∴AC =10(取正值).在△ABC 中,∵AC 2+BC 2=102+242=676,AB 2=262=676,∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形;(2)解:S 阴影=S Rt △ABC ﹣S Rt △ACD =×10×24﹣×8×6=96.16.如图1,荡秋千是中国古代北方少数民族创造的一种运动.有一天,小明在公园里游玩,如图2,他发现秋千静止时,踏板离地的垂直高度DE =1m ,将它往前推送6m (水平距离BC =6m )时,秋千的踏板离地的垂直高度BF =CE =3m ,秋千的绳索始终拉得很直,求绳索AD 的长度?【答案】10m .【解答】解:由题意得:∠ACB=90°,在Rt△ACB中,由勾股定理得:AC2+BC2=AB2,设绳索AD的长度为x m,则AC=(x﹣2)m,∴x2=62+(x﹣2)2,解得:x=10,答:绳索AD的长度是10m.17.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【答案】见试题解答内容【解答】解:(1)根据勾股定理:梯子距离地面的高度为:=24(米);(2)梯子下滑了4米,即梯子距离地面的高度为A'B=AB﹣AA′=24﹣4=20(米),根据勾股定理得:25=,解得CC′=8.即梯子的底端在水平方向滑动了8米.一.选择题(共5小题)1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=20°,则∠CBD=()A.5°B.10°C.15°D.20°【答案】D【解答】解:由折叠得∠ABD=∠A'BD,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠A'BC=20°,∴∠ABA'=80°,∴∠ABD=∠A'BD=40°,∴∠CBD=∠A'BD﹣∠A'BC=20°,故选:D.2.如图,Rt△ABC中,∠C=90°,∠ABC=60°,以顶点B为圆心、适当长为半径作弧,在边BC、BA上截取BE、BD;然后分别以点D、E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若AC=6,P为边AB上一动点,则GP的最小值为()A.3B.2C.1D.无法确定【答案】B【解答】解:由尺规作图步骤可得,BG平分∠ABC,∵∠C=90°,∠ABC=60°,∴∠CBG=∠ABG=30°,∠A=30°,∴AB=2BC,而AC=6,∴(2BC)2﹣BC2=62,解得:BC2=12,同理可得:BG=2GC,∴(2GC)2﹣GC2=BC2=12,∴GC=2,当GP⊥AB时,GP最短,此时根据角平分线的性质可得GP=GC=2,故选:B.3.如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P在斜边AB所在的直线m上运动,连接PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个【答案】C【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.4.如图,线段OP=1,过点P作PP1⊥OP且PP1=1,连结OP1;过点P1作P1P2⊥OP1且P1P2=1,连结OP2;过点P2作P2P3⊥OP2且P2P3=1,连结OP3,则OP3的长为()A.1B.C.D.2【答案】D【解答】解:由勾股定理得:=OP2+=2,=+=3,OP3==2.故选:D.5.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.二.填空题(共3小题)6.如图,在△ABC,∠ACB=90°,分别以三边为直径向上作三个半圆.若AB=5,AC=4,则阴影部分图形的面积为6.【答案】6.【解答】解:∵∠ACB=90°,AB=5,AC=4,∴BC2+AC2=AB2,BC===3,=BC•AC=×3×4=6,∴S△ABC设以BC为直径的半圆的面积为S1,以AB为直径的半圆的面积为S3,以AC为直径的半圆的面积为S2,∵S1=π•(BC)2=BC2,S2=π•(AC)2=AC2,S3=π•(AB)2=AB2,=S2+S1+S△ABC﹣S3=(BC2+AC2﹣AB2)+S△ABC=S△ABC=6,∴S阴影故答案为:6.7.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=12米,AB=8米,该木块的较长边与AD平行,横截面是边长为1米的正方形,一只蚂蚁从点A爬过木块到达C处需要走的最短路程是2米.【答案】见试题解答内容【解答】解:把立体图形展开为平面图形得:展开后AB方向上线段长度变长,长度为AB+1+1=8+2=1 0米,BC=AD=12米,AB⊥BC,∴AC==2(米),故答案为:2.8.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为32cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.三.解答题(共4小题)9.如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?【答案】(1);(2)或t=1.【解答】解:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.∵4÷2=2,∴0≤t≤2,BP=4﹣2t,BQ=t.(1)当BP=BQ时,△PBQ为等边三角形.即4﹣2t=t.∴.当时,△PBQ为等边三角形;(2)若△PBQ为直角三角形,①当∠BQP=90°时,BP=2BQ,即4﹣2t=2t,∴t=1.②当∠BPQ=90°时,BQ=2BP,即t=2(4﹣2t),∴.即当或t=1时,△PBQ为直角三角形.10.如图,等腰直角三角板如图放置.直角顶点B在直线CD上,分别过点A、E作AC⊥直线CD于点C,ED⊥直线CD于点D.(1)求证:CD=AC+ED.(2)若设△ABC三边长分别为a、b、c,利用此图证明勾股定理.【答案】(1)见解析;(2)见解析.