黄昆固体物理习题-第三章 晶体的热性质
- 格式:pps
- 大小:1.53 MB
- 文档页数:46
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理第三章班级成绩学号Chapter 3 晶格振动与晶体的热学性质姓名(lattice vibration and its heat characteristics)⼀、简要回答下列问题(answer the following questions):1、在晶格常数为a 的⼀维单原⼦晶格中,波长λ=8a 和波长λ=8a/5的格波所对应的原⼦振动状态有⽆不同? 试画图加以说明。
[答]对于⼀维单原⼦链,由q=2π/λ知,λ=8a 时,q =π/4a ,λ=8a /5时,q =5π/4a ,⼆者的aq 相差π,不是2π的整数倍,因此,两个格波所对应的原⼦振动状态不同。
如上图,当两个格波的位相差为2π的整数倍时,则它们所对应的原⼦的振动状态相同。
2、什么叫简正振动模式?简正振动数⽬、格波数⽬或格波振动模式数⽬是否是⼀回事?[答]在简谐振动下,由N 个原⼦构成的晶体的晶格振动,可等效成3N 个独⽴的谐振⼦的振动,每⼀个谐振⼦的振动模式称为简正振动模式。
格波振动通常是这3N 个简正振动模式的线性叠加。
简正振动数⽬、格波数⽬或格波振动模式数⽬是是⼀回事,其数⽬等于晶体中所有原⼦的⾃由度之和,即等于3N 。
3、晶体中声⼦数⽬是否守恒?在极低温下,晶体中的声⼦数与温度T 之间有什么样的关系?[答]频率为ωi 的格波的平均声⼦数为: 11)(/-=Tk i B en ωω即每⼀个格波的声⼦数都与温度有关,因此晶体中的声⼦数⽬不守恒,它随温度的改变⽽改变。
以德拜模型为例。
晶体中的声⼦数⽬为ωωωωd g n N D)()('0=其中令 T k x B ω= 则 123'2/033233-=x TB e dxx C T k V N D θπ在极低温度下,θD /T →∞,于是 331332332033233)2(23123'T nC T Vk e dx x C T k V N n B x B ∑∞=∞=-=ππ即在温度极低时,晶体中的声⼦数⽬与T 3成正⽐。
第三章习题参考解答3.1已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移μnj 为:δj 为任意位相因子。
并已知在较高温度下每个格波的平均能量为kT ,具体计算每个原子的平方平均位移。
)sin(j j j j nj naq t δωαμ++=21)(sin 102=++⎰dt q n t T j j j Tδαω根据=2nj μ22221)(sin j j j j j q n t αδαωα=++解:其中T =2π/ωj 为振动周期,所以:格波的平均动能:∑∙=n njm E 221μN m j j 2241ωα=一维单原子链可以认为是经典的简谐运动,因此有:)(cos 21222j j j j n j q n t m δαωωα++=∑平均动能=平均势能= 格波平均能量=kT 2121其中:M =ρL其中振幅222j j Nm kT ωα=得:kT N m E j j 214122==ωα所以有:22221jj nj Nm kT ωαμ==所以,每个原子的平方平均位移:∑∑∑===222121j j njn Nm kT ωαμμ其中:M =ρL3.2 讨论N个原胞的一维双原子链(相邻原子间距为a),其2N个格波解,当M=m时与一维单原子链结果一一对应。
解:质量为M的原子位于2n-1,2n+1,2n+3……。
质量为m的原子位于2n,2n+2,2n+4 ……。
牛顿运动方程体系有N个原胞,有2N个独立的方程方程的解:A,B有非零解可以得到:两种不同的格波的色散关系为:对应一个q有两支格波:一支声学波和一支光学波,总的格波数目为2N。
当M=m时,色散关系简化为:长波极限情况下与一维单原子晶格格波的色散关系一致3.3质量相同两种原子形成一维双原子链,最近邻原子间的力常数交错等于c和10c,令两种原子的质量相等,并且最近邻间距是a/2,试求在k=0和k=π/a处的ω(k)。
