第二章第2讲函数的单调性与最值
- 格式:pdf
- 大小:1.11 MB
- 文档页数:10
第2讲 函数的单调性与最值一、知识梳理 1.函数的单调性 (1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.[注意] 有多个单调区间应分开写,不能用符号“∪”联结,也不能用“或”联结,只能用“逗号”或“和”联结.2.函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 (1)对于任意x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M(1)对于任意x ∈I ,都有f (x )≥M ; (2)存在x 0∈I ,使得f (x 0)=M结论 M 为最大值M 为最小值1.函数单调性的两个等价结论 设∀x 1,x 2∈D (x 1≠x 2),则(1)f (x 1)-f (x 2)x 1-x 2>0(或(x 1-x 2)[f (x 1)-f (x 2)]>0)⇔f (x )在D 上单调递增.(2)f (x 1)-f (x 2)x 1-x 2<0(或(x 1-x 2)[f (x 1)-f (x 2)]<0)⇔f (x )在D 上单调递减.2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 二、教材衍化1.函数f (x )=x 2-2x 的单调递增区间是________. 答案:[1,+∞)(或(1,+∞))2.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________. 解析:因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0,即k <-12.答案:⎝⎛⎭⎫-∞,-12 3.已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为__________.解析:可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 答案:2 25一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数f (x )的单调递增区间是[1,+∞).( ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(4)所有的单调函数都有最值.( )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)闭区间上的单调函数,其最值一定在区间端点处取到.( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区| (1)求单调区间忘记定义域导致出错;(2)混淆“单调区间”与“在区间上单调”两个概念出错. 1.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B .设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).2.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________. 解析:由题意知,[2,+∞)⊆[m ,+∞), 所以m ≤2. 答案:(-∞,2]考点一 确定函数的单调性(区间)(基础型) 复习指导| 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义.核心素养:数学抽象角度一 判断或证明函数的单调性(一题多解)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解】 法一:设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增. 法二:f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.利用定义法证明或判断函数单调性的步骤[注意] 判断函数的单调性还有图象法、导数法、性质法等. 角度二 利用函数图象求函数的单调区间求函数f (x )=-x 2+2|x |+1的单调区间.【解】 f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和(0,1],单调递减区间为(-1,0]和(1,+∞).【迁移探究】 (变条件)若本例函数变为f (x )=|-x 2+2x +1|,如何求解?解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1]和(1+2,+∞);单调递减区间为(-∞,1-2]和(1,1+2].确定函数的单调区间的方法[注意] (1)函数在某个区间上是单调函数,但在整个定义域上不一定是单调函数,如函数y =1x在(-∞,0)和(0,+∞)上都是减函数,但在定义域上不具有单调性.(2)“函数的单调区间是M ”与“函数在区间N 上单调”是两个不同的概念,显然N ⊆M .1.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 可能是( ) A .(-∞,0) B .⎣⎡⎦⎤0,12 C .[0,+∞)D .⎝⎛⎭⎫12,+∞解析:选B .y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0-x (1-x ),x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0x 2-x ,x <0=⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的草图,如图.由图易知原函数在⎣⎡⎦⎤0,12上单调递增. 2.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C .由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调,对于f (x )=1x -x ,因为y =1x 与y=-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.3.判断函数y =2x 2-3x的单调性.解:因为f (x )=2x 2-3x =2x -3x ,且函数的定义域为(-∞,0)∪(0,+∞),而函数y =2x和y =-3x 在区间(-∞,0)上均为增函数,根据单调函数的运算性质,可得f (x )=2x -3x 在区间(-∞,0)上为增函数.同理,可得f (x )=2x -3x在区间(0,+∞)上也是增函数.故函数f (x )=2x 2-3x 在区间(-∞,0)和(0,+∞)上均为增函数.考点二 函数的最值(值域)(基础型) 复习指导| 理解函数的最大(小)值,并能利用函数的单调性求最值.