固体物理ch3-s3
- 格式:ppt
- 大小:1.38 MB
- 文档页数:24
固体物理名词解释总结固体物理是研究固体物质性质及其在物理学和工程中的应用的学科领域。
以下是一些常见的固体物理名词和解释:1. 纹波结构(Wavestructure):固体物质中存在的周期性排列的结构,如晶格结构或周期性的自旋排列。
2. 晶体(Crystal):具有有序的三维排列的原子、分子或离子的固体物质。
晶体具有定向性和周期性。
3. 非晶体(Amorphous):没有长程有序结构的固体物质。
非晶体具有随机的结构排列。
4. 晶格(Lattice):晶体中原子、分子或离子的周期性排列。
晶格是晶体性质的基础。
5. 倍半径(Ionic Radius):离子半径的测量。
离子半径是指正负电荷中心到离子外部电子排布边缘的距离。
6. 位错(Dislocation):晶体中存在的原子排列异常或错位的部分。
位错对材料的力学性质和导电性质起着重要作用。
7. 赝势(Pseudopotential):一种近似描述原子中电子-核子相互作用的计算方法。
赝势可以简化计算,提高计算效率。
8. 激子(Exciton):由于电子与空穴之间的库伦相互作用形成的粒子。
激子可以通过吸收或发射光子来转换能量。
9. 能带(Energy band):固体物质中电子能量的禁闭区域。
能带理论用来解释导体、绝缘体和半导体的性质。
10. 考虑自旋(Spintronics):一种利用电子的自旋来储存和传输信息的技术。
与传统电子学不同,考虑自旋可以提供更高的信息存储密度和更低的功耗。
以上是一些常见的固体物理名词的解释,这个领域还有很多其他的名词和概念。
第一章、晶体的结构习题1.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,6π; (2)体心立方, ;83π(3)面心立方,;62π(4)六角密积,;62π(5)金刚石结构,;163π[解答]设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体积,则致密度ρ=Vrn334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433aVra==面1.2 简立方晶胞晶胞内包含1个原子,所以ρ=6)(33234ππ=aa(2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433aVra==晶胞内包含2个原子,所以ρ=ππ83)(*2334334=aa图1.3 体心立方晶胞(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以ρ=62)(*4334234ππ=a a .(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,图 1.5 六角晶胞 图 1.6 正四面体晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a == 晶胞体积 V = 222360sin ca ca =, 一个晶胞内包含两个原子,所以ρ=ππ62)(*22233234=ca a .(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O原子与中心在1,2,3,4处的原子相切,因为,8 3r a=晶胞体积3aV=,一个晶胞内包含8个原子,所以ρ=163)83(*83334ππ=aa.2.在立方晶胞中,画出(102),(021),(122-),和(201-)晶面。
固体物理课后习题解答(黄昆版)第三章黄昆固体物理习题解答第三章晶格振动与晶体的热学性质3.1 已知⼀维单原⼦链,其中第j个格波,在第个格点引起的位移为,µ= anj j sin(ωj_j+ σj) ,σj为任意个相位因⼦,并已知在较⾼温度下每个格波的平均能量为,具体计算每个原⼦的平⽅平均位移。
解:任意⼀个原⼦的位移是所有格波引起的位移的叠加,即µn= ∑ µnj=∑ a j sin(ωj t naq j+σj)j j(1)µ2 n =∑µjnj∑µj*nj=µj2nj+ µ µnj*nj′j j′由于µ µnj?nj数⽬⾮常⼤的数量级,⽽且取正或取负⼏率相等,因此上式得第2 项与第⼀项µ相⽐是⼀⼩量,可以忽略不计。
所以2= ∑ µ 2njn j由于µnj是时间的周期性函数,其长时间平均等于⼀个周期内的时间平均值为µ 2 = 1 T∫0 2 ω+σ 1 2 j aj sin( t naqjj j)dt a=j(2)T0 2已知较⾼温度下的每个格波的能量为KT,µnj的动能时间平均值为1 L T ?1 ?dµ 2 ?ρw a2 T 1= ∫∫dx0?ρnj?= j j∫0 2 ω+ σ= ρ 2 2 T??dt L a sin( t naq)dt w Lanj T0 0 0 ? 2 ?dt??2T0 j j j j 4 j j其中L 是原⼦链的长度,ρ使质量密度,T0为周期。
1221所以Tnj= ρ w La j j=KT(3)4 2µKT因此将此式代⼊(2)式有nj2 = ρωL 2 jµ所以每个原⼦的平均位移为2== ∑ µ 2= ∑KT= KT∑1n njρωL2ρLω2j j j j j3.2 讨论N 个原胞的⼀维双原⼦链(相邻原⼦间距为a),其2N 格波解,当M=m 时与⼀维单原⼦链的结果⼀⼀对应.解答(初稿)作者季正华- 1 -黄昆固体物理习题解答解:如上图所⽰,质量为M 的原⼦位于2n-1,2n+1,2n+3 ……质量为m 的原⼦位于2n,2n+2,2n+4 ……⽜顿运动⽅程:..mµ2n= ?βµ(22n?µ2n+1 ?µ2n?1)..Mµ2n+1 = ?βµ(22n+1 ?µ2n+2 ?µ2n)体系为N 个原胞,则有2N 个独⽴的⽅程i na q⽅程解的形式:iµ2n=Ae[ωt?(2 ) ] µ2n+1=Be[ω?(2n+1)aq]na qµ=将µ2n=Ae[ωt?(2 ) ]2n+1 Be i[ωt?(2n+1) aq]代回到运动⽅程得到若A、B 有⾮零的解,系数⾏列式满⾜:两种不同的格波的⾊散关系:——第⼀布⾥渊区解答(初稿)作者季正华- 2 -第⼀布⾥渊区允许 q 的数⽬黄昆固体物理习题解答对应⼀个 q 有两⽀格波:⼀⽀声学波和⼀⽀光学波。
《固体物理》基本概念和知识点第一章基本概念和知识点1)什么是晶体、非晶体和多晶?(□)□晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程屮不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。
2)什么是原胞和晶胞?(0)□原胞是最小的晶格重复单元,不考虑对称性,原胞只包含1个原子;从对称性的角度,选取几倍于原胞大小的重复单元,称为品胞,一个品胞中有大于2个以上的原子。
3)晶体共有几种晶系和布喇菲格子?(□)□按结构划分,晶体可分为7大晶系,共14布喇菲格子。
4)立方晶系有几种布喇菲格子?画出相应的格子。
(□)□立方晶系有简单立方、体心立方和面心立方三种布喇菲格子。
5)什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。
(□)0简单晶格中,一个原胞只包含一个原子,所有的原子在儿何位置和化学性质上是完全等价的。
复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成相同的简单晶格(子晶格),复式格子由它们的子晶格相套而成。
Au、Ag和Cu具有面心立方晶格结构,碱金属Li、Na. K为体心立方结构,它们均为简单晶格。
NaCK CsCl、ZnS以及具有金刚石结构的Si、Ge等均为复式格子。
6)钛酸顿是由几个何种简单晶格穿套形成的?(□)□ BaTiO.在立方体的项角上是锲(Ba),钛(Ti)位于体心,面心上是三组氧(0)。
三组氧(01, OIL 0111)周围的情况各不相同,整个晶格是由Ba、Ti和01、OIL 0111各自组成的简立方结构子晶格(共5个)套构而成的。
7)为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(□)□金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。
金刚石结构由两套完全等价的面心立方格子穿套构成。
金刚石属于面心立方格子,原胞中有2个C原子,单胞中有8个C原子。