1.2幂的乘方与积的乘方同步练习.
- 格式:docx
- 大小:261.58 KB
- 文档页数:14
14.1.2幂的乘方与积的乘方基础题—初显身手1.计算:0.3756×(-\f(8,3))6等于( B )A.0B.1C.-5 D.-12.下列各式中,错误的是(D )A.(xy)2=x2y2 B.(-xy)3=x3y4C.(-2x3)2=4x5D.(-2xy)3=-8x3y33.下列运算中,正确的是( C)A.a+a=a2 B.a·a2=a2C.(2a)2=4a2D.(-2a)3=8a34.计算:(2x)2=4x2;(-3b)3=-27b3.能力题—挑战自我5.计算下列各式,其结果为1010的是( C )A.105+105 B.(58×28)2C.(2×5×104)2D.(107)36.下列计算正确的是( D )A.(6x6y2)2=12x12y4B.(x2)3+(-x3)2=0C.(3×104)×(2×103)=6×1012D.-(3×2)3=(-3×2)37.计算(-4×103)2×(-2×103)3的结果,正确是(B )A.1.08×1017 B.–1.28×1017C.4.8×1016 D.–1.4×10168.在①-(3ab)2=9a2b2;②(4x2y3)2=8x4y6;③[(xy)3]2=x6y6;④a6b3c3=(a2bc)3中,计算错误的个数是( B )A.3个B.2个 C.1个D.0个9.计算(52·5n)m=52m·5mn的根据是( D )A.同底数幂的乘方B.幂的乘方C.积的乘方D.先根据积的乘方再根据幂的乘方10.下列各式的结果与(-2a2)2·a4-(-5a4)2的结果相同的是( C )A.3(-a2)·7(-a2)3B.3(-a)2·7(a2)3C.3(-a)2·7(-a2)3D.4(-a2)·7(a2)311.若m,n,p为正整数,则(am·an)p等于(D )A.am·a np B.a mp·a nC.a mnpD.amp+np12.计算-[-(-2a)2]3等于( B )A.8a5 B.64a6 C.-64a6 D.256a813.若(2a mbn)3与8a9b15是同类项,则m,n的值是( C ).A.m=6,n=12 B.m=3,n=12C .m=3,n=5 D.m=6,n =514.已知P =(-ab 3)2,那么-P 2的正确结果是( D )A .a 4b12 B.-a 2b 6C.-a 4b 8D.-a 4b12 11.(-3xy 2)3 =-27x3y 6, -(-2a 2b3)2=-4a 4b 6;(-\f (1,3)xy )3·x =\f (1,27)x 4y3.15.(1)-27a 6b 9=(-3a 2b 3)3;(2)若(a n ·bp ·b )3=a 9b 15,则p =4,n=3.16.计算:(1)(0.125)16×(-8)15;(2) (-错误!)99×950;(3)(-2x 6)+(-3x 3)2-[-(-2x )2]3;(4)2(x3)2·x 3-(3x 3)3+x 2·x 7.解:(1)原式=(0.125)15×(-8)15×0.125=[0.125×(-8)]15×0.125=(-1)15×0.125=-0.125;(2)原式=(-\f (1,3))99×3100=(-\f (1,3))99×399×3=(-\f (1,3)×3)99×3=-1×3=-3;(3)原式=-2x 6+9x 6-(-4x 2)3=-2x6+9x 6-(-64x 6)=-2x6+9x 6+64x 6=71x 6;(4)原式=2x6·x 3-27x 9+x 9=2x 9-27x 9+x9=-24x 9.17.先化简,再求值:a 3·(-b 3)2+(-错误!ab 2)3,其中a =2,b=1.解:原式=a 3b 6+(-错误!a 3b 6)=错误!a3b 6=错误!×23×16=错误!.18.若am =3,b m =16,求(ab )2m 的值. 解:因为a m =3,bm=错误!,所以(a b)m =a m b m =3×错误!=错误!,所以(ab)2m =[(ab)m]2=(12)2=错误!. 拓展题—勇攀高峰19.已知x 2n =2(n 是正整数),求(3x 2n )2-4(x 2)2n 的值.解:因为x 2n=2 ,所以(x 2n )2=4,即x 4n =4.(3x 2n )2-4(x2)2n =9x 4n -4x 4n =5x 4n =5×4=20. 20.已知2a m=6,b m =9,求(a 2b )m 的值.解: (a2b )m=(a 2)m ·bm =(a m )2·b《轴对称》尊敬的各位评委:大家好!今天我说课的内容是轴对称中的第一课时,下面,对本节课进行说明 。
《幂的乘方与积的乘方》典型例题例1 计算:(1)199********.08⨯;(2)3014225.01⨯-例2 计算题:(1)43)(b -; (2)n m 24)(; (3)5])[(m y x -; (4)3542)()(x x ⋅; (5)32)4(n m ⋅; (6)43)32(ab -.例3 计算题(1)33326)3()5(a a a ⋅-+-;(2)5335654)()2(a a a a a -+--⋅⋅;(3)1232332312)()(3)()(4--⋅+⋅-n n n n a b b a ;(4)))(2()3(24232xy y x xy --+-。
例4 计算题。
(1)20012001125.08⨯; (2)199910003)91(⨯-; (3)2010225.0⨯。
例5 比较5553,4444,3335的大小。
参考答案例1 解:(1)原式199********.088⨯⨯=8181997=⨯=;(2)原式15214)2(25.01⨯-= 1514425.01⨯-= 4425.011414⨯⨯-=4)425.0(114⨯⨯-=41114⨯-=41-= 说明:(1)逆用了积的乘方性质;n n n ab b a )(=;(2)先后逆用幂的乘方n m mn a a )(=和同底数幂的乘法n m n m a a a ⋅=+的运算性质。
例2 分析:运算中同底数幂相乘和幂的乘方要注意加以区分,同底数幂相乘指数相加 ,而幂的乘方是指数相乘。
在积的乘方运算中要注意以下的错误,如333)2()2(y a y a -=-。
解:(1)43)(b -;)()1(12434b b =⋅-=(2)n n n m m m 84242)(=⨯=;(3)m m y x y x 55)(])[(-=-;(4)231583542)()(x x x x x =⋅=⋅;(5)363264)4(n m n m =⋅;(6)1244344438116)()32()32(b a b a ab =⋅⋅-=-。
2021年北师大版七年级数学下册1.2幂的乘方与积的乘方自主学习同步练习题1(附答案)1.计算(﹣x)2•x4所得的结果是()A.x6B.﹣x6C.x8D.﹣x82.42020×(﹣0.25)2019的值为()A.4B.﹣4C.0.25D.﹣0.253.已知x m=2,y n=5,那么(x m y n)2=.4.计算:(﹣0.25)2020×42020=.5.计算:0.52018×(﹣2)2019=.6.计算:(﹣0.125)300×(﹣8)301=.7.若2x+3y+2=0,则9x•27y的值是.8.计算:(﹣4)2020×0.252019=.9.计算:(﹣2)2020×()2019=.10.已知27b=9×3a+3,16=4×22b﹣2,则a+b的值为.11.下列各式中:①(﹣a2)3;②(﹣a3)2;③(﹣a)5(﹣a);④(﹣a2)(﹣a)4.其中计算结果等于﹣a6的是.(只填写序号)12.计算:(mn2)3=.13.计算:52019×0.22020=.14.若2x=4y﹣1,27y=3x+7,则x+y=.15.已知10x=2,10y=5,则102x+3y=.16.若15a=600,40b=600,则的值为.17.当3m+2n=4时,则8m•4n=.18.(﹣)2014×(﹣1.5)2015=.19.常见的“幂的运算”有:①同底数幂的乘法,②同底数幂的除法,③幂的乘方,④积的乘方.在“(a2•a3)2=(a5)2=a10”的运算过程中,运用了上述幂的运算中的(填序号).20.已知正整数a,b满足()a()b=4,则a﹣b=.21.计算x4•x2=;(﹣3xy2)3=;0.1252011×82010=.22.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=.23.若x2n=﹣2,求(3x3n)2﹣4(x2)2n的值.24.已知:x a=5,x b=2,x c=50.(1)求x2a+3b的值;(2)写出a,b,c之间具有的数量关系,并说明理由.25.阅读理解:下面是小明完成的一道作业题.小明的作业:计算:(﹣4)7×0.257解:原式=(﹣4×0.25)7=(﹣1)7=﹣1.知识迁移:请你参考小明的方法解答下面的问题:①82018×(﹣0.125)2018;②()11×(﹣)13×()12.知识拓展:若2•4n•16n=219,求n的值.26.已知:5m=a,5n=b,用a、b分别表示52m及52m+53n+52m+3n.27.