【解答】证明:(1)∵∠ABC+∠EBD=90°,∠ABC+∠BAC=90°,∴∠BAC=∠EBD,∵△ABE是等腰直角三角形,∴AB=BE,在△ABC与△BED中,,∴△ABC≌△BED(AAS),∴BC=DE,BD=AC,∴CD=BC+BD=AC+ED;(2)由(1)知,DE=BC=a,BD=AC=b,=,∴S梯形ACDE=S△ABC+S△ABE+S△BDE又∵S梯形ACDE=ab++=ab+,∴,∴a2+b2=c2.11.如图,铁路上A,B两点相距25km,C,D为两庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,C B=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等.问:(1)在离A站多少km处?(2)判定三角形DEC的形状.【答案】见试题解答内容【解答】解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km;(2)△DEC是直角三角形,理由如下:∵△DAE≌△EBC,∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即△DEC是直角三角形.12.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.1.(2023•株洲)一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、B对应的刻度为1、7,则CD=()A.3.5cm B.3cm C.4.5cm D.6cm【答案】B【解答】解:由图可得,∠ACB=90°,AB=7﹣1=6(cm),点D为线段AB的中点,∴CD=AB=3cm,故选:B.2.(2022•永州)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC的长为()A.B.2C.2D.4【答案】C【解答】解:在Rt△ABC中,∠ABC=90°,点D为边AC的中点,BD=2,∴AC=2BD=4,∵∠C=60°,∴∠A=30°,∴BC=AC=2,故选:C.3.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【答案】B【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.4.(2022•陕西)如图,是一个棱长为1的正方体纸盒.若一只蚂蚁要沿着正方体纸盒的表面,从顶点A爬到顶点B去觅食,则需要爬行的最短路程是()A.B.2C.D.3【答案】C【解答】解:需要爬行的最短路程即为线段AB的长,如图:∵正方体棱长为1,∴BC=1,AC=2,∴AB===,∴需要爬行的最短路程为;故选:C.5.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交AC 于点E,则∠EBC=10°.【答案】10°.【解答】解:∵∠C=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠EBA=∠A=40°,∴∠EBC=∠ABC﹣∠EBA=50°﹣40°=10°,故答案为:10°.6.(2023•郴州)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB的中点,求CM=5.【答案】5.【解答】解:连接CM,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB=,∵点M是AB的中点,∴CM=AB=5.故答案为:5.7.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A 为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【答案】+1.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB===,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=,∴OC=AC+OA=+1,∵交x轴正半轴于点C,∴点C的坐标为(+1,0).故答案为:+1.8.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC的角平分线,则AD=5.【答案】5.【解答】解:如图,过点D作DE⊥AB于点E,∵∠C=90°,∴CD⊥BC,∵BD是∠ABC的角平分线,CD⊥BC,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BC=BE=6,在Rt△ABC中,==10,∴AE=AB﹣BE=10﹣6=4,设CD=DE=x,则AD=AC﹣CD=8﹣x,在Rt△ADE中,AE2+DE2=AD2,∴42+x2=(8﹣x)2,解得:x=3,∴AD=8﹣x=5.故答案为:5.9.(2023•扬州)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a、b,斜边长为c,若b﹣a=4,c=20,则每个直角三角形的面积为96.【答案】96.【解答】解:由图可得,a2+b2=c2,∴且a、b均大于0,解得,∴每个直角三角形的面积为ab=×12×16=96,故答案为:96.10.(2021•杭州)如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC =60°,∠C=45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.【答案】(1)证明见解答过程;(2).【解答】(1)证明:∵BD平分∠ABC,∠ABC=60°,∴∠DBC=∠ABC=30°,∵∠C=45°,∴∠ADB=∠DBC+∠C=75°,∠BAC=180°﹣∠ABC﹣∠C=75°,∴∠BAC=∠ADB,∴AB=BD;(2)解:在Rt△ABE中,∠ABC=60°,AE=3,∴BE==,在Rt△AEC中,∠C=45°,AE=3,∴EC==3,∴BC=3+,=BC×AE=.∴S△ABC。
