2-4匀变速直线运动的位移与速度的关系方法
- 格式:ppt
- 大小:995.00 KB
- 文档页数:41
2.4匀变速直线运动的速度与位移关系教学目标:1. 进一步理解匀变速直线运动的速度公式和位移公式。
2. 能较熟练地应用速度公式和位移公式求解有关问题。
3. 能推导匀变速直线运动的位移和速度关系式,并会应用它进行计算。
4. 掌握匀变速直线运动的两个重要要推论。
5.能灵活应用匀变速直线运动的规律进行分析和计算。
学习重点: 1. as v v t 2202=-2. 推论1:S 2-S 1=S 3-S 2=S 4-S 3=…=S n -S n-1=△S=aT 23.推论2:v v t =2学习难点: 推论1主要内容:一、匀变速直线运动的位移和速度关系1.公式:as v v t 2202=-2.推导:3.物理意义:【例一】发射枪弹时,枪弹在枪筒中的运动可以看做匀加速运动,如果枪弹的加速度大小是5×105m /s ,枪筒长0.64米,枪弹射出枪口时的速度是多大?【例二】一光滑斜面坡长为l0m ,有一小球以l0m /s 的初速度从斜面底端向上运动,刚好能到达最高点,试求:小球运动的加速度。
二、匀变速直线运动三公式的讨论at v v t +=02021at t v s += as v v t 2202=-1.三个方程中有两个是独立方程,其中任意两个公式可以推导出第三式。
2.三式中共有五个物理量,已知任意三个可解出另外两个,称作“知三解二”。
3.Vo 、a 在三式中都出现,而t 、Vt 、s 两次出现。
4.已知的三个量中有Vo 、a 时,另外两个量可以各用一个公式解出,无需联立方程.5.已知的三个量中有Vo 、a 中的一个时,两个未知量中有一个可以用一个公式解出,另一个可以根据解出的量用一个公式解出。
6.已知的三个量中没有Vo 、a 时,可以任选两个公式联立求解Vo 、a 。
7.不能死套公式,要具体问题具体分析(如刹车问题)。
【例三】一个滑雪的人,从85 m 长的山坡上匀变速滑下,初速度是1.8 m /s ,末速度是5.0 m /s ,他通过这段山坡需要多长时间?三、匀变速直线运动的两个推论1.匀变速直线运动的物体在连续相等的时间(T)内的位移之差为一恒量。
匀变速直线运动的速度与位移的关系【学习目标】1、会推导公式2202t v v ax -=2、掌握公式2202t v v ax -=,并能灵活应用【要点梳理】要点一、匀变速直线运动的位移与速度的关系根据匀变速运动的基本公式 0t v v a t =+,2012x v ta t =+, 消去时间t ,得2202t v v ax -=.即为匀变速直线运动的速度—位移关系.要点诠释:①式是由匀变速运动的两个基本关系式推导出来的,因为不含时间,所以若所研究的问题中不涉及时间这个物理量时利用该公式可以很方便, 应优先采用. ②公式中四个矢量t v 、0v 、a 、x 也要规定统一的正方向. 要点二、匀变速直线运动的四个基本公式(1)速度随时间变化规律:0t v v at =+. (2)位移随时间变化规律:2012x v t at =+. (3)速度与位移的关系:2202t v v ax -=.(4)平均速度公式:02t x v v +=,02tv v x t +=. 要点诠释:运用基本公式求解时注意四个公式均为矢量式,应用时,要选取正方向.公式(1)中不涉及x ,公式(2)中不涉及t v ,公式(3)中不涉及t ,公式(4)中不涉及a ,抓住各公式特点,灵活选取公式求解.共涉及五个量,若知道三个量,可选取两个公式求出另两个量. 要点三、匀变速直线运动的三个推论 要点诠释:(1)在连续相邻的相等的时间(T )内的位移之差为一恒定值,即△x =aT 2(又称匀变速直线运动的判别式).推证:设物体以初速v 0、加速度a 做匀加速直线运动,自计时起时间T 内的位移 21012x v T aT =+. ① 在第2个时间T 内的位移220112(2)2x v T a T x =+- 2032v T aT =+. ②即△x =aT 2.