高一物理匀变速直线运动的位移
- 格式:ppt
- 大小:421.50 KB
- 文档页数:8
高一物理之匀变速直线运动位移与时间、速度的关系课程目标一、学习目标:1.掌握用v—t图象描述位移的方法;2. 掌握并运用匀变速直线运动的位移与时间、位移与速度的关系;3.通过对微分思想的理解,明确“面积”与位移的关系;熟悉位移公式在不同形式中的应用。
二、重点、难点:重点:位移与时间的推导关系,位移与速度的推导关系x=v0t+at2/2、v2 -v02=2ax。
难点:1. 对公式中各物理量的理解与准确应用。
2. 速度—时间图象中的面积表示位移。
三、考点分析:知识梳理一、物理思维方法归纳总结◆“无限逼近”的思维方法——极限思想:如果△t的值非常小,那么所有小矩形的面积之和就能非常准确地代表物体发生的位移。
◆先微分再求总和的方法——微元法:如果Δt的值极小,那么所有小矩形的面积之和刚好等于v-t图象下面的面积。
◆逆向转换,即逆着物体原来的运动过程考虑,如火车进站刹车滑行,逆着车行方向考虑时就把火车原来的一个匀减速运动转化为一个初速为零的匀加速运动。
◆利用时间等分、位移等分的比例关系,对物体运动的时间和位移进行合理的分割。
应用匀变速直线运动及初速度为零的匀变速直线运动的特殊关系,是研究匀变速直线运动的重要方法,比用常规方法简捷得多。
二、知识点总结1. 匀变速直线运动三公式的讨论 在解题过程中选用公式的基本方法为:(1)如果题目中无位移x ,也不需要求位移,一般选用速度公式at v v 0t +=; (2)如果题中无末速度v ,也不需要求末速度,一般选用位移公式;(3)如果题中无运动时间t ,也不需要求运动时间,一般选用推导公式v 2-v 02=2ax 。
注:①对以上公式中的加速度a ,有:当物体做加速运动时,a 为正;当物体做减速运动时,a 为负。
②如果物体做初速度为零的匀加速运动,那以上公式中的v 0=0。
③匀变速运动的各公式均是矢量式,式中x ,v 0 ,a 要选取统一的正方向,还要注意各量的符号。
匀变速直线运动的位移与时间的关系【学习目标】物理观念(1)知道匀速直线运动的位移x =vt对应着图像中的矩形面积(2)掌握匀变速直线运动的位移与时间关系的公式,及其简单应用(3)掌握匀变速直线运动的位移与速度关系的公式,及其简单应用科学思维(1)提升运用数学知识——函数图像的能力(2)提升运用已知结论正确类比推理的能力科学探究探究位移与时间,速度与位移的关系科学态度与责任提升应用物理知识解决实际问题的能力【学习重难点】1.探究位移与时间,速度与位移的关系2.提升运用数学知识——函数图像的能力3.提升运用已知结论正确类比推理的能力【学习过程】一、知识纲要导引二、基础导学(一)匀变速直线运动的位移(自学教材“匀变速直线运动的位移”部分)1.匀速直线运动的位移:(1)位移公式:x=vt.(2)vt图像:①如图所示,匀速直线运动的vt图像是一条平行于时间轴的直线.②图线与对应的时间轴所围成的矩形面积(图中阴影部分)在数值上等于物体在这段时间内的位移.2.匀变速直线运动的位移(1)vt图像初速度为v0,加速度为a的匀变速直线运动的v t图像如图所示.(2)匀变速直线运动的位移vt图像中着色部分的梯形面积表示匀变速直线运动物体的位移.(3)位移与时间的关系式x=v0t+12at2(4)公式的特殊形式:当v0=0时,x=12at2(由静止开始的匀加速直线运动).(二)速度与位移的关系(自学教材的“速度与位移的关系”部分)1.关系式的推导:2.速度与位移的关系式v2-v20=2ax(1)适用范围:仅适用于匀变速直线运动.(2)各物理量的含义.(3)特点:不涉及时间t.三、思考判断(1)匀速直线运动物体的运动轨迹就是它的xt图像.()(2)位移公式x=v0t+12at2仅适用于匀加速直线运动.()(3)初速度越大,时间越长,匀变速直线运动物体的位移一定越大.()(4)匀变速直线运动的位移与初速度、加速度、时间三个因素有关.()(5)公式v2-v20=2ax适用于所有的直线运动.()(6)做匀加速直线运动的物体,位移越大,物体的末速度一定越大.()(7)确定公式v2-v20=2ax中的四个物理量的数值时,选取的参考系应该是统一的.()四、达标检测单项选择题:1.如图所示,一辆正以8m/s的速度沿直线行驶的汽车,突然以1m/s2的加速度加速行驶,则汽车加速行驶18m时的速度为()A.8m/s B.12m/s C.10m/s D.14m/s2.