幂的运算(1)(﹣2ab)3.(2)(x2y3)4+(﹣2x4y)2y10.28.用所学知识,完成下列题目:(1)若2a=3,2b=6,2c=12,直接说出a,b,c之间的数量;(2)若2a=6,4b=12,16c=8,试确定a,b,c之间的数量关系,并说明理由;(3)若a5=2,b5=3,c5=72,试确定a,b,c之间的数量关系,并说明理由.29.计算:(2a2)3+(﹣3a3)2+(a2)2•a230.已知等式6x+1×5x﹣6x×5x+1=33×103,求x的值.31.(1)计算:(﹣a)(﹣a)5+(a2)3(2)计算:(﹣0.125)10×811.32.如果3n•27n•81n=916,求n的值.33.(x4)2+(x2)4﹣x(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)34.已知2a=3,2b=5,求23a+2b+2的值.参考答案1.解:(﹣x)2•x4=及x2•x4=x2+4=x6.故选:A.2.解:42020×(﹣0.25)2019=42019×=[4×]2019×4=﹣1×4=﹣4,故选:B.3.解:∵x m=2,y n=5,∴(x m y n)2=x2m•y2n=(x m)2•(y n)2=22×52=4×25=100.故答案为:100.4.解:(﹣0.25)2020×42020==(﹣1)2020=1.故答案为:1.5.解:0.52018×(﹣2)2019=0.52018×22018×(﹣2)=(0.5×2)2018×(﹣2)=1×(﹣2)=﹣2.故答案为:﹣2.6.解:(﹣0.125)300×(﹣8)301=0.125300×8300×(﹣8)=(0.125×8)300×(﹣8)=1×(﹣8)=﹣8.故答案为:﹣8.7.解:由2x+3y+2=0可得2x+3y=﹣2,∴9x•27y=32x•33y=32x+3y=3﹣2=.故答案为:8.解:原式=42019×0.252019×4==12019×4=1×4=4.故答案为:49.解:原式=2×22019×()2019=2×(2×)2019=2×1=2.故答案为2.10.解:∵27b=33b=9×3a+3=3a+5,16=24=4×22b﹣2=22b,∴a+5=3b,2b=4,解得b=2,a=1,∴a+b=1+2=3.故答案为:311.解:①(﹣a2)3=﹣a6;②(﹣a3)2=a6;③(﹣a)5(﹣a)=a6;④(﹣a2)(﹣a)4=﹣a2•a4=﹣a6.∴计算结果等于﹣a6的是①④.故答案为:①④12.解:(mn2)3==.故答案为:.13.解:52019×0.22020=52019×0.22019×0.2=(5×0.2)2019×0.2=0.2;故答案为:0.2.14.解:∵2x=4y﹣1,27y=3x+7,∴2x=22y﹣2,33y=3x+7,∴,解得,∴x+y=8+5=13.故答案为:1315.解:∵10x=2,10y=5,∴102x+3y=(10x)2×(10y)3=22×53=4×125=500.故答案为:50016.解:15a=600=15×40,则15a﹣1=40,40b=600=15×40,则40b﹣1=15,∴(15a﹣1)b﹣1=15,即15(a﹣1)(b﹣1)=15,∴(a﹣1)(b﹣1)=1,∴ab﹣a﹣b=0,则+=1,故答案为:1.17.解:8m•4n=(23)m•(22)n=23m•22n=23m+2n ∵3m+2n=4,∴原式=24=16.故答案为:16.18.解:==12014×(﹣1.5)=﹣1.5.故答案为:﹣1.5.19.解:(a2•a3)2=(a5)2(利用同底数幂的乘法得到)=a10(利用幂的乘方得到),故运算过程中,运用了上述幂的运算中的①③.故答案为:①③.20.解:()a()b=()b=•2a•=4,∴a=2,2a=b,∴a=2,b=4,∴a﹣b=2﹣4=﹣2,故答案为:﹣2.21.解:x4•x2=x4+2=x6,(﹣3xy2)3=﹣27x3y6,0.1252011×82010=0.1252010×0.125×82010=(0.125×8)2010×0.125=1×0.125=0.125,故答案为:x6,﹣27x3y6,0.125.22.解:∵6x=192,32y=192,∴6x=192=32×6,32y=192=32×6,∴6x﹣1=32,32y﹣1=6,∴(6x﹣1)y﹣1=6,∴(x﹣1)(y﹣1)=1,∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=﹣23.【解:∵x2n=﹣2,∴原式=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×(﹣2)3﹣4×(﹣2)2=9×(﹣8)﹣4×4=﹣72﹣16=﹣88.24.解:(1)∵x a=5,x b=2,∴22a+3b=22a•23b=(2a)2•(2b)3=52×23=25×8=200;(2)∵x a=5,x b=2,∴x2a•x b=52×2=50=x c,∴2a+b=c.25.解:知识迁移:①原式=(﹣8×0.125)2018=(﹣1)2018=1;②原式=(﹣××)11××(﹣)2=﹣×=﹣;知识拓展:由已知得,2•4n•16n=219,则2•22n•24n=219,故1+2n+4n=19,解得:n=3.26.解:52m=(5m)2=a2,52m+53n+52m+3n=(5m)2+(5n)3+(5m)2×(5n)3=a2+b3+a2b3.27.解:(1)(﹣2ab)3=(﹣2)3a3b3=﹣8a3b3;(2)(x2y3)4+(﹣2x4y)2y10=x8y12+4x8y2•y10=x8y12+4x8y12=5x8y12.28解:(1)∵2a•2c=2a+c=3×12=36,2b•2b=22b=6×6=36,∴2a+c=22b,即a+c=2b,故答案为:a+c=2b;(2)a,b,c之间的数量关系为:4c=6b﹣3a,理由如下:∵4b=22b=12,16c=24c=8,∴22b÷2a=22b﹣a=2,∴24c=8=23=(22b﹣a)3=26b﹣3a,∴4c=6b﹣3a;或因为6×8=4×12,则有a+4c=2+2b.(3)a,b,c之间的数量关系为:c=a3b2,理由如下:∵c5=72=23×32=(a5)3•(b5)2=(a3b2)5,∴c=a3b2.29.解:(2a2)3+(﹣3a3)2+(a2)2•a2=23×(a2)3+(﹣3)2×(a3)2+(a2)2×a2=8a6+9a6+a6=(8+9+1)a6=18a6.30.解:因为6x+1×5x﹣6x×5x+1=6x×5x×6﹣6x×5x×5=(6×5)x×6﹣(6×5)x×5=30x×(6﹣5)=30x,33×103=(3×10)3=303,且6x+1×5x﹣6x×5x+1=33×103,所以30x=303,所以x=3.31.解:(1)(﹣a)(﹣a)5+(a2)3=(﹣a)6+a6=a6+a6=2a6(2)(﹣0.125)10×811=0.12510×810×81=(0.125×8)10×8=1×8=832.解:∵3n•27n•81n=916,∴94n=916,∴4n=16,解得n=4.33.解:(x4)2+(x2)4﹣x(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)=x8+x8﹣x9﹣x8﹣x8=﹣x934.解:原式=23a•22b•22=(2a)3(2b)2•22=33×52×4=2700.。
1.2幂的乘方与积的乘方一、选择题(本大题共8小题,共24.0分)1.下列运算正确的是()A. (a2)3=a5B. a4⋅a2=a8C. a6÷a3=a2D. (ab)3=a3b32.下列计算中,正确的是()A. (a3)4=a12B. a3⋅a5=a15C. a2+a2=a4D. a6÷a2=a33.下列运算中正确的是()A. (π−1)0=0B. 3−2=−6C. (−a)2=a2D. (a3)2=a54.比较355,444,533的大小,正确的是()A. 444>355>533B. 533>444>355C. 355>444>533D. 355>533>4445.下列计算正确的是()A. a4+a5=a9B. (2a2b3)2=4a4b6C. −2a(a+3)=−2a2+6aD. (2a−b)2=4a2−b26.已知5a=m,2a=n,则用m、n表示10−2a正确的是()A. mnB. m2n2C. 1mn D. 1m2n27.计算82×42001×(−0.25)2005的值等于()A. 1B. −1C. 14D. −148.若x,y均为正整数,且2x+1⋅4y=128,则x+y的值为()A. 4B. 5C. 4或5D. 无法确定二、填空题(本大题共8小题,共24.0分)9.计算:(x2)3=______.10.若a+4b−4=0,则2a⋅16b=______.11.若22m+1+4m=48,则m=______.12.若m+2=3n,则3m⋅27−n的值是______.13.若(a3)m=a4⋅a m,则m=______.14.已知x3=m,x5=n,则x14用m、n表示为____.15.计算:(a−2b)3⋅(2b−a)2=______ .