2020-2021学年最新青岛版七年级数学上学期期中考试模拟试卷及答案解析-精编试题
- 格式:docx
- 大小:73.59 KB
- 文档页数:6
2020--2021学年人教版七年级数学上册期中考试数学试题有答案2020-2021学年第一学期期中教学质量检测七年级数学(人教版)第Ⅰ卷(共60分)一、选择题(每小题3分,共30分)1.XXX手机上显示某地“海拔-45米”,这表示此地的海拔高度是()A.高于海平面45米B.低于海平面-45米C.低于海平面-45米D.低于海平面45米2.在数轴上,点A表示的数是-4,点B表示的数是2,线段AB的中点表示的数为()A.1B.-1C.3D.-33.在下列气温的变化中,能够反映温度上升5℃的是()A.气温由-3℃到2℃B.气温由-1℃到-6℃C.气温由-1℃到5℃D.气温由4℃到-1℃4.在下列变形中,错误的是()A.(-2)-3+(-5)=-2-3-5B.(-3)-(-5)=-3+5C.a+(b-c)=a+b-cD.a-(b+c)=a-b-c5.2019年4月10日21时,人类首张黑洞照片面世。
该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球xxxxxxxx光年,质量约为太阳的65亿倍。
则xxxxxxxx用科学记数法表示为()A.5.5×105B.5.5×106C.5.5×107D.55×1066.在代数式①51b;②-2x3+y4;③0.2x2y3;④3;⑤1-;⑥中,整式的个数有()A.4个B.3个C.2个D.1个7.下列说法正确的是()A.-2xy的系数是-2B.x2+x-1的常数项为1C.22ab3的次数是6次D.2x-5x2+7是二次三项式8.下列运算正确的是()A.x3+x2=x5B.x4+x4=2x4C.x3+x3=2x6D.x5+x5=x109.已知m-n=99,x+y=-1,则代数式(n+x)-(m-y)的值是()A.100B.98C.-100D.-9810.如图,把六张形状大小完全相同的小长方形纸卡片(如图①)不重叠地放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A。
2020-2021学年山东省聊城市七年级(上)数学试卷1.如图,小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A. 经过一点能画无数条直线B. 两点之间,线段最短C. 两点确定一条直线D. 连接两点间的线段的长度,叫做这两点的距离2.下面调查方式中,合适的是()A. 为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式B. 了解定西市一批袋装食品是否含有防腐剂,选择普查方式C. 试航前对我国第一艘国产航母“辽宁号”各系统的检查,选择抽样调查方式D. 调查某新型防火材料的防火性能,采用普查的方式3.下列结论中,正确的有()①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤一般来说,在数轴上,右边的数总大于左边的数.A. 2个B. 3个C. 4个D. 5个4.下列说法中,正确的是()A. 若a>|b|,则a>bB. 若a≠b,则a2≠b2C. 若|a|=|b|,则a=bD. 若|a|>|b|,则a>b5.如图所示的展开图能折叠的长方体可能是()A. B. C. D.6.如图,下列语句错误的是()A. 直线AC和BD是不同的直线B. AD=AB+BC+CDC. 射线DC和DB是同一条射线D. 射线BA和BD不是同一条射线7.下列计算中正确的是()A. (-15)×(--1)=-3+5+1=3B. (-15)×(--1)=-3-5-15=-23C. (-2)÷(-)=(-2)÷()+(-2)÷=4-6=-2D. -5××|-|=-58.为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A. 条形统计图B. 频数直方图C. 折线统计图D. 扇形统计图9.如图,数轴上的A、B两点所表示的数分别为a、b,则下列各数中,最大的是()A. B. a+b C. a+b2 D. a-b10.已知,则代数式()A. B. C. D.11.今年我县有8500名考生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这8500名考生的数学中考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本的容量是200. 其中说法正确的有()A. 1个B. 2个C. 3个D. 4个12.如果A、B、C三点在同一直线上,且线段AB=8cm,BC=6cm,若M、N分别为AB、BC的中点,那么M、N两点之间的距离为()A. 7cmB. 1cmC. 7cm或1cmD. 无法确定13.如图,射击运动员在瞄准时,总是用一只眼瞄准准星和目标,这种现象用数学知识解释为______.14.如图所示,C为线段AB的中点,D在线段CB上,并且AD=10cm,DB=6cm,则CD=______cm.15.如果ab>0,那么=______.16.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为______.17.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为______.18.计算:(1)15-(-2)+(-7)(2)(3)(4)19.如图,点B,C,D在线段AE上.(1)图中共有几条线段?说说你分析这个问题的具体思路.