质点沿直线运动,其位移—时间图像如图所示,关于质点的运动,下列说法中正确的是()A.2s末质点的位移为零,前2s内位移为“-”,后2s内位移为“+”,所以2s末质点改变了运动方向B.2s末质点的位移为零,该时刻质点的速度为零C.质点做匀速直线运动,速度大小为0.1m/s,方向与规定的正方向相反D.质点在4s时间内的位移大小为0.4m,位移的方向与规定的正方向相同3.质点A、B均做匀变速直线运动,它们的运动规律分别是x A=2t-5t2和x B=5t-3t2(位移x A 和x B的单位是m,时间t的单位是s),由这两个关系可知()A.质点A的加速度a A=-5m/s2 B.质点B的初速度v B0=-5m/sC.质点A的加速度a A=-10m/s2 D.质点B的初速度v B0=3m/s4:如图为一质点做直线运动的vt图像,下列说法正确的是()A.在18~22s时间内,质点的位移为24mB.整个过程中,BC段的加速度最大C.BC段表示质点通过的位移大小为34mD.整个过程中,E点所表示的状态离出发点最远5:某航母跑道长200m.飞机在航母上滑行的最大加速度为6m/s2,起飞需要的最低速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为()A.5m/s B.10m/s C.15m/s D.20m/s多项选择题:6.(多选)如图为AK47突击步枪,该枪枪管长度约为400mm,子弹在枪口的速度约为700m/s,若将子弹在枪管中的运动看做匀加速直线运动,下列说法正确的是()A.子弹在枪管中的加速度约为6.125×105m/s2 B.子弹在枪管中的加速度约为6.125×104m/s2C.子弹在枪管中的运动时间约为1.14×10-3s D.子弹在枪管中的运动时间约为0.114s7:(多选)若一质点从t=0时刻开始由原点出发沿直线运动,其速度-时间图像如图所示,则该质点()A.t=1s时离原点最远B.t=2s时离原点最远C.t=3s时回到原点D.t=4s时回到原点8. (多选)做匀减速直线运动的质点,它的加速度大小为a,初速度大小为v0,经过时间t速度减小到零,则它在这段时间内的位移大小可表示为()A .v 0t +12at 2B .v 0tC .v 0t -12at 2 D.12at 2 9.(v 2-v 20=2ax 的理解)(多选)关于关系式v 2-v 20=2ax ,下列说法正确的是( )A .此关系式对非匀变速直线运动也适用B .x 、v 0、a 都是矢量,应用时必须选取统一的正方向C .不管是加速运动还是减速运动,a 都取正值D .v 0和v 是初、末时刻的速度,x 是这段时间内的位移。
第3节匀变速直线运动的位移与时间的关系一、匀速直线运动的位移1.做匀速直线运动的物体在时间t内的位移x=vt。
2.做匀速直线运动的物体,其vt图象是一条平行于时间轴的直线,其位移在数值上等于vt图线与对应的时间轴所包围的矩形的面积。
如图所示。
1.当“面积”在t轴上方时,位移取正值,这表示物体的位移与规定的正方向相同.2.当“面积”在t轴下方时,位移取负值,这表示物体的位移与规定的正方向相反.二、匀变速直线运动的位移1.微分与极限思想的应用在匀变速直线运动中,由加速度的定义易得速度的变化量Δv=a·Δt,只要时间足够短,速度的变化量就非常小,在非常短的时间内,我们就可以用熟悉的匀速直线运动的位移公式近似计算匀变速直线运动的位移。
如图所示,甲图中与Δt对应的每个小矩形的面积就可以看做Δt时间内的位移。
如果把每一小段Δt内的运动看做匀速直线运动,则各小矩形面积之和等于各段Δt 时间内做匀速直线运动的位移之和。
时间Δt 越短,速度变化量Δv 就越小,我们这样计算的误差也就越小。
当Δt →0时,各矩形面积之和趋近于v t 图象与时间轴所围成的面积。
由梯形面积公式得x =v0+v ·t 2在任何运动中都有x =v ·t因此v =v0+v 2(适用匀变速直线运动) 把v =v0+at 代入x =v0+v ·t 2得x =v0t +12at2 2.公式的矢量性公式中x 、v0、a 都是矢量,应用时必须选取统一的正方向,一般选v0方向为正方向,若物体做匀加速直线运动,a 与v0同向,a 取正值。
若物体做匀减速直线运动,a 与v0反向,a 取负值,若位移的计算结果为正值,说明这段时间内位移的方向与规定的正方向相同。