并粗略。
画出色散关系。
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理课后习题解答(黄昆版)第三章黄昆固体物理习题解答第三章晶格振动与晶体的热学性质3.1 已知⼀维单原⼦链,其中第j个格波,在第个格点引起的位移为,µ= anj j sin(ωj_j+ σj) ,σj为任意个相位因⼦,并已知在较⾼温度下每个格波的平均能量为,具体计算每个原⼦的平⽅平均位移。
解:任意⼀个原⼦的位移是所有格波引起的位移的叠加,即µn= ∑ µnj=∑ a j sin(ωj t naq j+σj)j j(1)µ2 n =∑µjnj∑µj*nj=µj2nj+ µ µnj*nj′j j′由于µ µnj?nj数⽬⾮常⼤的数量级,⽽且取正或取负⼏率相等,因此上式得第2 项与第⼀项µ相⽐是⼀⼩量,可以忽略不计。
所以2= ∑ µ 2njn j由于µnj是时间的周期性函数,其长时间平均等于⼀个周期内的时间平均值为µ 2 = 1 T∫0 2 ω+σ 1 2 j aj sin( t naqjj j)dt a=j(2)T0 2已知较⾼温度下的每个格波的能量为KT,µnj的动能时间平均值为1 L T ?1 ?dµ 2 ?ρw a2 T 1= ∫∫dx0?ρnj?= j j∫0 2 ω+ σ= ρ 2 2 T??dt L a sin( t naq)dt w Lanj T0 0 0 ? 2 ?dt??2T0 j j j j 4 j j其中L 是原⼦链的长度,ρ使质量密度,T0为周期。
1221所以Tnj= ρ w La j j=KT(3)4 2µKT因此将此式代⼊(2)式有nj2 = ρωL 2 jµ所以每个原⼦的平均位移为2== ∑ µ 2= ∑KT= KT∑1n njρωL2ρLω2j j j j j3.2 讨论N 个原胞的⼀维双原⼦链(相邻原⼦间距为a),其2N 格波解,当M=m 时与⼀维单原⼦链的结果⼀⼀对应.解答(初稿)作者季正华- 1 -黄昆固体物理习题解答解:如上图所⽰,质量为M 的原⼦位于2n-1,2n+1,2n+3 ……质量为m 的原⼦位于2n,2n+2,2n+4 ……⽜顿运动⽅程:..mµ2n= ?βµ(22n?µ2n+1 ?µ2n?1)..Mµ2n+1 = ?βµ(22n+1 ?µ2n+2 ?µ2n)体系为N 个原胞,则有2N 个独⽴的⽅程i na q⽅程解的形式:iµ2n=Ae[ωt?(2 ) ] µ2n+1=Be[ω?(2n+1)aq]na qµ=将µ2n=Ae[ωt?(2 ) ]2n+1 Be i[ωt?(2n+1) aq]代回到运动⽅程得到若A、B 有⾮零的解,系数⾏列式满⾜:两种不同的格波的⾊散关系:——第⼀布⾥渊区解答(初稿)作者季正华- 2 -第⼀布⾥渊区允许 q 的数⽬黄昆固体物理习题解答对应⼀个 q 有两⽀格波:⼀⽀声学波和⼀⽀光学波。
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
PART ONE 填空问题Q01_01_001 原胞中有p 个原子。
那么在晶体中有3支声学波和33p −支光学波?Q01_01_002 按结构划分,晶体可分为7大晶系, 共14布喇菲格子?Q01_01_004 面心立方原胞的体积为314a Ω=;其第一布里渊区的体积为334(2)*a πΩ= Q01_01_005 体心立方原胞的体积为32a Ω=;第一布里渊区的体积为332(2)*a πΩ= Q01_01_006 对于立方晶系,有简单立方、体心立方和面心立方三种布喇菲格子。
Q01_01_007 金刚石晶体是复式格子,由两个面心立方结构的子晶格沿空间对角线位移 1/4 的长度套构而成,晶胞中有8个碳原子。
Q01_01_008 原胞是最小的晶格重复单元。
对于布喇菲格子,原胞只包含1个原子;Q01_01_009 晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由晶粒组成的固体,称为多晶。
Q01_01_010 由完全相同的一种原子构成的格子,格子中只有一个原子,称为布喇菲格子。