核心素养:逻辑推理(1)(一题多解)函数y =x +x -1的最小值为________.(2)(2020·福建漳州质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+a ,x ≤0,x +4x ,x >0有最小值,则实数a 的取值范围是________.【解析】 (1)法一(换元法):令t =x -1,且t ≥0,则x =t 2+1, 所以原函数变为y =t 2+1+t ,t ≥0. 配方得y =⎝⎛⎭⎫t +122+34, 又因为t ≥0,所以y ≥14+34=1,故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在[1,+∞)内为增函数,所以y min =1.(2)(基本不等式法)由题意知,当x >0时,函数f (x )=x +4x≥2x ·4x=4,当且仅当x =2时取等号;当x ≤0时,f (x )=2x +a ∈(a ,1+a ],因此要使f (x )有最小值,则必须有a ≥4.【答案】 (1)1 (2)[4,+∞)求函数最值的五种常用方法1.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4.所以a +b =6. 答案:62.(一题多解)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:法一:在同一直角坐标系中, 作出函数f (x ),g (x )的图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2处取得最大值h (2)=1. 答案:1考点三 函数单调性的应用(综合型) 复习指导| 利用函数单调性求解,要明确函数的所给区间,不同区间有不同的单调性.角度一 比较两个函数值已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时, [f (x 2)-f (x 1)](x 2-x 1)<0恒成立, 知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e), 所以b >a >c . 【答案】 D比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.角度二 解函数不等式已知函数f (x )=-x |x |,x ∈(-1,1),则不等式f (1-m )<f (m 2-1)的解集为________.【解析】 由已知得f (x )=⎩⎪⎨⎪⎧x 2,-1<x ≤0,-x 2,0<x <1,则f (x )在(-1,1)上单调递减,所以⎩⎨⎧-1<1-m <1,-1<m 2-1<1,m 2-1<1-m ,解得0<m <1,所以所求解集为(0,1). 【答案】 (0,1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解,此时应特别注意函数的定义域.角度三 求参数的值或取值范围(1)(2020·南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是________.【解析】 (1)设1<x 1<x 2,所以x 1x 2>1. 因为函数f (x )在(1,+∞)上是增函数,所以f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2=(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0. 因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2.因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1. 所以a 的取值范围是[-1,+∞).(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.【答案】 (1)[-1,+∞) (2)(-∞,1]∪[4,+∞)利用单调性求参数的策略(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.1.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A .⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C .⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选D .因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13,解得12≤x <23.故选D .2.函数y =f (x )在[0,2]上单调递增,且函数f (x )的图象关于直线x =2对称,则下列结论成立的是( )A .f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72B .f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52C .f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1)D .f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72<f (1)解析:选B .因为f (x )的图象关于直线x =2对称,所以f (x )=f (4-x ),所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫72=f ⎝⎛⎭⎫12.又0<12<1<32<2,f (x )在[0,2]上单调递增,所以f ⎝⎛⎭⎫12<f (1)<f ⎝⎛⎭⎫32,即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 3.若函数f (x )=|2x +a |的单调增区间是[3,+∞),则a 的值为________.解析:由图象(图略)易知函数f (x )=|2x +a |的单调增区间是⎣⎡⎭⎫-a 2,+∞,令-a2=3,得a =-6.答案:-6[基础题组练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C .当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数f (x )=-x +1x 在⎣⎡⎦⎤-2,-13上的最大值是( ) A .32B .-83C .-2D .2解析:选A .函数f (x )=-x +1x 的导数为f ′(x )=-1-1x 2,则f ′(x )<0,可得f (x )在⎣⎡⎦⎤-2,-13上单调递减,即f (-2)为最大值,且为2-12=32.3.