若位移的计算结果为负值,说明这段时间内位移的方向与规定的正方向相反。
3.公式的适用条件公式适用于匀变速直线运动。
4.公式的特殊形式(1)当a =0时,x =v0t(匀速直线运动)。
匀变速直线运动的速度与位移的关系【学习目标】1、会推导公式2202t v v ax -=2、掌握公式2202t v v ax -=,并能灵活应用【要点梳理】要点一、匀变速直线运动的位移与速度的关系根据匀变速运动的基本公式 0t v v at =+, 2012x v t at =+, 消去时间t ,得2202t v v ax -=.即为匀变速直线运动的速度—位移关系.要点诠释:①式是由匀变速运动的两个基本关系式推导出来的,因为不含时间,所以若所研究的问题中不涉及时间这个物理量时利用该公式可以很方便, 应优先采用. ②公式中四个矢量t v 、0v 、a 、x 也要规定统一的正方向. 要点二、匀变速直线运动的四个基本公式(1)速度随时间变化规律:0t v v at =+. (2)位移随时间变化规律:2012x v t at =+. (3)速度与位移的关系:2202t v v ax -=.(4)平均速度公式:02t x v v +=,02tv v x t +=. 要点诠释:运用基本公式求解时注意四个公式均为矢量式,应用时,要选取正方向.公式(1)中不涉及x ,公式(2)中不涉及t v ,公式(3)中不涉及t ,公式(4)中不涉及a ,抓住各公式特点,灵活选取公式求解.共涉及五个量,若知道三个量,可选取两个公式求出另两个量. 要点三、匀变速直线运动的三个推论 要点诠释:(1)在连续相邻的相等的时间(T)内的位移之差为一恒定值,即②x =aT 2(又称匀变速直线运动的判别式). 推证:设物体以初速v 0、加速度a 做匀加速直线运动,自计时起时间T 内的位移 21012x v T aT =+. ② 在第2个时间T 内的位移220112(2)2x v T a T x =+-g2032v T aT =+. ②即②x =aT 2.进一步推证可得②122222n n n n x x x x x a T T T ++--∆===323n nx x T +-==… ②x 2-x 1=x 3-x 2=…=x n -x n-1,据此可补上纸带上缺少的长度数据.(2)某段时间内中间时刻的瞬时速度等于这段时间内的平均速度 即022tt v v v v +==. 推证:由v t =v 0+at , ② 知经2t时间的瞬时速度 022t t v v a =+g . ②由②得0t at v v =-,代入②中,得00/20001()2222t t t t v v v v v v v v v +=+-=+-=,即022tt v v v +=. (3)某段位移内中间位置的瞬时速度2x v 与这段位移的初、末速度v 0与v t 的关系为2x v =推证:由速度-位移公式2202t v v ax -=, ②知220222x xv v a -=g. ② 将②代入②可得22220022t x v v v v --=,即2x v =要点四、初速度为零的匀加速直线运动的几个比例式要点诠释:初速度为零的匀加速直线运动是一种特殊的匀变速直线运动,它自己有着特殊的规律,熟知这些规律对我们解决很多运动学问题很有帮助.设以t =0开始计时,以T 为时间单位,则(1)1T 末、2T 末、3T 末、…瞬时速度之比为v 1:v 2:v 3:…=1:2:3:…. 可由v t =at ,直接导出(2)第一个T 内,第二个T 内,第三个T 内,…,第n 个T 内的位移之比为:x 1:x 2:x 3:x n =1:3:5:…:(2n-1).推证:由位移公式212x at =得2112x aT =, 2222113(2)222x a T aT aT =-=,22311(3)(2)22x a T a T =- 252aT =. 可见,x 1 : x 2 : x 3 : … : x n =1 : 3 : 5 : … : (2n-1).即初速为零的匀加速直线运动,在连续相等的时间内位移的比等于连续奇数的比.(3)1T 内、2T 内、3T 内、…、位移之比为:222123123x x x =:::…:::…, 可由公式212x at =直接导出. (4)通过连续相同的位移所用时间之比12311)n t t t t =g g g g g g ::::::::.