(结果用幂的形式表示)16.若6a=5,6b=8,则36a−b=________.三、解答题(本大题共4小题,共32.0分)17.化简:(−2a2b3)3+3a4b3×(−ab3)2.18.(1)若10x=3,10y=2,求代数式103x+4y的值.(2)已知:3m+2n−6=0,求8m⋅4n的值.19.“已知a m=4,a m+n=20,求a n的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得:a m+n=a m a n,所以20=4a n,所以a n=5.请利用这样的思考方法解决下列问题:已知a m=3,a n=5,求下列代数的值:(1)a2m+n;(2)a m−3n.20.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:)=______.(3,27)=______,(5,1)=______,(2,14(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)答案和解析1.【答案】D【解析】【分析】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a ≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:A.∵(a 2)3=a 6,∴选项A 不符合题意;B .∵a 4⋅a 2=a 6,∴选项B 不符合题意;C .∵a 6÷a 3=a 3,∴选项C 不符合题意;D .∵(ab)3=a 3b 3,∴选项D 符合题意.故选D .2.【答案】A【解析】【分析】本题主要考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A.(a 3)4=a 3×4=a 12,故A 正确;B .a 3⋅a 5=a 3+5=a 8,故B 错误;C .a 2+a 2=2a 2,故C 错误;D .a 6÷a 2=a 6−2=a 4,故D 错误;故选A .3.【答案】C【解析】【分析】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 根据整式的运算法则即可求出答案.【解答】解:A.原式=1,故A 错误;B .原式=(13)2=19,故B 错误;C .(−a)2=a 2,故C 正确;D .原式=a 6,故D 错误.故选C . 4.【答案】A【解析】【分析】本题考查了幂的乘方与积的乘方,熟练掌握幂的乘方运算法则是解本题的关键. 利用幂的乘方运算法则将三数变形,比较即可.【解答】解:∵355=(35)11,444=(44)11,533=(53)11,且53<35<44,∴444>355>533,故选A5.【答案】B【解析】解:A 、a 4与a 5不是同类项,不能合并,故本选项错误;B 、(2a 2b 3)2=4a 4b 6,故本选项正确;C 、−2a(a +3)=−2a 2−6a ,故本选项错误;D 、(2a −b)2=4a 2−4ab +b 2,故本选项错误;故选:B .根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.6.【答案】D【解析】【分析】此题主要考查了积的乘方和负整数指数幂,关键是掌握负整数指数为正整数指数的倒数. 根据积的乘方可得5a ⋅2a =(5×2)a =10a =nm ,然后再根据负整数指数幂可得10−2a =(110)2a 进而得到答案. 【解答】解:∵5a =m ,2a =n ,∴5a ⋅2a =(5×2)a =10a =nm ,∵10−2a =(110)2a =1102a =1m 2n 2,故选D .7.【答案】D【解析】解:82×42001×(−0.25)2005,=43×42001×(−0.25)2005,=42004×(−0.25)2005=−0.25×(−4×0.25)2004,=−14.故选D .先把以8为底数的幂转化为以4为底数的幂,再根据积的乘方的性质的逆用进行计算,然后即可选取答案.本题考查积的乘方的运算性质的逆用,熟练掌握运算性质并灵活运用是解决本题的关键. 8.【答案】C【解析】【分析】本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是化为相同底数的幂的形式.先把2x+1⋅4y 化为2x+1+2y ,128化为27,得出x +1+2y =7,即x +2y =6因为x ,y 均为正整数,求出x ,y ,再求了出x +y .【解答】解:∵2x+1⋅4y =2x+1+2y ,27=128,∴x +1+2y =7,即x +2y =6∵x ,y 均为正整数,∴{x =2y =2或{x =4y =1,∴x +y =5或4.故选C .9.【答案】x 6【解析】解:原式=x 2×3=x 6.故答案为x 6.根据幂的乘方,底数不变,指数相乘,进行计算.此题考查了幂的乘方的性质.10.【答案】16【解析】解:∵a +4b −4=0,∴a +4b =4,∴2a ⋅16b =2a ⋅(24)b =2a ⋅24b =2a+4b =24=16,故答案为:16.先求出a +4b =4,再用幂的运算性质化简2a ⋅16b =2a+4b 即可得出结论.此题主要考查了幂的乘方,积的乘方,同底数幂的乘法,得出2a ⋅16b =2a+4b 是解本题的关键.11.【答案】2【解析】解:因为22m+1+4m =48,可得:4m ×2+4m =3×4m =3×42,可得:m =2,故答案为:2.根据幂的乘方与积的乘方解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方的法则解答. 12.【答案】19【解析】解:∵m +2=3n ,∴m −3n =−2,∴3m ⋅27−n =3m ⋅3−3n =3m−3n =3−2=19.故答案为:19.直接利用幂的乘方运算法则再结合同底数幂的乘法运算法则计算得出答案.此题主要考查了幂的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.13.【答案】2【解析】解:∵(a 3)m =a 4⋅a m ,∴a 3m =a 4+m ,∴3m =4+m ,解得m =2.故答案为:2.首先根据幂的乘方的运算方法:(a m )n =a mn ,可得(a 3)m =a 3m ,然后根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,可得a4⋅a m=a4+m,所以a3m=a4+m,所以3m=4+m,据此求出m的值是多少即可.(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.14.【答案】m3n【解析】【分析】本题考查幂的乘方和同底数幂的乘法,属于基础题,关键在于掌握幂的乘方的运用,根据幂的乘方和同底数幂的乘法的性质可得出m、n的代数式.【解答】解:根据题意可把14次方分为9次方加5次方,∵x3=m,x5=n,∴x14=x9⋅x5=(x3)3⋅x5=m3n.故答案为m3n.15.【答案】(a−2b)5【解析】解:(a−2b)3⋅(2b−a)2=(a−2b)3⋅(a−2b)2=(a−2b)5.故答案为:(a−2b)5.先根据互为相反数的两个数的平方相等整理成同底数幂的乘法,再根据“同底数幂相乘底数不变指数相加”进行计算即可得解.本题主要考查了同底数幂的乘法,转化为同底数幂相乘是解题的关键.16.【答案】2564【解析】【分析】本题考查有理数的乘方,幂的乘方和同底数幂的除法。
)幂的乘方与积的乘方 练习题一、判断题1.(xy )3=xy 3 ( )2.(2xy )3=6x 3y 3( ) 3.(-3a 3)2=9a 6 ( )4.(32x )3=38x 3( )5.(a 4b )4=a 16b ( )`二、填空题1.-(x 2)3=______,(-x 2)3=______;2.(-21xy 2)2=_______;3.81x 2y 10=( )2;4.(x 3)2·x 5=_____;5.(a 3)n =(a n )x (n 、x 是正整数),则x =_____.三、选择题。
1.计算(a 3)2的结果是( ).A .a 6B .a 5C .a 8D .a 92.计算(-x 2)3的结果是( ).A .-x 5B .x 5C .-x 6D .x 63.运算(a 2·a n )m =a 2m ·a mn ,根据是( ).A .积的乘方B.幂的乘方C.先根据积的乘方再根据幂的乘方"D.以上答案都不对4.-a n=(-a)n(a≠0)成立的条件是( ).A.n是奇数 B.n是偶数C.n是整数 D.n是正整数5.下列计算(a m)3·a n正确的是( ).A.a m+n B.a3m+nC.a3(m+n) D.a3mn,四、解答题1.已知:84×43=2x,求x.2.如下图,一个正方体棱长是3×102mm,它的体积是多少mm\3.选做题4πr3计算出地球的数学课上老师与同学们一起利用球的体积公式V=3体积是×1011(km3),接着老师问道:“太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢”同学们立即计算起来,不一会好多同学都举手表示做完了,小丁的答案是×1013(km3),小新的答案是×1015(km3),小明的答案是×1017(km3),那么这三位同学谁的答案正确呢请同学们讨论,并将你的正确做法写出来.(—$参考答案一、判断题1.×2.×3.√4.×5.×)二、填空题1.-x6,-x61x2y42.43.9xy54.x115.3三、选择题1.A-2.C3.C4.A5.B四、解答题1.(23)4×(22)3=2x∴212×26=2x,∴218=2x∴x=182.(3×102)3=33×(102)3=27×106=×107 3.小明的对,略.。