①122222n n n n x x x x x a T T T ++--∆===323n nx x T +-==… ②x 2-x 1=x 3-x 2=…=x n -x n -1,据此可补上纸带上缺少的长度数据.(2)某段时间内中间时刻的瞬时速度等于这段时间内的平均速度 即022tt v v v v +==. 推证:由v t =v 0+at , ① 知经2t时间的瞬时速度 022t tv v a =+. ② 由①得0t at v v =-,代入②中,得00/20001()2222t t t t v v v v v v v v v +=+-=+-=,即022tt v v v +=. (3)某段位移内中间位置的瞬时速度2x v 与这段位移的初、末速度v 0与v t 的关系为22021()2x t v v v =+. 推证:由速度-位移公式2202t v v ax -=, ①知220222x xv v a-=. ② 将①代入②可得22220022t x v v v v --=,即22021()2x t v v v =+.要点四、初速度为零的匀加速直线运动的几个比例式要点诠释:初速度为零的匀加速直线运动是一种特殊的匀变速直线运动,它自己有着特殊的规律,熟知这些规律对我们解决很多运动学问题很有帮助.设以t =0开始计时,以T 为时间单位,则(1)1T 末、2T 末、3T 末、…瞬时速度之比为v 1:v 2:v 3:…=1:2:3:…. 可由v t =at ,直接导出(2)第一个T 内,第二个T 内,第三个T 内,…,第n 个T 内的位移之比为:x 1:x 2:x 3:x n =1:3:5:…:(2n -1).推证:由位移公式212x at =得2112x aT =, 2222113(2)222x a T a T a T =-=, 2211(3)(2)x a T a T =-25aT =.可见,x 1 : x 2 : x 3 : … : x n =1 : 3 : 5 : … : (2n -1).即初速为零的匀加速直线运动,在连续相等的时间内位移的比等于连续奇数的比.(3)1T 内、2T 内、3T 内、…、位移之比为:222123123x x x =:::…:::…, 可由公式212x at =直接导出. (4)通过连续相同的位移所用时间之比 1231(21)(32)(1)n t t t t n n =----::::::::. 推证:由212x at =知12xt a=, 通过第二段相同位移所用时间 22222(21)xx xt a a a⨯=-=-, 同理:33222x xt a a⨯⨯=-, 2(32)xa=-, 则1231(21)(32)(1)n t t t t n n ⋅⋅⋅=-⋅⋅⋅--::::::-::.要点五、纸带问题的分析方法(1)“位移差法”判断运动情况,设时间间隔相等的相邻点之间的位移分别为x 1、x 2、x 3…. ①若x 2-x 1=x 3-x 2=…=1n n x x --=0,则物体做匀速直线运动. ②若x 2-x 1=x 3-x 2=…=1n n x x --=△x ≠0,则物体做匀变速直线运动.(2)“逐差法”求加速度,根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点的时间间隔),有 41123x x a T -=,52223x x a T -=,63323x x a T-=, 然后取平均值,即1233a a a a ++=6543212()()9x x x x x x T ++-++=. 这样使所给数据全部得到利用,以提高准确性.要点诠释:①如果不用“逐差法”求,而用相邻的x 值之差计算加速度,再求平均值可得:32546521222215x x x x x x x x a T T T T ----⎛⎫=+++ ⎪⎝⎭6125x x T -=.