推证:由212x at =知1t = 通过第二段相同位移所用时间21)t ==,同理:3t ==,则12311)n t t t t ⋅⋅⋅=⋅⋅⋅::::::::.要点五、纸带问题的分析方法(1)“位移差法”判断运动情况,设时间间隔相等的相邻点之间的位移分别为x 1、x 2、x 3…. ②若x 2-x 1=x 3-x 2=…=1n n x x --=0,则物体做匀速直线运动. ②若x 2-x 1=x 3-x 2=…=1n n x x --=②x≠0,则物体做匀变速直线运动.(2)“逐差法”求加速度,根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点的时间间隔),有 41123x x a T -=,52223x x a T -=,63323x x a T -=, 然后取平均值,即1233a a a a ++=6543212()()9x x x x x x T ++-++=.这样使所给数据全部得到利用,以提高准确性.要点诠释:②如果不用“逐差法”求,而用相邻的x 值之差计算加速度,再求平均值可得:32546521222215x xx x x x x x a T T T T ----⎛⎫=+++ ⎪⎝⎭6125x x T -=.比较可知,逐差法将纸带上x 1到x 6各实验数据都利用了,而后一种方法只用上了x 1和x 6两个实验数据,实验结果只受x 1和x 6两个数据影响,算出a 的偶然误差较大. ②其实从上式可以看出,逐差法求平均加速度的实质是用(x 6+x 5+x 4)这一大段位移减去(x 3+x 2+x 1)这一大段位移,那么在处理纸带时,可以测量出这两大段位移代入上式计算加速度,但要注意分母(3T)2而不是3T 2.(3)瞬间速度的求法在匀变速直线运动中,物体在某段时间t 内的平均速度与物体在这段时间的中间时刻2t时的瞬时速度相同,即2t v v =.所以,第n 个计数点的瞬时速度为:12n n n x x v T++=. (4)“图象法”求加速度,即由12n n n x x v T-+=,求出多个点的速度,画出v-t 图象,直线的斜率即为加速度.【典型例题】 类型一、公式2202t v v ax-=的应用例1、一列从车站开出的火车,在平直轨道上做匀加速直线运动,已知这列火车的长度为l ,当火车头经过某路标时的速度为v 1,而车尾经过这个路标时的速度为v 2,求: (1)列车的加速度a ;(2)列车中点经过此路标时的速度v ; (3)整列火车通过此路标所用的时间t .【答案】(1)22212v v a l -= (2)v = (3)122l t v v =+【解析】火车的运动情况可以等效成一个质点做匀加速直线运动,某一时刻速度为v 1,前进位移l ,速度变为v 2,所求的v 是经过2l处的速度.其运动简图如图所示.(1)由匀变速直线运动的规律得22212v v al -=,则火车的加速度为22212v v a l-=.(2)火车的前一半通过此路标时,有22122lv v a -=g , 火车的后一半通过此路标时,有22222l v v a -=g ,所以有222212v v v v -=-,故v =(3)火车的平均速度122v v v +=,故所用时间122l l t v v v ==+.【总结升华】对于不涉及运动时间的匀变速直线运动问题的求解,使用2202t v v ax -=可大大简化解题过程.举一反三【变式1】(2016 金台区期末考)一物体在水平面上做匀加速直线运动,经过了A 、B 、C 三点,已知A 点速度为v ,B 点速度为3v ,C 点速度为4v ,则AB 段和BC 端的时间比是 A B 段和BC 段的位移比是 【答案】2:1;8:7【解析】设匀加速直线运动的加速度为a :AB 段的时间:32AB v v vt a a -==BCB 段的时间:43BC v v vt a a -==则AB 段和BC 端的时间比: :2:1AB BC t t =AB 段的位移:220(3)2ABv v ax -= BC 段的位移:22(4)(3)2BCv v ax -=AB 段和BC 段的位移比::8:7AB BC x x =【高清课程:匀变速直线运动中速度与位移的关系 第5页】【变式2】某飞机着陆时的速度是216km/h ,随后匀减速滑行,加速度的大小是2m/s 2。