幂的乘方与积的乘方练习题及答案第1课时幂的乘方基础题1.计算(a2)3的结果是()A.a5 B.a6 C.a8 D.3a22.下列式子的化简结果不是a8的是()A.a6·a2 B.(a4)2 C.(a2)4 D.(a4)43.下列各式计算正确的是()A.(x3)3=x6 B.a6·a4=a24C.[(-x)3]3=(-x)9 D.-(a2)5=a104.下列运算正确的是()A.a2+a2=a4 B.a5-a3=a2 C.a2·a2=2a2 D.(a5)2=a105.填空:( )2=( )3=( )4=a12.6.已知x n=2,则x3n=____.7.已知10a=5,那么100a的值是()A.25 B.50 C.250 D.5008.若3x+4y-5=0,则8x·16y的值是()A.64 B.8 C.16 D.329.下列各式与x3n+2相等的是()A.(x3)n+2 B.(x n+2)3C.x2·(x3)n D.x3·x n+x210.计算(-p)8·[(-p)2]3·[(-p)3]2的结果是()A.-p20 B.p20 C.-p18 D.p1811.若26=a2=4b,则a b等于()A.43 B.82 C.83 D.4812.若 2a=3,2b=4,则23a+2b等于()A.7 B.12 C.432 D.10813.若3×9m×27m=321,则m的值是()A.3 B.4 C.5 D.614.若a4n=3,那么(a3n)4=____.15.若5m=2,5n=3,则53m+2n+1=_______.16.填空:(1)(-a3)2·(-a)3=________;(2)[(x-y)3]5·[(y-x)7]2=_______;(3)a3·(a3)2-2·(a3)3=____________.精选题17.计算:(1)(-x)3·(x3)2·(-x)4=_________.(2)x n-1·(x n+2)2·x2·(x2n-1)3=_______.(3)2(x3)2·x2-3(x2)4+5x2·x6=_____.(4)[(a-b)3]2-2(a-b)3·(b-a)3=.18.若x2n=5,且n为整数,求(x3n)2-5(x2)2n的值.19.已知10m=2,10n=3,求103m+2n的值.20.(1)已知2x+5y-3=0,求4x·32y的值;(2)已知273×94=3x,求x的值.21.已知A=355,B=444,C=533,试比较A,B,C的大小.第2课时积的乘方基础题1.计算(x3)2的结果是()A.x5 B.x6 C.x8 D.x92.下列计算错误的是()A.a2·a=a3 B.(ab)2=a2b2C.(a2)3=a5 D.-a+2a=a3.计算(x2y)3的结果是()A.x5y B.x6y C.x2y3 D.x6y3 4.计算(-3a2)2的结果是()A.3a4 B.-3a4 C.9a4 D.-9a45.计算(-0.25)2010×42010的结果()A.-1 B.1 C.0.25 D.44020 6.-(a3)4=_____.7.若x3m=2,则x9m=_____.8.[(-x)2] n·[-(x3)n]=______.9.若a2n=3,则(2a3n)2=____.10.计算:(1)(a4)3+m (2)(-4xy2)211.计算: (x-y)3·(y-x)2·(x-y)4.12.计算(1)(-0.25)11×411 (2)(-0.125)200×8201精选题13.若x m·x2m =2,求 x9m 的值14.若x m =2,求 x4m 的值15已知:644×83=2x,求x.16.计算:(-2x2y3)+8(x2)2·(-x)2·(-y)3.17.某养鸡场需定制一批棱长为3×102毫米的正方体鸡蛋包装箱(包装箱的厚度忽略不计),求一个这样的包装箱的容积.(结果用科学记数法表示)1.2 幂的乘方与积的乘方第1课时幂的乘方1 B2 D3 C4 D 5. a6,a4,a3 6. 8 7. A 8 .D 9 .C 10. B 11. C 12. C 13.B 14. 2715. 36016. (1) -a9 (2) (x-y)29 (3) -a917. (1) 解:原式=x13(2) 解:原式=a9n+2(3) 解:原式=4x8(4) 解:原式=3(a-b)618. 解:原式=x6n-5x4n=(x2n)3-5(x2n)2=53-5×52=019. 解:103m+2n=(10m)3·(10n)2=23×32=7220. (1) 解:由2x+5y-3=0得2x+5y=3,所以4x·32y=22x·25y=22x+5y=23=8(2) 解:x=1721. 解:因为A=355=(35)11=24311;B=444=(44)11=25611;C=533=(53)11=12511,所以B>A>C第2课时积的乘方1.B 2.C 3.D 4.C 5.B6.-a127.8 8.-x5n9.10810.a12+4m,16x2y4 11.(x-y)9 12.-1,813.解:x m·x2m=x3m=2,∵x9m =(x3m)3,∴x9m的值为814.解:x m =2,∵x4m=(x m)4,∴x4m的值为1615.∵644×83=(26)4×(23)3=224×29=233∵644×83=2x,∴233=2x,∴x=33.16.-16x6y3.17.(3×102)3=33(102)3=27×106=2.7×107(立方毫米).答:一个这样的包装箱的容积是2.7×107立方毫米.。
同底数幂的乘除法、积的乘方、幂的乘方专项练习一、同底数幂的乘法:n m a a a n m n m ,(+=⋅是正整数)1。
公式及其推广:m n p m n p a a a a ++=p n m ,,(是正整数)2.公式顺用:例1、计算(1) 21n n n a a a ++ (2)232)()(x x x -⋅⋅- (3)432111()()()101010-- (4)34(2)(2)(2)x y x y y x --- (5)2132()()()n n a a a ++---练习(1)若,1032x x x m m =-则整式=+-1322m m (2)若,1282)8(22-=⋅-⋅+n n 则=n(3)n 为正整数=-+-+n n 212)2(2)2(,3。
公式的逆用例2。
若,64412=+a 解关于x 的方程)1(532-=+x x a 二、幂的乘方:p n m a a a p n m mn n m ,,(])[(,)(=是正整数)1.公式的应用例3.计算:(1)34()x - (2)34[()]x -练习:计算下列各题253(1)()x x - 2844(2)()()x x 2332222(3)()()(2)y y y y +-2.公式的逆用例4.(1)已知,3,2==n n y x 求n n y x )()(23的值;(2)已知,310,210==b a 求b a 3210+的值;(3)若,0352=-+y x 求y x 324⋅的值; (4)若,)()(963131y x y x n m =⋅+-求n m +的值.三、积的乘方:n c b a abc b a ab n n n n n n n ()(,)(==是正整数)1.公式的顺用例5.计算:(1)52)(b x - 322(2)(2)()ab ab 23(3)3()x x --练习:计算2233(1)()()(5)ab a b ab -- 122(2)()()n n n c d c d -2。