比较可知,逐差法将纸带上x 1到x 6各实验数据都利用了,而后一种方法只用上了x 1和x 6两个实验数据,实验结果只受x 1和x 6两个数据影响,算出a 的偶然误差较大.大段位移,那么在处理纸带时,可以测量出这两大段位移代入上式计算加速度,但要注意分母(3T )2而不是3T 2.(3)瞬间速度的求法在匀变速直线运动中,物体在某段时间t 内的平均速度与物体在这段时间的中间时刻2t时的瞬时速度相同,即2t v v =.所以,第n 个计数点的瞬时速度为:12n n n x x v T++=. (4)“图象法”求加速度,即由12n n n x x v T-+=,求出多个点的速度,画出v -t 图象,直线的斜率即为加速度.【典型例题】类型一、公式2202tv v ax -=的应用 例1、一列从车站开出的火车,在平直轨道上做匀加速直线运动,已知这列火车的长度为l ,当火车头经过某路标时的速度为v 1,而车尾经过这个路标时的速度为v 2,求: (1)列车的加速度a ;(2)列车中点经过此路标时的速度v ; (3)整列火车通过此路标所用的时间t .【答案】(1)22212v v a l -= (2) 22122v v v += (3)122l t v v =+【解析】火车的运动情况可以等效成一个质点做匀加速直线运动,某一时刻速度为v 1,前进位移l ,速度变为v 2,所求的v 是经过2l处的速度.其运动简图如图所示.(1)由匀变速直线运动的规律得22212v v al -=,则火车的加速度为22212v v a l-=.(2)火车的前一半通过此路标时,有22122l v v a -=, 火车的后一半通过此路标时,有22222l v v a-=, 所以有222212v v v v -=-,故22122v v v +=.(3)火车的平均速度122v v v +=,故所用时间122l lt v v v ==+. 【总结升华】对于不涉及运动时间的匀变速直线运动问题的求解,使用2202t v v ax -=可大大简化解题过程.【变式1】在风平浪静的海面上,有一战斗机要去执行一项紧急飞行任务,而航空母舰的弹射系统出了故障,无法在短时间内修复.已知飞机在跑道上加速时,可能产生的最大加速度为5m/s 2,起飞速度为50m/s ,跑道长为100 m .经过计算发现在这些条件下飞机根本无法安全起飞.航空母舰不得不在海面上沿起飞方向运动,从而使飞机获得初速度,达到安全起飞的目的,那么航空母舰行驶的速度至少为多大? 【答案】18.4m /s【解析】若飞机从静止起飞,经过跑道100 m 后,速度为v . 由v 2=2ax .知25100m/s 1010m/s 50m/s v =⨯⨯=<. 故航空母舰要沿起飞方向运动.取航空母舰为参考系,21010m/s 31.6m/s t v ax ===, 故航空母舰行驶的速度至少为(5031.6)m/s 18.4m/s v '=-=.【高清课程:匀变速直线运动中速度与位移的关系 第5页】【变式2】某飞机着陆时的速度是216km/h ,随后匀减速滑行,加速度的大小是2m/s 2。
匀变速直线运动规律匀变速直线运动规律:匀变速直线运动是物体沿直线运动,速度恒定不变的一种运动规律。
它包括物体在任意时刻应具有恒定的速度,且连续变化。
1、位移s与时间t的关系:在匀变速直线运动中,物体在每一小段时间内的位移都是一样的,比如说物体的速度为v(m/s),那么每一小段的速度也是一样的。
所以,在某一时刻t的位移s等于t时刻之前的位移s0 加上t时刻之间时间内的位移,即:s = s0 + v*t 。
2、速度v与时间t的关系:关于速度与时间的关系可以从第一条关系s = s0 + v*t 来理解,由于物体在每一小段时间内的位移都是一样的,而这一小段时间的位移取决于当前的速度与时间的乘积,所以我们可以推出速度与时间的关系v = (s-s0) / t。