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C .由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.所以-1<x <0或0<x <1.故选C .4.(多选)(2021·预测)已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( )A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0解析:选CD .根据题意,依次分析选项:对于选项A ,对任意x ≥0,都有f (x +1)>f (x ),不满足函数单调性的定义,不符合题意;对于选项B ,当f (x )为常数函数时,对任意x 1,x 2∈[0,+∞),都有f (x 1)=f (x 2),不是增函数,不符合题意;对于选项C ,对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0,符合题意;对于选项D ,对任意x 1,x 2∈[0,+∞),设x 1>x 2,若f (x 1)-f (x 2)x 1-x 2>0,必有f (x 1)-f (x 2)>0,则函数在[0,+∞)上为增函数,符合题意.5.(创新型)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C .由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,所以f (x )的最大值为6.6.函数f (x )=|x -2|x 的单调减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].答案:[1,2]7.函数y =2+-x 2+4x 的最大值是________,单调递增区间是________.解析:函数y =2+-x 2+4x =2+-(x -2)2+4,可得当x =2时,函数y 取得最大值2+2=4;由4x -x 2≥0,可得0≤x ≤4,令t =-x 2+4x ,则t 在[0,2]上为增函数,y -2+t 在[0,+∞)上为增函数,可得函数y =2+-x 2+4x 的单调递增区间为[0,2].答案:4 [0,2]8.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集为________.解析:由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1,即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2.答案:(-1,2)9.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,因为x 1>x 2>0, 所以x 1-x 2>0,x 1x 2>0, 所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, 所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0, 所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,a 的取值范围为(0,1].[综合题组练]1.已知函数f (x )=⎩⎪⎨⎪⎧3(a -3)x +2,x ≤1,-4a -ln x ,x >1对任意的x 1≠x 2都有(x 1-x 2)[f (x 2)-f (x 1)]>0成立,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,3)C .(3,+∞)D .[1,3)解析:选D .由(x 1-x 2)[f (x 2)-f (x 1)]>0,得(x 1-x 2)·[f (x 1)-f (x 2)]<0, 所以函数f (x )在R 上单调递减,所以⎩⎪⎨⎪⎧a -3<0,3(a -3)+2≥-4a ,解得1≤a <3.故选D . 2.(多选)若函数f (x )满足条件:①对于定义域内任意不相等的实数a ,b 恒有f (a )-f (b )a -b >0;②对于定义域内任意x 1,x 2都有f ⎝⎛⎭⎫x 1+x 22≥f (x 1)+f (x 2)2成立.则称其为G 函数.下列函数为G 函数的是( ) A .f (x )=3x +1 B .f (x )=-2x -1 C .f (x )=x 2-2x +3D .f (x )=-x 2+4x -3,x ∈(-∞,1)解析:选AD .①对于定义域内任意不相等的实数a ,b 恒有f (a )-f (b )a -b >0,则函数f (x )在定义域为增函数;②对于定义域内任意x 1,x 2都有f ⎝⎛⎭⎫x 1+x 22≥f (x 1)+f (x 2)2成立,则函数f (x )为“凸函数”.其中A .f (x )=3x +1在R 上为增函数,且f ⎝⎛⎭⎫x 1+x 22=f (x 1)+f (x 2)2,故满足条件①②;B .f (x )=-2x -1在R 上为减函数,不满足条件①;C .f (x )=x 2-2x +3在(-∞,1)上为减函数,在(1,+∞)为增函数,不满足条件①;D .f (x )=-x 2+4x -3的对称轴为x =2,故函数f (x )=-x 2+4x -3在(-∞,1)上为增函数,且为“凸函数”,故满足条件①②.综上,为G 函数的是AD .3.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以a 的取值范围是0≤a ≤2. 答案:[0,2]4.(创新型)如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为________. 解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2, 由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3 ]上单调递减,故“缓增区间”I 为[1, 3 ].答案:[1, 3 ]5.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上单调递增,求实数a 的取值范围. 解:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2(x -1)2-1,x <2, 当x ∈[0,2)时,-1≤f (x )<0,当x ∈[2,3]时,0≤f (x )≤7, 所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2x 2-ax +2a -4,x ≤2,又f (x )在区间[-1,+∞)上单调递增,所以当x >2时,f (x )单调递增,则-a2≤2,即a ≥-4.当-1<x ≤2时,f (x )单调递增,则a2≤-1.即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立, 故a 的取值范围为[-4,-2].6.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈()0,+∞,且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间()0,+∞上是单调递减函数.(3)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9),由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x ) 在[2,9]上的最小值为-2.。