幂的乘方与积的乘方练习题及答案一、选择题1. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −322. (−a 5)2+(−a 2)5的结果是( )A. 0B. −2a 7C. 2a 10D. −2a 10 3. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A. a >b >cB. c >b >aC. b >a >cD. b >c >a4. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系不成立的是( ) A. c =2b −1 B. c =a +bC. b =a +1D. c =ab5. 下列运算错误的是( )A.B. (x 2y 4)3=x 6y 12C. (−x)2·(x 3y)2=x 8y 2D.6. 下列各式中:(1)−(−a 3)4=a 12;(2)(−a n )2=(−a 2)n ;(3)(−a −b)3=(a −b)3;(4)(a −b)4=(−a +b)4正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 7. 下列运算正确的是( )A. a 2⋅a 3=a 6B. (−a 2)3=−a 5C. a 10÷a 9=a(a ≠0)D. (−bc)4÷(−bc)2=−b 2c 2 8. 下列运算正确的是( )A. x 2+x 3=x 5B. (−2a 2)3=−8a 6C. x 2⋅x 3=x 6D. x 6÷x 2=x 39. 计算(x 2y)3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 310. 已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A. a >b >cB. a >c >bC. c >b >aD. b >c >a 11. 下列运算中,正确的是( )A. 3x 3⋅2x 2=6x 6B. (−x 2y)2=x 4yC. (2x 2)3=6x 6D. x 5÷12x =2x 4 12. 下列运算正确的是( )A. a 3⋅a 3=2a 6B. a 3+a 3=2a 6C. (a 3)2=a 6D. a 6⋅a 2=a 3 13. 已知32m =8n ,则m 、n 满足的关系正确的是( ) A. 4m =n B. 5m =3n C. 3m =5n D. m =4n 14. 化简(2x)2的结果是( )A. x 4B. 2x 2C. 4x 2D. 4x 15. 已知5x =3,5y =2,则52x−3y =( )A. 34 B. 1 C. 23 D. 98 16. 计算3y 3⋅(−y 2)2⋅(−2y)3的结果是( )A. −24y 10B. −6y 10C. −18y 10D. 54y 1017.计算:(−2)2015⋅(12)2016等于()A. −2B. 2C. −12D. 1218.计算(−513)3×(−135)2所得结果为()A. 1B. −1C. −513D. −13519.计算(−x3y)2的结果是()A. −x5yB. x6yC. −x3y2D. x6y220.下列运算错误的是()A. −m2⋅m3=−m5B. −x2+2x2=x2C. (−a3b)2=a6b2D. −2x(x−y)=−2x2−2xy二、计算题21.计算: (1)(−a3)4⋅(−a)3(2)(−x6)−(−3x3)2+8[−(−x)3]2(3)(m2n)3⋅(−m4n)+(−mn)2三、解答题22.已知272=a6=9b,求2a2+2ab的值.23.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析1.【答案】C【解析】【分析】本题主要考查幂的乘方与积的乘方,掌握幂的乘方与积的乘方的运算法则是解题的关键. 将原式拆成(23)2015×(32)2015×32=(23×32)2015×32即可得出答案. 【解答】解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.故选C . 2.【答案】A【解析】【分析】此题主要考查了幂的乘方运算和合并同类项,幂的乘方法则是:底数不变,指数相乘. 直接利用幂的乘方运算法则计算出结果,然后再合并同类项即可. 【解答】解:(−a 5)2+(−a 2)5 =a 10−a 10 =0. 故选A . 3.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握a mn =(a n )m .根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可. 【解答】解:a =355=(35)11=24311, b =444=(44)11=25611, c =533=(53)11=12511, ∵256>243>125, ∴b >a >c . 故选C . 4.【答案】D【解析】【分析】本题考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a 、b 、c 之间的关系. 【解答】解:∵22b−1=102÷2=50=2c , ∴2b −1=c ,故A 正确; ∵2a =5,2b =10,∴2a ×2b =2a+b =5×10=50, ∵2c =50,∴a +b =c ,故B 正确; ∵2a+1=5×2=10=2b , ∴a +1=b ,故C 正确;∴错误的为D.故选D.5.【答案】D【解析】【分析】本题考查积的乘方与幂的乘方运算法则以及单项式乘以单项式的法则,掌握这些法则是解决问题的关键.运用这些法则逐一判断即可.【解答】解:A.(−2a2b)3=−8a6b3,本选项正确,不符合题意;B.(x2y4)3=x6y12,本选项正确,不符合题意;C.(−x)2⋅(x3y)2=x2⋅x6y2=x8y2,本选项正确,不符合题意;D.(−ab)7=−a7b7,本选项错误,符合题意.故选D.6.【答案】A【解析】解:(1)−(−a3)4=−a12,故本选项错误;(2)(−a n)2=(a2)n,故本选项错误;(3)(−a−b)3=−(a+b)3,故本选项错误;(4)(a−b)4=(−a+b)4,正确.所以只有(4)一个正确.故选A.根据幂的运算性质对各选项进行逐一计算即可判断.本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.7.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2⋅a3=a5,故A错误;B、(−a2)3=−a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(−bc)4÷(−bc)2=b2c2,故D错误;故选C.8.【答案】B【解析】【分析】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.根据同类项的定义,幂的乘方以及积的乘方,同底数的幂的乘法与除法法则即可作出判断.【解答】解:A.不是同类项,不能合并,故选项错误;B.正确;C.x2⋅x3=x5,故选项错误;D.x6÷x2=x4,故选项错误.故选B.9.【答案】A【解析】【分析】本题考查了积的乘方和幂的乘方,属于基础题.积的乘方等于积中各个因式分别乘方,然后再将所得的幂相乘,解答此题根据积的乘方的法则计算即可.【解答】解:(x2y)3=(x2)3y3=x6y3.故选A.10.【答案】C【解析】解:∵a=96=(32)6=312,b=314,c=275=(33)5=315,∴a<b<c,故选:C.根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)分别计算得出即可.此题主要考查了幂的乘方计算,熟练掌握运算法则是解题关键.11.【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.此题主要考查了整式的除法,幂的乘方与积的乘方,以及单项式乘单项式,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.12.【答案】C【解析】【分析】此题主要考查了同底数幂的乘法,幂的乘方,合并同类项等知识,正确掌握运算法则是解题关键.分别利用同底数幂的乘法运算法则,幂的乘方运算法则,合并同类项法则对各选项进行运算,即可判断结果.【解答】解:A.a3·a3=a3+3=a6,故此选项错误;B.a3+a3=2a3,故此选项错误;C.(a3)2=a 2×3=a6,故此选项正确;D.a6·a2=a6+2=a8,故此选项错误.故选C.13.【答案】B【解析】解:∵32m=8n,∴(25)m=(23)n,∴25m=23n,∴5m=3n.故选:B.直接利用幂的乘方运算法则将原式变形,进而得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.【答案】C【解析】解:(2x)2=4x2,故选:C.利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.此题主要考查了积的乘方,关键是掌握计算法则.15.【答案】D【解析】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x−3y=52x53y =98.故选:D.首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x−3y的值为多少即可.此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.【答案】A【解析】【分析】此题考查了积的乘方和幂的乘方以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以单项式法则计算即可得到结果.【解答】解:原式=3y3×y4×(−8y3)=−24y10.故选A.17.【答案】C【解析】解:(−2)2015⋅(12)2016=[(−2)2015⋅(12)2015]×12=−12.