3、加速度a与时间t的关系:加速度a与时间t的关系也是可以从第一条关系s = s0 + v*t 来推出的,我们可以将该关系展开后得到:s = s0 + v0*t + 1/2 * a*t^2 ,这里的a就是物体变化的加速度,因此可以推出:a = 2*(s-s0 - v0*t)/t^2 。
4、位移s与速度v的关系:在匀变速直线运动中,物体的速度恒定不变,所以可以简单得知:s = s0 + v*t 。
5、加速度a与速度v的关系:从加速度a与时间t的关系可以得到:a = 2*(s-s0 - v0*t)/t^2 ,因此可以推出:v = v0 + a*t 。
总结而言,匀变速直线运动的规律就是:物体的速度是恒定的,其位移、速度、加速度之间存在着密切的关系,利用上述关系可以得出物体的位移、速度、加速度随时间的变化情况,从而得出物体的完整的运动轨迹。
匀变速直线运动的速度与位移关系匀变速直线运动是物体在直线上以匀变速度运动的一种运动形式。
在这种运动中,物体的速度不是恒定的,而是随着时间的变化而变化。
速度与位移是描述物体运动状态的两个重要物理量,它们之间存在着密切的关系。
我们来了解一下匀变速直线运动的速度与位移的定义。
速度指的是物体在单位时间内所改变的位移量,它的计算公式是速度等于位移除以时间。
位移指的是物体从起点到终点的位置变化量,它的计算公式是位移等于终点位置减去起点位置。
在匀变速直线运动中,速度的变化是连续而平滑的,随着时间的增加或减少,速度会逐渐增大或减小,而位移则是随着速度的变化而变化的。
在匀变速直线运动中,速度与位移之间的关系可以通过速度-时间图和位移-时间图来进行分析。
速度-时间图是以时间为横轴,速度为纵轴进行绘制的图形,它可以直观地反映出物体速度随时间变化的规律。
位移-时间图是以时间为横轴,位移为纵轴进行绘制的图形,它可以直观地反映出物体位移随时间变化的规律。
在匀变速直线运动中,速度与位移之间的关系可以总结为以下几种情况:1. 当速度保持不变时,位移随时间的增加而增加。
这种情况下,物体的速度恒定不变,位移随时间的累积而增加,即位移与时间成正比。
2. 当速度逐渐增大时,位移随时间的增加而增加。
这种情况下,物体的速度随时间的增加而逐渐增大,位移随时间的累积而增加,即位移与时间成正比。
3. 当速度逐渐减小时,位移随时间的增加而减小。
这种情况下,物体的速度随时间的增加而逐渐减小,位移随时间的累积而减小,即位移与时间成反比。
通过对速度与位移的关系进行分析,我们可以得出结论:在匀变速直线运动中,速度与位移之间存在着一种函数关系,即速度是位移的导数。
这个函数关系可以用数学公式来表示,即 v = ds/dt,其中v表示速度,s表示位移,t表示时间。
这个公式表明,速度是位移对时间的变化率,它描述了物体在单位时间内的位移变化情况。
在实际应用中,我们可以利用速度与位移的关系来计算物体在匀变速直线运动中的运动情况。
匀变速直线运动的位移与速度的关系一,速度与位移的关系: 我们知道2001,2t v v at s v t at =+=+消去两式中的时间t ,得到2202t v v as -=我们已知道两个位移公式:2012s v t at =+和2202t v v as -=(1)以上两式仅适用于匀变速直线运动。
(2)解题时选择哪一个公式求解,要看已知量情况,因为前式中无t v ,后式中无t ,故选 择公式时应尽量减少未知量。
(3)本节中所有公式皆为矢量式,除时间t 外,所有物理量皆为矢量,因此在解题时,要 确定一个正方向,常选初速度方向为正方向,其余矢量依据其与0v 方向的关系(即相 同或相反),分别代入“+”、“—”,如果某个量是待求的,可选假定其为“+”,最后根 据结果的“+”、“—”确定实际方向。