第2讲 函数的单调性与最值一、选择题1.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是( ).A .y =x 2B .y =|x|+1C .y =-lg|x|D .y =2|x|解析 对于C 中函数,当x>0时,y =-lg x ,故为(0,+∞)上的减函数,且y =-lg |x|为偶函数. 答案 C2.已知函数f(x)为R 上的减函数,则满足f(|x|)<f(1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 ∵f(x)在R 上为减函数且f(|x|)<f(1), ∴|x|>1,解得x >1或x <-1. 答案 D3.若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增解析 ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a<0,b<0,∴y =ax 2+bx 的对称轴方程x =-b 2a <0,∴y =ax 2+bx 在(0,+∞)上为减函数. 答案 B4.设函数f(x)=⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,g(x)=x 2f(x -1),则函数g(x)的递减区间是( ).A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]解析 g(x)=⎩⎪⎨⎪⎧x 2,x>1,0,x =1,-x 2,x<1.如图所示,其递减区间是[0,1).故选B.答案 B5.函数y =-x 2+2x -3(x <0)的单调增区间是( )A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]解析 二次函数的对称轴为x =1,又因为二次项系数为负数,拋物线开口向下,对称轴在定义域的右侧,所以其单调增区间为(-∞,0). 答案 C6.设函数y =f(x)在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x)=⎩⎪⎨⎪⎧,,K ,,取函数f(x)=2-|x|,当K =12时,函数f K (x)的单调递增区间为( ).A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析 f 12(x)=⎩⎪⎨⎪⎧2-|x|,2-|x|≤12,12,2-|x|>12⇔f 12(x)=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12|x|,x≤-1或x≥1,12,-1<x<1.f 12(x)的图象如右图所示,因此f 12(x)的单调递增区间为(-∞,-1). 答案 C 二、填空题7.设函数y =x 2-2x ,x ∈[-2,a],若函数的最小值为g(a),则g(a)=________. 解析 ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1.当-2≤a<1时,函数在[-2,a]上单调递减,则当x =a 时,y min =a 2-2a ;当a≥1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x =1时,y min =-1.综上,g(a)=⎩⎪⎨⎪⎧a 2-2a ,-2≤a<1,-1,a≥1.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a<1-1,a≥18.函数y =-(x -3)|x|的递增区间是_______. 解析 y =-(x -3)|x|=⎩⎪⎨⎪⎧-x 2+3x ,x 2-3x作出该函数的图像,观察图像知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案 ⎣⎢⎡⎦⎥⎤0,32 9.已知函数f(x)=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是________.解析 ①当a =0时,f(x)=-12x +5在(-∞,3)上为减函数;②当a >0时,要使f(x)=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则对称轴x =3-a a 必在x =3的右边,即3-a a ≥3,故0<a≤34;③当a <0时,不可能在区间(-∞,3)上恒为减函数.综合知:a 的取值范围是⎣⎢⎡⎦⎥⎤0,34.答案 ⎣⎢⎡⎦⎥⎤0,3410.已知函数f(x)=⎩⎪⎨⎪⎧e -x-2,x≤0,2ax -1,x>0(a 是常数且a>0).对于下列①函数f(x)的最小值是-1; ②函数f(x)在R 上是单调函数;③若f(x)>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a>1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<1+22.其中正确解析 根据题意可画出草图,由图象可知,①显然正确;函数f(x)在R 上不是单调函数,故②错误;若f(x)>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则2a×12-1>0,a>1,故③正确;由恒有f ⎝⎛⎭⎪⎫x 1+x 22图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,<1+22成立,故④正确.答案 ①③④ 三、解答题11.求函数y =a1-x 2(a>0且a≠1)的单调区间.解 当a>1时,函数y =a1-x 2在区间[0,+∞)上是减函数,在区间(-∞,0]上是增函数; 当0<a<1时,函数y =a1-x 2在区间[0,+∞)上是增函数,在区间(-∞,0]上是减函数. 12.已知函数f(x)=x 2+a x (x≠0,a ∈R).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a 的取值范围. 