故选:C.直接利用同底数幂的乘法运算法则将原式变形进而求出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18.【答案】C【解析】解:(−513)3×(−135)2=[(−513)×(−135)]2×(−513)=1×(−513)=−513 故选:C . 首先根据积的乘方的运算方法:(ab)n =a n b n ,求出[(−513)×(−135)]2的值是多少;然后用它乘−513,求出计算(−513)3×(−135)2所得结果为多少即可.此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m,n 是正整数);②(ab)n =a n b n (n 是正整数). 19.【答案】D【解析】解:(−x 3y)2=x 6y 2. 故选:D .首先利用积的乘方运算法则化简求出答案.此题主要考查了积的乘方运算,正确掌握运算法则是解题关键. 20.【答案】D【解析】【分析】本题考查同底数幂的乘法、合并同类项、积的乘方、单项式乘以多项式,解题的关键是明确它们各自的计算方法.计算出各个选项中式子的正确结果,然后对照,即可解答本题. 【解答】解:∵−m 2⋅m 3=−m 5,故选项A 正确, ∵−x 2+2x 2=x 2,故选项B 正确, ∵(−a 3b)2=a 6b 2,故选项C 正确,∵−2x(x −y)=−2x 2+2xy ,故选项D 错误, 故选D .21.【答案】解:(1)原式=a 12⋅(−a 3)=−a 15; (2)原式=−x 6−9x 6+8x 6=−2x 6; (3)原式=−m 10n 4+m 2n 2.【解析】(1)原式利用幂的乘方与积的乘方运算法则计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则计算,合并即可求出值; (3)原式利用幂的乘方与积的乘方运算法则计算即可求出值.此题考查了单项式乘单项式,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.【答案】解:由272=a 6,得36=a 6, ∴a =±3; 由272=9b , 得36=32b , ∴2b =6, 解得b =3;(1)当a =3,b =3时,2a2+2ab=2×32+2×3×3=36.(2)当a=−3,b=3时,2a2+2ab=2×(−3)2+2×(−3)×3=18−18=0.所以2a2+2ab的值为36或0.【解析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,a=−3容易被同学们漏掉而导致求解不完全.23.【答案】解:(1)∵4m=22m=(2m)2,x=2m+1,∴2m=x−1,∵y=4m+3,∴y=(x−1)2+3,即y=x2−2x+4;(2)把x=4代入y=x2−2x+4=12.【解析】(1)将4m变形,转化为关于2m的形式,然后再代入整理即可;(2)把x=4代入解得即可.本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.。
幂的乘方与积的乘方习题精选(一)A组1.计算:(1)(a3)3;(2)(x6)5;(3)-(y7)2;(4)-(x2)3;(5)(a m)3;(6)(x2n)3m。
2.计算:(1)(x2)3·(x2)2;(2)(y3)4·(y4)3;(3)(a2)5·(a4)4;(4)(c2)n·c n+1。
3.计算:(1)(x4)2;(2)x4·x2;(3)(x5)5;(4)y5·y5.4.计算:(1)(a2b)5;(2)(-pq)3;(3)(-a2b3)2;(4)-(xy2z)4;(5)(-2a2b4c4)4;(6)-(-3xy3)3。
5.计算:(1)(-2x2y)3+8(x2)2·(-x)2·(-y)3;(2)(-x)2·x3·(-2y)3+(-2xy)2·(-x)3y。
B组1.计算:(1)(-c3)·(c2)5·c;(2)[(-1)11x2]2;(3)[(a2·a n)2·(b n b)]3;(4)[x·y3·x n·y n]2.2.计算:(1)(a n b3n)2+(a2b6)n;(2)(-2a)6-(-3a3)2-[-(2a)2]3.参考答案A组1.(1)a9;(3)-y14;(5)a3m.2.(1)x10;(3)a26.3.(1)x8;(3)y25.4.(1)a10b5;(3)a4b6;(5)16a8b16c16.5.(1)-16x6y3.B组1.(1)-c14;(3)a6n+12b3n+3.2.(1)2a2n b6n。
幂的乘方与积的乘方习题精选(二)一、选择题1.下列运算中,正确的是( )A.4444aa)a(⋅=B.4462)a()a(=C.4362)a()a(=D.8426)a()a(=2.在下列各式的括号内,应填入4a 的是( )A .212) (a =B .312) (a =C .412) (a=D .612) (a =3.若82 3a nm ==,,则n m )a (等于( ) A .9 B .24 C .27 D .11 4.若2n 3m xx x=⋅-,则n 等于( )A .m -1B .m +5C .4-mD .5-m 二、填空题1.)(234)2(=.2.5624) (4=⨯.3.233) ()9(=.4.(_____))a (a 23=-⋅-.5.若4an3=,则________an6=.6.若x 342864=⨯,则x =________.7._______])x y 2[(])y 2x [(m2n3=--.8.当n 为奇数时,________)a ()a (2n n 2=-+-.三、求下列各式中的x 1.4641641x 3⨯=⋅-;2.2438131x 2⨯=+;3.1622231x 2⨯=-.四、已知:2a 3ayx==,,试求下列各式的值:1.y3x 2a+;2.y2x 3a+.五、把下列每组数据按由小到大排列: 1.7510032和;2.5552、4443、3334、2225.(1)1863)2(])2[(a b b a -=-___________( );(2)36312])[(---=-n n p p _____________( );(3)882232)()(q p pq q p =⋅__________ ( );(4)269623)()(b a b a =____________( );(5)21222442)(-+-+=⋅n n n n yx yx ______( );(6)918336)(t s t s =-_______________( );(7)642)125.0(308=⨯-__________( );(8)1122864=⨯_______________( );三、计算: (1)42233353)()()(a a a a a a -+-+-⋅+⋅(2)25232642442))(()()()(2a a a a a a a --+-⋅+-⋅+⋅(3)y x xy y x x ⋅----⋅⋅-32332)()()()( (4)532232324)()()(b a b a b a -⋅-⋅-(5)2112)()(--⋅-n m n myx y x注意:先确定运算顺序,再选择运算法则计算.四、用适当方法计算:(1)6 6)25.0(4⋅;(2)55)73()312(⋅-;(3)3 6)49()32(⋅;(4)2003 2002)21(2⋅;(5)333)31()32()9(⋅-⋅-;(6)3332)2(])21[(⋅.五、解答下列各题(1)已知的值求,562nn xx=;(2)已知的值求,,)(322nnn xyyx==;(3)已知n是正整数,且的值求,nnn xxx32232)(4)3(7-=(4)试判断81052⨯=n是几位数.。
《幂的乘方与积的乘方》习题1.计算(x3)2的结果是()A.x5B.x6C.x8D.x92.下列计算错误的是()A.a2·a=a3B.(ab)2=a2b2C.(a2)3=a5D.-a+2a=a 3.计算(x2y)3的结果是()A.x5y B.x6y C.x2y3D.x6y3 4.计算(-3a2)2的结果是()A.3a4B.-3a4C.9a4D.-9a4 5.计算(-0.25)2010×42010的结果是()A.-1 B.1 C.0.25 D.44020 6.-(a3)4=_____.7.若x3m=2,则x9m=_____.8.[(-x)2] n ·[-(x3)n]=______.9.若a2n=3,则(2a3n)2=____.10.计算:(1)(a4)3+m(2)(-4xy2)211.计算:(x-y)3·(y-x)2·(x-y)4.12.计算(1)(-0.25)11×411(2)(-0.125)200×820113.已知:644×83=2x,求x.14.计算:(-2x2y3)+8(x2)2·(-x)2·(-y)3.15.某养鸡场需定制一批棱长为3×102毫米的正方体鸡蛋包装箱(包装箱的厚度忽略不计),求一个这样的包装箱的容积.(结果用科学记数法表示)参考答案1.答案:B解析:【解答】(x3)2=x3×2=x6.故选B.【分析】根据幂的乘方法则.2.