第13课 解直角三角形=========⎪⎪⎩⎪⎪⎨⎧<<⎪⎪⎩⎪⎪⎨⎧<<=∠=∠=∠000000000000060tan ;45tan ;30tan 60cos ;45cos ;30cos 60sin ;45sin ;30sin :)900()900(tan ,cos ,sin 特殊三角函数值平方关系:正切:余弦:正弦::取值范围越大,正切值正切:越大,余弦值余弦:越大,正弦值正弦::增减性αααααA A A中考真题练习1.在Rt △ABC 中,∠C=900,若sinA=513,则cosA 的值为( ) A.512B.813C.23D.12132.式子2000)160(tan 45tan 30cos 2---的值是( ) A.232-B.0C.32D.23.在△ABC 中,若0)21(cos 21sin 2=-+-B A ,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 4.如图,在△ABC 中,∠C=900,AB=5,BC=3,则sinA 的值是( ) A.34B.43C.35 D.455.如图,在直角坐标系中,P 是第一象限内的点,其坐标是(3,m ),且OP 与x 轴正半轴的夹角α的正切值是43,则sin α的值是( ) A.45 B.54 C.35 D.536.如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A.23B.32C.21313 D.31313第6题图 第7题图 第8题图7.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为a,那么滑梯长l 为( )A.h sinaB.h tanaC.h cosaD.h ·sina 8.如图,在□ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC=a ,BD=b ,则□ABCD 的面积是( ) A.αsin 21ab B.αsin ab C.αcos ab D.αcos 21ab9.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC=10.如图,某山坡的坡面AB=200米,坡角∠BAC=300,则该山坡的高BC 的长为 米.第10题图 第11题图 第12题图11.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成750角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为300,则小山东西两侧A 、B 两点间的距离为 米.12.如图,在高度是21米的小山A 处测得建筑物CD 顶部C 处的仰角为300,底部D 处的俯角为何450,则这个建筑物的高度CD= 米(结果可保留根号)13.如图,在Rt △ABC 中,∠ACB=900,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E,BC=6,sinA=35,则DE= .第13题图 第14题图14.如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,BE 是⊙A 上的一条弦.则tan ∠OBE=________.16.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为600,在教学楼三楼D处测得旗杆顶部的仰角为300,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.第16题图第17题图第18题图17.如图,某小岛受到了污染,污染范围可以大致看成是以点O为圆心,AD长为直径的圆形区域,为了测量受污染的圆形区域的直径,在对应⊙O的切线BD(点D为切点)上选择相距300米的B、C两点,分别测得∠ABD=300,∠ACD=600,则直径AD= 米.18.如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC,若BD=8,AC=6,∠BOC=1200,则四边形ABCD的面积为.(结果保留根号)19.如图,是一张宽m的矩形台球桌ABCD,一球从点M(点M在长边CD上)出发沿虚线MN射向边BC,然后反弹到边AB上的P点.如果MC n=,CMNα∠=.那么P点与B点的距离为 .第19题图第20题图20.如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.21.已知α是锐角,且sin(α+150)=32.计算1184cos( 3.14)tan3απα-⎛⎫---++ ⎪⎝⎭的值.22.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=450,sinB=13,AD=1.(1)求BC的长;(2)求tan∠DAE的值.23.如图,在一次数学课外活动中,小明同学在点P 处测得教学楼A 位于北偏东60°方向,办公楼B 位于南偏东45°方向.小明沿正东方向前进60米到达C 处,此时测得教学楼A 恰好位于正北方向,办公楼B 正好位于正南方向.求教学楼A 与办公楼B 之间的距离.24.中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=300,∠CBD=600. (1)求AB 的长; (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.25.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为600.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为450,已知山坡AB 的坡度3:1=i ,AB=10米,AE=15米.(3:1=i 是指坡面的铅直高度BH与水平宽度AH 的比) (1)求点B距水平面AE的高度BH ;(2)求广告牌CD的高度.26.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.27.