解 (1)当a =0时,f(x)=x 2(x≠0)为偶函数; 当a≠0时,f(-x)≠f(x),f(-x)≠-f(x), ∴f(x)既不是奇函数也不是偶函数.(2)设x 2>x 1≥2,则f(x 1)-f(x 2)=x 21+a x 1-x 22-a x 2=x 1-x 2x 1x 2[x 1x 2(x 1+x 2)-a],由x 2>x 1≥2,得x 1x 2(x 1+x 2)>16,x 1-x 2<0, x 1x 2>0.要使f(x)在区间[2,+∞)上是增函数, 只需f(x 1)-f(x 2)<0,即x 1x 2(x 1+x 2)-a>0恒成立,则a≤16.13.已知函数f(x)=a·2x+b·3x,其中常数a ,b 满足ab≠0. (1)若ab>0,判断函数f(x)的单调性;(2)若ab<0,求f(x +1)>f(x)时的x 的取值范围.解 (1)当a>0,b>0时,因为a·2x,b·3x都单调递增,所以函数f(x)单调递增;当a<0,b<0时,因为a·2x,b·3x都单调递减,所以函数f(x)单调递减. (2)f(x +1)-f(x)=a·2x+2b·3x>0. (i)当a<0,b>0时,⎝ ⎛⎭⎪⎫32x>-a 2b ,解得x>log 32⎝ ⎛⎭⎪⎫-a 2b ;(ii)当a>0,b<0时,⎝ ⎛⎭⎪⎫32x<-a 2b ,解得x<log 32⎝ ⎛⎭⎪⎫-a 2b .14.函数f(x)对任意的a 、b ∈R ,都有f(a +b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m 2-m -2)<3. 解 (1)证明 设x 1,x 2∈R ,且x 1<x 2, 则x 2-x 1>0,∴f(x 2-x 1)>1.f(x 2)-f(x 1)=f[(x 2-x 1)+x 1]-f(x 1)=f(x 2-x 1)+f(x 1)-1-f(x 1)=f(x 2-x 1)-1>0. ∴f(x 2)>f(x 1).即f(x)是R 上的增函数. (2) ∵f(4)=f(2+2)=f(2)+f(2)-1=5, ∴f(2)=3,∴原不等式可化为f(3m 2-m -2)<f(2), ∵f(x)是R 上的增函数,∴3m 2-m -2<2, 解得-1<m<43,故解集为⎝ ⎛⎭⎪⎫-1,43.。
第5讲函数的简单性质——单调性知识 整合【基础知识】1.函数单调性一般地,设函数y =f (x )的定义域为A ,区间I ⊆A .如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说y =f (x )在区间I 上是单调增函数,I 称为y =f (x )的单调增区间.如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说y =f (x )在区间I 上是单调减函数,I 称为y =f (x )的单调减区间.2.最大(小)值一般地,设y =f (x )的定义域为A ,如果存在x 0∈A ,使得对于任意的x ∈A ,都有f (x )≤f (x 0),那么称f (x 0)为y =f (x )的最大值,记为y max =f (x 0);如果存在x 0∈A ,使得对于任意的x ∈A ,都有f (x )≥f (x 0),那么称f (x 0)为y =f (x )的最小值,记为y min =f (x 0).【基础自测】1.如图为函数y =f (x ),x ∈[-5,4]的图象,则它的最大值是________,最小值是________.第1题图2.已知函数①y =|x |;②y =3-x ;③y =1x;④y =-x 2+4.其中在区间(0,1)上是增函数的是__________.3.若函数f (x )=(k 2-3k +2)x +b 在R 上是减函数,则k 的取值范围为__________.4.函数f (x )=-3x 2+1是减函数的区间为__________.5.已知f (x )是R 上的增函数,令F (x )=f (1-x )-f (3+x ),则F (x )是R 上的__________.(填“增函数”或“减函数”)重难点 突破考点1 函数单调性的判断 重点阐述函数单调性的判断方法:(1)定义法;(2)图象观察法;(3)利用已知函数的单调性;(4)利用复合函数的单调性法则;利用定义法的关键是对f (x 1)-f (x 2)的整理、化简、变形和符号的判断,其中变形的策略有因式分解、配方、分子(分母)有理化等. 难点释疑函数的单调性是对定义域内某个区间而言的,函数在某个区间上是单调增(或减)函数,但在整个定义域上不一定是单调递增(或减)函数.例1已知a 、 b 是正整数,函数f (x )=ax +2x +b(x ≠-b )的图象经过点(1, 3). (1)求函数f (x )的解析式;(2)判断函数f (x )在(-1, 0]上的单调性,并用单调性定义证明你的结论.【解】【点评】 熟悉判断函数的单调性或求函数的单调区间的一般方法是解答此题的关键.考点2 复合函数的单调性 难点释疑复合函数的单调性:复合函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.例2:函数y =lgsin ⎝⎛⎭⎫2x +π3的单调递减区间为______________. 【解】【点评】 本题是对数函数与三角函数知识的交汇.复合函数的单调性及单调区间的判断与求解是高考的一个热点.要注意对数函数真数为正的条件限制(即应当首先求得该函数的定义域),另外在答案中还不能忽视k ∈Z 这个条件.举一反三:函数f (x )=ln(2x +1)的单调增区间是________.例3:(13江苏模拟)函数f (x )=log 2(x 2-4)的单调减区间为________.【解】【点评】 本题是对数函数与二次函数的交汇,注意这两个函数在定义域内增减性的差异是解题的关键.举一反三:函数f (x )=log 12(x +1)的单调减区间 为________.考点3 已知函数单调性求参数范围例3:设f (x )是定义在区间(1, +∞)上的函数,其导函数为f ′(x ).如果存在实数a 和函数h (x ),其中h (x )对任意的x ∈(1, +∞)都有h (x )>0,使得f ′(x )=h (x )(x 2-ax +1),则称函数f (x )具有性质P(a ).(1)设函数f (x )=ln x +b +2x +1(x >1),其中b 为实数. ①求证: 函数f (x )具有性质P(b );②求函数f (x )的单调区间;(2)已知函数g (x )具有性质P(2).给定x 1, x 2∈(1,+∞), x 1<x 2,设m 为实数,α=mx 1+(1-m )x 2, β=(1-m )x 1+mx 2,且α>1, β>1,若|g (α)-g (β)|<|g (x 1)-g (x 2)|,求m 的取值范围.【解】【点评】 本题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.