答案:C解析:【解答】根据同底数幂的乘法法则判断,A正确;根据积的乘方法则判断,B正确;根据幂的乘方法则判断,C错误;根据整式的加减运算法则判断,D也正确,故选C.【分析】根据同底数幂的乘法、积的乘方、幂的乘方法则判断.3.答案:D解析:【解答】可得(x2y)3=(x2)3·y3=x6y3,故选D.【分析】根据积的乘方法则和幂的乘方法则.4.答案:C解析:【解答】可得(-3a2)2=(-3)2·(a2)2=9a4,故选C.【分析】根据积的乘方法则和幂的乘方法则.5.答案:B解析:【解答】(-0.25)2010×42010=(-0.25×4)2010=(-1)2010=1,故选B.【分析】逆用积的乘方法则.6.答案:-a12解析:【解答】-(a3)4=-a3×4=-a12.【分析】根据幂的乘方法则.7.答案:8解析:【解答】因为x3m=2,所以x9m=x3m×3=(x3m)3=23=8.【分析】根据幂的乘方法则.8.答案:-x5n解析:【解答】[(-x)2] n·[(-x3)n]=(x2)n·(-x3n)=x2n·(-x3n)=-x2n+3n=-x5n.【分析】根据积的乘方法则和幂的乘方法则.9.答案:108解析:【解答】因为a2n=3,所以(2a3n)2=22·a3n×2=4a2n×3=4(a2n)3=4×33=4×27=108.【分析】根据积的乘方法则和幂的乘方法则.10.答案:a12+4m,16x2y4解析:【解答】(1)(a4)3+m=a4×(3+m)=a12+4m(2)(-4xy2)2=(-4)2x2(y2) 2=16x2y4【分析】(1)用幂的乘方,(2)先用积的乘方的公式,再利用幂的乘方的公式化简到最后. 11.答案:(x-y)9解析:【解答】(x-y)3·(y-x)2·(x-y)4=(x-y)3·(x-y)4·[-(x-y)]2=(x-y)7·(x-y)2=(x-y)9【分析】将x-y化为-(y-x)的形式,或将y-x化为-(x-y)的形式,再利用积的乘方及同底数幂的乘方公式即可计算.12.答案:-1,8解析:【解答】(1)(-0.25)11×411=(-0.25×4)11=(-1)11=-1(2)(0.125)200×8201=(-0.125)200×8200+1=(-0.125)200×8200×8=(-0.125×8)200×8=(-1)200×8=1×8=8【分析】将积的乘方公式逆用可有a n·b n=(ab)n,即若有指数相同的幂相乘,则可将底数相乘,相同的指数作为共同的指数.13.答案:更多幂的乘方和鸡的乘方关系解析:【解答】∵644×83=(26)4×(23)3=224×29=233∵644×83=2x,∴233=2x,∴x=33.【分析】将方程左边部分化为底数为2的幂的形式.14.答案:-16x6y3.解析:【解答】(-2x2y)3+8(x2)2·(-x)2·(-y)3=(-2)3·(x2)3·y3+8x4·x2·(-y3)=-8·x6·y3+(-8)·x6·y3=-16x6y3.【分析】幂的乘方和积的乘方的公式.15.答案:2.7×107解析:【解答】(3×102)3=33×(102)3=27×106=2.7×107(立方毫米).答:一个这样的包装箱的容积是2.7×107立方毫米.【分析】运用积的乘方和幂的乘方的综合运用.。
1.2幂的乘方与积的乘方同步练习26道含解析一、单选题1.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=- 2.下列计算正确的是( )A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 6 3.下列运算正确的是( )A .448x x x +=B .623÷x x x =C .45x x x ⋅=D .238()x x = 4.下列计算正确的是( )A .3x ﹣2x =1B .a ﹣(b ﹣c+d )=a+b+c ﹣dC .(﹣a 2)2=﹣a 4D .﹣x•x 2•x 4=﹣x 75.下面是小马虎同学在一次数学测验中的计算,其中正确的个数有( ) ①x 3• x 3 = 2x 3; ①(a 3)2= a 5; ①(ab 3)2=ab 6; ①3x 2•(﹣2x 3)=﹣6x 5; ①(﹣a )3÷(﹣a )=﹣a 2.A .1个B .2个C .3个D .4个 6.下列计算正确的是( )A .32631128ab a b ⎛⎫-= ⎪⎝⎭ B .()22436a a -= C .()326a a -=D .()236a a = 7.计算()3232a b -的结果是( ) A .692a b - B .698a b C .698a b - D .696a b - 8.若a m =3,a n =5,则a 2m+n =( )A .15B .30C .45D .75 9.下列运算中,正确的是( )A .235325x x x +=B .336x x x ⋅=C .235()x x =D .33()ab a b =10.20182019(2(2的值为( )A .-1B .2C .2-D .2二、填空题 11.202020198(0.125)⨯-=______12.若23,22m n ==,则24m n +等于______.13.若3,2m n a a ==,则2m n a +=_________14.已知2m a =,32n b =,m ,n 为正整数,则3102m n +=_________.15.已知430x y +-=,则216x y ⋅的值为______.16.已知a=255,b=344,c=433,则a ,b ,c 的大小关系为______.三、解答题17.(1)已知4m a =,8n b =,用含a ,b 的式子表示下列代数式:①求232m n +的值;①求462m n -的值,(2)已知3528162x ⨯⨯=,求x 的值.18.已知21416644m m ⋅⋅=,求()2332()m m m-÷⋅的值。
19.计算:3a 2·a 4-(a 3)2+2a 620.已知2a m =,2b n =,3(a p a =、b 都是正整数),用含m 、n 或p 的式子表示下列各式:(1)4a b +;(2)6a .21.阅读计算:阅读下列各式:222()ab a b =,333()ab a b =,444()ab a b =…… 回答下列三个问题:(1)验证:(5×0.2)10=__________;510×0.210=__________.(2)通过上述验证,归纳得出:()n ab =__________;()n abc =__________.(3)请应用上述性质计算:①1011004(0.25)⨯①201720162016(0.125)24-⨯⨯.22.化简:(﹣2a 2)2•a 4﹣(5a 4)2.23.已知235,310==m n , 求 (1)23+m n ; (2)29m n -.24.计算:()()362322(3)2a a a ⎡⎤-----⎣⎦25.已知x 2a =2,y 3a =3,求(x 2a )3+(y a )6﹣(x 2y )3a •y 3a 的值.26.计算:5a 3b·(-3b)2+(-6ab)2·(-ab)-ab 3·(-4a 2)参考答案1.C【解析】【分析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y ,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.2.D【解析】【分析】根据合并同类项法则判断A 、C ;根据积的乘方法则判断B ;根据幂的乘方法判断D ,由此即可得答案.【详解】A 、2a 2﹣a 2=a 2,故A 错误;B 、(ab)2=a 2b 2,故B 错误;C 、a 2与a 3不是同类项,不能合并,故C 错误;D 、(a 2)3=a 6,故D 正确,故选D .【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.3.C【解析】【分析】根据合并同类项法则、同底数幂乘除法法则和幂的乘方法则逐项判断即可.【详解】解:A. 4442x x x +=,故错误;B. 624÷x x x =,故错误;C. 45x x x ⋅=,正确,D. 236()x x =,故错误;故选:C.【点睛】本题考查了合并同类项,同底数幂乘除法以及幂的乘方,熟练掌握运算法则是解题关键. 4.D【解析】【分析】直接利用积的乘方运算法则以及去括号法则分别化简得出答案.【详解】解:A 、3x ﹣2x =x ,故此选项错误;B 、a ﹣(b ﹣c+d )=a ﹣b+c ﹣d ,故此选项错误;C 、(﹣a 2)2=a 4,故此选项错误;D 、﹣x•x 2•x 4=﹣x 7,故此选项正确.故选:D .【点睛】本题考查了积的乘方运算法则以及去括号法则,正确掌握相关运算法则是解题关键. 5.A【解析】【分析】根据同底数幂的乘法、幂的乘方、积的乘方求出每个式子的值,再判断即可.【详解】①x 3•x 3=x 6,①①错误;①(a 3)2=a 6,①①错误;①(ab 3)2=a 2b 6,①①错误;①3x 2•(-2x 3)=-6x 5,①①正确;①(-a )3÷(-a )=(-a )2=a 2,①①错误;故选:A .