满足ij j i b a πδ2=⋅G G ⎩⎨⎧≠===)(0)(2j i j i π 关系的1b G ,2b G ,3b G 为基矢,由322211b h b h b h G h K K K K ++=构成的格子,称作倒格子。
由若干个布喇菲格子相套而成的格子,叫做复式格子。
其原胞中有两个以上的原子。
Q01_03_001 由N 个原胞构成的晶体,原胞中有l 个原子,晶体共有3lN 个独立振动的正则频率。
Q01_03_002 声子的角频率为ω,声子的能量和动量表示为ω=和q K =。
Q01_03_003 光学波声子又可以分为纵光学波声子和横光学波声子,它们分别被称为极化声子和电磁声子Q01_03_004 一维复式原子链振动中,在布里渊区中心和边界,声学波的频率为 ⎪⎩⎪⎨⎧→±==0,02,)2(211q a q M πβω;光学波的频率⎪⎪⎩⎪⎪⎨⎧±=→=a q m q 2)2(0)2(21212πβµβωQ01_04_001 金属的线度为L ,一维运动的自由电子波函数ikx e Lx 1)(=ψ;能量m k E 222==;波矢的取值Ln k π2= Q01_04_002 电子在三维周期性晶格中波函数方程的解具有()()ik r kr e u r k ψ⋅=K K K K K K 形式?式中()k u r K K 在晶格平移下保持不变。
203_11 晶格的热传导非简谐效应 —— 简谐近似下,原子之间的作用力与原子的位移成正比晶格的原子振动可以描述成为一系列线性独立的谐振子 ——声子—— 声子之间不发生作用,因而不能交换能量晶体中,某种声子一旦被激发出来,其数目就一直保持不变,它既不能把能量传递给其它频率的声子,也不能处于热平衡分布状态。
原来处于非平衡状态的系统永远不能变成平衡系统 —— 与实际物理过程不相符此外理想晶体的声子态是稳态,携带热流的声子一旦建立起来,就不随时间变化,热流将永不衰减,晶体的导热率为无穷大 —— 和实际物理过程不相符原子间的相互作用力并非严格地与原子的位移成正比。
当考虑到原子的相互作用势能泰勒级数展开中含有高次项,晶格的原子振动就不能描述成为一系列严格线性独立的谐振子。
如果原子的位移还相当小,可将高次项看成微扰。
由于微扰项的存在,这些振子不再是相互独立的,相互间要发生作用,则声子与声子之间发生能量交换。
如果开始时只存在某种频率的声子,由于声子间的互作用,这种频率的声子转换成另一种频率的声子,即一种频率的声子要湮灭.而另一种频率的声子会产生。
经过一定的弛豫时间后,各种声子的分布就能达到热平衡。
这些高次项 —— 使晶格振动达到热平衡的最主要原因两个声子通过非简谐项的作用,产生第三个声子,可以看成是两个声子碰撞,变成为第三个声子。
物理图像 —— 一个声子的存在将在晶体中引起周期性的弹性应变,由于非简谐项的影响,晶体的弹性模量不是常数,而受到弹性应变的调制,由于弹性模量的变化,将使第二个声子受到散射而产生第三个声子。
声子之间的相互作用,必须遵守能量守恒定律和动量守恒定律。
设两个相互碰撞的声子的频率和波矢分别为:112,,q andq ωωK K 第三个声子的频率和波矢为:33,q ωK三个声子之间满足:123123()()a q q q b ωωω+=⎧⎨+=⎩===K K K —— 晶格中的波矢具有平移周期性,波矢q K 和波矢h q K +KK 描写的振动状态完全一样 所以存在关系: 123()nq q q G c +=+K K K K 满足:关系的两个声子的碰撞过程 123123()()a q q q b ωωω+=⎧⎨+=⎩===K K K N 过程(正常过程)—— Normal Process满足:关系的两个声子的碰撞过程123123()()n a q q q G c ωωω+=⎧⎨+=−+⎩===K K K K U 过程(叫倒逆过程) —— Umklapp Process如果在晶体中存在温度梯度:dT dx能流密度:dT j dxθκ=− —— 单位时间内通过单位面积的热能 κ —— 晶体的导热系数存在温度梯度时,“声子气体”的密度分布是不均匀的。
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。