举一反三:已知函数f (x )=log a (x 2-ax +2)在(2,+∞)上为增函数,求a 的取值范围.失分 诊断易错点:求解分段函数的单调性问题中忽视定义域(13江苏模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.课堂 训练1.函数y =(3k +2)x +b 在R 上是单调增函数,则k 的取值范围是________.2.函数f (x )=x 2-2x +1的单调增区间为________,当x ∈[-1,2]时,f (x )max =________.3.给定函数①f (x )=-x 2+x +1,②f (x )=1x ,③f (x )=log 13x ,④f (x )=ln x ,其中在其定义域内是减函数的序号是__________. 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________. 5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的单调减函数,那么a 的取值范围是________.。
教学内容函数的单调性与最值教学目标掌握求函数的单调性与最值的方法重点单调性与最值难点单调性与最值教学准备教学过程第2讲函数的单调性与最值知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为A,如果对于定义域A内某个区间I上的任意两个自变量x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义若函数y=f(x)在区间I上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间I叫做函数y=f(x)的单调区间.2.函数的最值一般地,设y=f(x)的定义域为A.如果存在x0∈A,使得对于任意的x∈A,都有f(x)≤f(x0),那么称f(x0)为y=f(x)的最大值,记为y max=f(x0);如果存在x0∈A,使得对于任意的x∈A,都有f(x)≥f(x0),那么称f(x0)为y=f(x)的最小值,记为y min=f(x0).教学效果分析教学过程【训练3】已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-23.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.1.求函数的单调区间:首先应注意函数的单调区间是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.求函数单调区间的常用方法:根据定义、利用图象、单调函数的性质及利用导数的性质.2.复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.3.函数的值域常常化归为求函数的最值问题,要重视函数的单调性在确定函数最值过程中的应用教学效果分析课堂巩固一、填空题1.函数f (x )=log 5(2x +1)的单调增区间是________.2.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是________.3.(2013·南通月考)已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.4.(2014·广州模拟)已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为________.5.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.6.函数f (x )=2x -18-3x 的最大值是________.7.(2012·安徽卷)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.8.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为______.。
第2讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M (1)对于任意x ∈I ,都有f (x )≥M ;(2)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值1.辨明两个易误点(1)区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写出,一般不能用符号“∪”联结,也不能用“或”联结.例如函数f (x )=1x在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不是减函数.2.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数;(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性.3.函数最值的有关结论(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值(最小值).1.教材习题改编如图是函数y =f (x ),x ∈[-4,3]的图象,则下列说法正确的是()A .f (x )在[-4,-1]上是减函数,在[-1,3]上是增函数B .f (x )在区间(-1,3)上的最大值为3,最小值为-2C .f (x )在[-4,1]上有最小值-2,有最大值3D .当直线y =t 与y =f (x )的图象有三个交点时-1<t <22.教材习题改编若函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则()A .k >12B .k <12C .k >-12D .k <-123.教材习题改编y =x 2-6x +5的单调减区间为()A .(-∞,-3]B .(-∞,3]C .[-3,+∞)D .[3,+∞)4.教材习题改编函数f (x )=x 2-2x ,x ∈[-2,4]的单调递增区间为________,f (x )max =__________.5.教材习题改编已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为__________.考点1函数单调性的判定与证明【例1】(1)下列函数中,在区间(0,+∞)上为增函数的是()A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)(2)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.【变式1-1】(2016·高考北京卷)下列函数中,在区间(-1,1)上为减函数的是()A .y =11-x B .y =cos xC .y =ln(x +1)D .y =2-x【变式1-2】判断函数y =x +2x +1在(-1,+∞)上的单调性.