二,匀变速直线运动的规律:1、v 0=0的匀加速直线运动的物体,T 秒末、2T 秒末、3 T 秒末…nT 秒末的瞬时速度之比为 v 1:v 2:v 3:…:v n =1:2:3:…:n2、v 0=0的匀加速直线运动的物体,T 秒内、2T 秒内、3 T 秒内…nT 秒内的位移之比为 x 1:x 2:x 3:…:x n =12:22:32:…:n 23、v 0=0的匀加速直线运动的物体,第一个T 秒内、第二个T 秒内、第三个T 秒内、…第n 个T 秒内的位移之比为x Ⅰ:x Ⅱ:x Ⅲ:…:x N =1:3:5:…:(2N -1)4、v 0=0的匀加速直线运动的物体,通过连续相邻相等位移所需时间之比为 t 1:t 2:t 3:…:t n =1:(2-1):(3-2):…:(N -1-N )5、匀变速直线运动的物体在连续相邻相等的时间(T )内的位移之差为一恒定值,即△X=aT 26、匀变速直线运动的物体在某段位移中间位置的瞬时速度与这段位移初、末速度的关系为v 2x =2220tv v +7、匀变速直线运动的物体在某段时间中间时刻的瞬时速度等于这段时间内的平均速度,即v2t =_v =20tv v +8、v t =0的匀减速直线运动可等效看成反向v 0=0的匀加速直线运动例1:一个物体以初速度0v 从斜面上滑下,滑到斜面底端时速度为t v ,则它滑到斜面中点时 速度是多大?例2:某飞机起飞的速度是50m/s,在跑道上加速时可能产生的最大加速度是4m/s2,求飞机从静止到起飞成功需要跑道最小长度为多少?例3:某型号的舰载飞机在航空母舰的跑道上加速时,发动机产生的最大加速度为5m/s2,所需的起飞速度为50m/s,跑道长100m。
2020-2021学年高一物理人教版必修1学案:2.4匀变速直线运动的速度与位移的关系含解析4匀变速直线运动的速度与位移的关系1.匀变速直线运动的速度公式为v=v0+at,位移公式为x=v0t +错误!at2,由以上两个公式消去时间t,就可以得出匀变速直线运动的位移与速度的关系式v2-v错误!=2ax。
做匀变速直线运动的物体,初速度为v0,经过一段位移后的速度为v,则物体经过这段位移中点时的速度v中点多大?提示:根据v2-v2,0=2ax,v2,中点-v2,0=2a×错误!,消去ax,得v=错误!。
中点2.推论公式v2-v错误!=2ax中涉及的四个物理量均是矢量,应用它解题时一般取v0方向为正方向,其他物理量的正、负根据与规定的正方向的关系确定.3.某物体的初速度为v0,以加速度a做匀加速直线运动,如果要它的速度增加到初速度的n倍,则物体的位移是错误!.某汽车以5 m/s的初速度开始由斜坡顶端向下加速运动,已知汽车运动的加速度为1 m/s2,汽车到达斜坡底端的速度为15 m/s,求斜坡的长度.答案:100 m考点一匀变速直线运动的速度与位移的关系(1)公式推导根据匀变速直线运动的基本公式v=v0+at,x=v0t+12at2,消去时间t得v2-v错误!=2ax,即为匀变速直线运动的速度-位移关系.(2)对v2-v错误!=2ax的理解①位移和速度的关系式为矢量式,它对匀减速直线运动也成立,一般规定初速度v0方向为正方向,当物体做匀加速直线运动时,a取正值;当物体做匀减速直线运动时,a取负值.x>0说明位移的方向与初速度方向相同,x<0说明位移的方向与初速度方向相反.②当v0=0时,公式简化为v2=2ax.当加速度一定时,可通过位移求解末速度或通过末速度求解位移.③当v=0时,公式简化为-v错误!=2ax。
当加速度一定时,可通过位移求解初速度或通过初速度求解位移.【例1】一物体由静止开始做匀加速直线运动,当其位移为x 时速度为v,则当位移为错误!时物体的速度v′为多大?物体在做匀加速直线运动的过程中,加速度不变,本题没有涉及时间,也不需要求时间,故可根据速度—位移关系式求解.【解析】由匀变速直线运动的速度—位移关系式v2-v错误!=2ax和v0=0,可得v2=2ax,即v∝错误!所以错误!=错误!=错误!=错误!故位移为错误!时物体的速度v′=错误!v。