如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为530,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米?28.如图,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,23 DB DCDP DO==.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的值.29.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成300角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离.30.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为120,支架AC长为0.8m,∠ACD为800,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin120=cos780≈0.21,sin680=cos220≈0.93,tan680≈2.48)31.解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(1)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A/C/的位置时,A/C/的长为m;(2)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=540,沿河岸MQ前行,在观景平台N处测得∠PNQ=730,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).32.如图,某校教学楼的后面紧邻着一个土坡,坡上面是一块平地,BC∥AD,斜坡AB的长为22 m,坡角∠BAD=680,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,经地质人员勘测,当坡角不超过500时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离;(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC改到F点处,则BF至少是多少米?(保留一位小数,参考数据:sin680≈0.9272,cos 680≈0.3746,tan 680≈2.4751,sin500≈0.7660,cos500≈0.6428,tan500≈1.1918)第13课 解直角三角形测试题日期: 月 日 满分:100分 时间:20分钟 姓名: 得分:1.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A.1,2,3B.1,1,2C.1,1,3D.1,2,32.在Rt △ACB 中,∠C=900,AB=10,sinA=,cosA=,tanA=,则BC 的长为( ) A.6 B.7.5 C.8D.12.53.点M (-sin600,cosn600)关于x 轴对称的点的坐标是( ) A .(32,12) B .(32-,12-) C .(32-,12) D .(12-,32-) 4.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tan α等于( ) A.513B.1213C.512D.125第4题图 第5题图 第6题图5.如图,在△ABC 中,∠C=900,AD 是BC 边上的中线,BD=4,52=AD ,则tan ∠CAD 的值是( ) A.2 B.2 C.3 D.56.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC /B /,则tanB /的值为( ) A.12B.13C.14D.247.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( ) A.34米 B.56米 C.512米 D.24米8.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD,使点B 落在AD 边上的点F 处,若AB=4,BC=5,则tan ∠AFE 的值为( ) A.43 B.35C.34D.45 9.△ABC 中,∠C=900,AB=8,cosA=43,则BC 的长 10.若a=3-tan600,则196)121(2-+-÷--a a a a = 11.如图,在Rt △ABC 中,∠C=900,∠B=370,BC=32,则AC= .(sin370≈0.60,cos370≈0.80,tan370≈0.75)第11题图第12题图第13题图第14题图12.如图,△ABC的顶点都在方格纸的格点上,则sinA=_____13.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).2,则AB的长为.14.如图,在△ABC中,∠A=300,∠B=450,AC=315.如图,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=250,∠CBA=370,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin250≈0.42,cos250≈0.91,sin370≈0.60,tan370≈0.75)16.如图,在Rt△ABC中,∠C=900,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.17.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为300,然后沿AD 方向前行10m,到达B点,在B处测得树顶C的仰角高度为600(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度.。