考点2求函数的单调区间【例2】(1)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为()A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)(2)求函数f(x)=-x2+2|x|+1的单调区间.【变式2-1】若将本例(2)中的函数变为f(x)=|-x2+2x+1|,应如何求解单调区间.【变式2-2】若将本例(2)中的函数变为y=-x2+2|x|+1,应如何求解单调区间.(1)确定函数的单调区间的方法①定义法:先求定义域,再利用单调性定义来求.②图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,一般不能用“∪”连接.③导数法:利用导数取值的正、负确定函数的单调区间.(2)求复合函数y=f(g(x))的单调区间的步骤①确定函数的定义域.②将复合函数分解成基本初等函数y=f(u),u=g(x).③分别确定这两个函数的单调区间.④若这两个函数同增同减,则y=f(g(x))为增函数;若一增一减,则y=f(g(x))为减函数,即“同增异减”.【变式2-3】作出函数y=|x2-1|+x的图象,并根据函数图象写出函数的单调区间.考点3函数的最值(值域)【例3】(1)函数y=x+x-1的最小值为________.(2)函数y=2x2-2x+3的值域为________.x2-x+1【变式3-1】1.(2017·贵阳检测)定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于()A.-1B.1C.6D.12【变式3-2】函数f(x)=|x-1|+x2的值域为________.考点4函数单调性的应用(高频考点哦)函数单调性结合函数的图象以及函数其他性质的应用已成为近几年高考命题的一个新的增长点,常以选择、填空题的形式出现.高考对函数单调性的考查主要有以下三个命题角度:(1)比较两个函数值或两个自变量的大小;(2)解函数不等式;(3)求参数的值或取值范围.【例4】(1)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =b =f (2),c =f (e),则a ,b ,c 的大小关系为()A .c >a >b B .c >b >a C .a >c >b D .b >a >c(2)设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是()A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)【例5】比较两个函数值或两个自变量的大小1.(2017·九江模拟)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则()A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0【例6】解函数不等式2.已知函数f (x )为R 上的减函数,则满足|1x |f (1)的实数x 的取值范围是()A .(-1,1)B .1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)【例7】求参数的值或取值范围3.(2017·日照模拟)若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是()A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]数形结合思想求函数最值【例8】已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1(x )+f 2(x )2+|f 1(x )-f 2(x )|2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g (x 1)-g (x 2)x 1-x 2>0恒成立,则b -a 的最大值为()A .2B .3C .4D .5【变式8-1】用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,则函数f (x )=min{4x +1,x +4,-x +8}的最大值是__________.,1.下列函数中,定义域是R 且为增函数的是()A .y =2-xB .y =xC .y =log 2xD .y =-1x2.(2017·大连模拟)函数f (x )=x 1-x 在()A .(-∞,1)∪(1,+∞)上是增函数B .(-∞,1)∪(1,+∞)上是减函数C .(-∞,1)和(1,+∞)上是增函数D .(-∞,1)和(1,+∞)上是减函数3.若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为()A .-3B .-2C .-1D .14.函数y x 2-3x +1的单调递增区间为()A B -∞,34C D .34,+∞5.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则()A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3)6.f (x )=2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是()A -14,+∞B .-14,+∞C .-14,D .-14,07.已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是________.8.函数f (x )x ≥1,x 2+2,x <1的最大值为________.9.设函数f (x ),x >0,,x =0,1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.10.已知函数f (x )=x 2+a x(a >0)在(2,+∞)上递增,则实数a 的取值范围为________.11.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.12.已知f (x )2-2tx +t 2,x ≤0,+1x +t ,x >0,若f (0)是f (x )的最小值,则t 的取值范围为()A .[-1B .[-1,0]C .[1,2]D .[0,2]13.已知函数f(x)=ax+1a(1-x)(a>0),且f(x)在[0,1]上的最小值为g(a),求g(a)的最大值.14.已知二次函数f(x)=ax2+bx+1(a>0),F(x)x),x>0,f(x),x<0.若f(-1)=0,且对任意实数x均有f(x)≥0成立.(1)求F(x)的表达式;(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围.。