【点睛】此题考查同底数幂的乘法、幂的乘方、积的乘方的应用,解题关键在于掌握运算法则. 6.D【解析】【分析】利用幂的乘方,积的乘方运算法则运算即可.【详解】 A. 32361128ab a b ⎛⎫-=- ⎪⎝⎭,故错误; B. ()22439aa -=,故错误; C. ()326a a -=-,故错误; D. ()236a a =,正确故选:D .【点睛】本题主要考查了幂的乘方,积的乘方运算法则,熟练掌握运算法则是解答此题的关键. 7.C【解析】【分析】根据积的乘方、幂的运算法则计算即可.【详解】23332333(2(2))))((a b a b -⋅⋅=-698a b =-故选:C .【点睛】本题考查了积的乘方、幂的运算,熟记各运算法则是解题关键.8.C【解析】【分析】根据幂的乘方和积的乘方的运算法则求解.【详解】原式()()2m n a a = 235=⨯95=⨯45=.故选:C .【点睛】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则. 9.B【解析】A. 2332x x 与 不是同类项,不能合并,故错误;B. 336x x x ⋅= ,正确;C.()326x x = ,故错误;D. ()33ab a b =3,故错误, 故选B.10.D【解析】【分析】先根据同底数幂相乘的逆运算进行化简,在根据积的乘方逆运算进行求解,即可得到答案.【详解】解:20182019(2(2+=20182018(2(2(2+••+=2018[(2(2+•+=2018(1)(2-+=2+;故选:D.【点睛】本题考查了积的乘方和同底数幂相乘,解题的关键是熟练掌握运算法则进行解题. 11.-8【解析】【分析】根据幂的乘方底数不变指数相乘,可得积的乘方,根据积的乘方,可得答案.【详解】解:原式=2019201988(0.125)⨯⨯- =[8×(−0.125)]2019×8=−8,故答案为−8.【点睛】本题考查了积的乘方,利用幂的乘方底数不变指数相乘得出积的乘方是解题关键. 12.144【解析】【分析】根据幂的乘方,将24m n +的底数化为2,然后根据同底数幂乘方的逆用和幂的乘方的逆用计算即可.【详解】解:24m n +=()222m n +=242m n +=2422m n •=()()2422m n • 将23,22m n ==代入,得原式=2432144⨯=故答案为:144.【点睛】此题考查的是幂的运算性质,掌握同底数幂乘方的逆用和幂的乘方及逆用是解决此题的关键.13.18【解析】【分析】根据同底数幂的乘法的逆运算、幂的乘方的逆运算求解即可.【详解】222()m n m n m n a a a a a +=⋅=⋅将3,2m na a ==代入得:原式23218=⨯=.【点睛】本题考查了同底数幂的乘法的逆运算、幂的乘方的逆运算,熟记运算法则是解题关键. 14.32a b【解析】【分析】逆用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【详解】解:2m a =Q ,32n b =,m ,n 为正整数, 52n b ∴=,3103522(2)(2)m n m n +∴=⨯32a b =.故答案为:32a b .【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.15.8【解析】【分析】由430x y +-=,可求得43x y +=,又由42162x y x y +⋅=,即可求得答案.【详解】解:430x y +-=Q ,43x y ∴+=,44321622228x y x y x y +∴⋅=⋅===.故答案为:8.【点睛】此题考查了幂的乘方与同底数幂的乘法.注意掌握指数的变化是解此题的关键. 16.b >c >a【解析】【分析】根据幂运算的性质,及它们的指数相同,只需比较它们的底数的大小,底数大的就大.【详解】解:a=255=(25)11=3211,b=344=(34)11=8111,c=433=(43)11=6411,则b >c >a .【点睛】此题要熟练运用幂运算的性质把它们变成相同的指数,然后根据底数的大小比较两个数的大小.17.(1)①ab①22a b(2)x =10 【解析】【分析】(1)分别将4m ,8n 化为底数为2的形式,然后代入①①求解;(2)将8x 化为23x ,将16化为24,列出方程求出x 的值.【详解】(1)①4m a =,8n b =,①22m =a ,23n =b ,①①232m n +=22m •23n =ab ;①462m n -=24m ÷26n =(22m )2÷(23n )2=22a b; (2)3528162x ⨯⨯=,①()34352222x ⨯⨯=①34352222x ⨯⨯=①13435x ++=解得:10x =.【点睛】本题考查了同底数幂的除法以及幂的乘方和积的乘方,掌握运算法则是解答本题的关键. 18.-4.【解析】【分析】先根据同底数幂的乘法法则和幂的乘方法则把41664m m ⋅⋅变形为514m +,就可得出m 的值,再把代数式()2332()m m m-÷⋅根据相关法则计算,就可得出答案.【详解】解:由题意,得41664m m ⋅⋅=512144m +=,所以5121m +=所以4m =,所以原式654m m m =-÷=-=-.【点睛】本题考查同底数幂的乘法,同底数幂的除法和幂的乘方法则,能利用相关法则进行计算. 19.4a 6.【解析】【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【详解】原式=3a 6-a 6+2a 6=4a 6.【点睛】此题主要考查了积的乘方运算法则以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.20.(1)22m n ;(2)mp .【解析】【分析】(1)与(2)分别逆运用同底数幂的乘法,幂的乘方的运算法则计算即可.【详解】解:(1)444a b a b +=⋅22(2)(2)a b =⋅22(2)(2)a b =⋅22m n =.(2)6(23)a a =⨯23a a =⨯mp =. 【点睛】本题考查的是同底数幂的乘法与幂的乘方有关知识,熟练掌握运算法则是解题的关键. 21.(1)1,1(2)n n a b ,n n n a b c (3)4,-0.125【解析】试题分析:(1)先算括号内的,再算乘方;先算先算乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算即可得出答案.试题解析:(1)(5×0.2)10=110=1;510×0.210=(5×0.2)10=110=1.(2)()n ab =a n b n ;()n abc = a n b n c n(3)①()10010140.25⨯ =()100440.25⨯⨯=10041⨯=4 ①()2017201620160.12524-⨯⨯=(-0.125)×20160.12524-⨯⨯()=(-0.125)×1=-0.125. 22.﹣21a 8【解析】【分析】根据积的乘方等于乘方的积,可得单项式的乘法,根据单项式的乘法,可得同类项,根据合并同类项,可得答案.【详解】原式=444825a a a -n=48825a a -=821a -.故答案为:821a -.【点睛】本题考查单项式乘单项式, 幂的乘方与积的乘方,合并同类项.23.(1)50 ;(2)14 【解析】试题分析:(1)逆用同底数幂乘法即可求得;(2)逆用同底数幂的除法、幂的乘方进行计算即可得.试题解析:(1)①32m =5,3n =10,①32m+n =32m ×3n =5×10=50;(2)①32m =5,3n =10,①92m-n =(32)2m-n =32(2m-n )=(32m-n )2=(32m ÷3n )2=(5÷10)2=14. 24.6119a .【解析】【分析】先计算积的乘方和幂的乘方,再合并同类项即可得解.【详解】()()362322(3)2a a a ⎡⎤-----⎣⎦, =66664964a a a -+=6119a .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.25.-55.【解析】【分析】先用同底数幂相乘和幂的乘方将原式化成含有x 2a ,y 3a 的形式,然后代入求值即可.【详解】解:当x 2a =2,y 3a =3时,原式=(x 2a )3+y 6a ﹣(x 6a y 3a )•y 3a=(x 2a )3+(y 3a )2﹣(x 2a )3•(y 3a )2=23+32﹣23×32=8+9﹣8×9=﹣55.【点睛】本题考查幂的乘方和同底数幂相乘,熟练运用幂的乘方运算法则是解答本题的关键. 26.13a 3b 3【解析】【分析】原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【详解】原式322323333332335?936?·43454613a b b a ab ab a a b a a a b b b b ===+-+-【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.。