(2)你能用上面的思路来解决“8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛”这个问题吗?20.画出数轴,在数轴上表示下列各数,并用“<”连接:-22,2,-1.5,0,|-3|,.21.如图,已知C是线段AB的中点,D是AC上一点,AD-CD=2cm,若AB=16cm,求CD长.22.粮库3天内发生粮食进出库的吨数如下+26,-32,-15,+34,-38,-20(“+”表示进库“-”表示出库).(1)经过这3天,库里的粮食是增多还是减少了?(2)经过这3天,仓库管理员结算发现库里还存280吨粮,那么3天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费?23.已知|x-1|=-3(y+2)2,a与b互为倒数,c与d互为相反数,求(x+y)n+(ab)+3c+3d的值.24.某校开展“我最喜欢的一项体育社团活动”调查,若每名学生必选且只能选一项,现随机抽查了a名学生,并将其结果绘制成如下不完整的统计图,请解答下列问题:(1)求a的值;(2)补全条形统计图;(3)求“乒乓球”所对应的扇形圆心角的度数;(4)已知该校共有2400名学生,请你估计该校学生最喜欢篮球社团活动的人数.25.类比推理是一种重要的推理方法,根据两种事物在某些特征上相似,得出它们在其他特征上也可能相似的结论.在异分母的分数的加减法中,往往先化作同分母,然后分子相加减,例如:,我们将上述计算过程倒过来,得到,这一恒等变形过程在数学中叫做裂项. 类似地,对于可以用裂项的方法变形为:.类比上述方法,解决以下问题.(1)猜想并写出:= ______ .(2)探究并计算下列各式:①;②.答案和解析1.【答案】B【解析】[分析]根据线段的性质解答即可.此题主要考查了线段的性质,关键是掌握两点之间,线段最短.[详解]解:能解释这一现象的数学知识是两点之间,线段最短.故选B.2.【答案】A【解析】解:A、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,适合采用普查方式;B、了解定西市一批袋装食品是否含有防腐剂,适合抽样调查;C、试航前对我国第一艘国产航母各系统的检查,零部件很重要,应全面检查;D、调査某新型防火材料的防火性能,适合抽样调查.故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】D【解析】【分析】本题考查了相反数,正数和负数,数轴及绝对值的知识,属于基础题,注意基础概念的熟练掌握.根据相反数,正数和负数,数轴及绝对值的定义,判断各个选项即可得出答案.【解答】解:①根据相反数的定义可知,符号相反且绝对值相等的数互为相反数,故本选项正确;②一个数的绝对值越大,表示它的点在数轴上离原点越远,故本选项正确;③根据负数的性质,可知两个负数,绝对值大的它本身反而小,故本选项正确;④正数都大于0,负数都小于0,故正数大于一切负数,故本选项正确;⑤一般来说,当数轴方向朝右时,右边的数比左边的数大,故本说法正确.综上,正确的有①②③④⑤,共5个.故选D.4.【答案】A【解析】解:A因为|b|≥0,若a>|b|,则a>|b|>0,即a>b,所以A选项正确;B如果a、b互为相反数,如2与-2,2≠-2,但22=(-2)2,即a2=b2,所以B选项不正确;C如果a、b互为相反数,如2与-2,|2|=|-2|,即|a|=|b|,但2≠-2,a≠b,所以C选项不正确;D如果a、b都为负数,如-2与-1,|-2|>|-1|,即|a|>|b|,但-2<-1,a<b,所以D选项不正确.故选:A.根据绝对值的意义进行逐一分析.本题主要考查绝对值的意义,根据|a|=进行分类讨论,通过赋值法可得出与题目相反的结论即判断题目正误.5.【答案】C【解析】解:根据题中展开图可知,长方体两端是黑色的小正方形,且两个黑面是相对的两个面,两个白面也是相对的两个面.故选:C.利用长方体及其表面展开图的特点依次分析选项可得答案.注意本题两个白面是相对的两个面.本题主要考查了几何体的展开图,注意长方体的空间图形,从相对面入手,分析及解答问题.6.【答案】A【解析】解:A、因为直线是可以向两端无限延伸的,它可以用这条直线上的两个点来表示,所以在A中,直线AC和BD是相同的直线,故A错.B、∵AD是三条线段的和,∴AD=AB+BC+CD,故B正确;C、端点相同的两条射线是同一条射线,则射线DC和DB是同一条射线,故C正确;D、端点相同的两条射线是同一条射线,所以在D中,射线BA和BD不是同一条射线,方向相反,故D正确;故选:A.根据直线、射线和线段的定义进行选择.本题考查了直线、射线、线段的区别和联系,注:线段有长度,而直线和射线无长度.7.【答案】D【解析】解:A、(-15)×(--1)=-3+5+15=17,故选项错误;B、(-15)×(--1)=-3+5+15=17,故选项错误;C、(-2)÷(-)=(-2)÷(-)=12,故选项错误;D、-5××|-|=-5××=-5.故选:D.A和B、根据乘法分配律简便计算即可求解;C、先算小括号里面的加法,再算括号外面的除法;D、先算绝对值,再约分计算即可求解.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.【答案】D【解析】【分析】根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图.本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键.【解答】解:欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选:D.9.【答案】D【解析】解:方法一:由数轴可得:b<0<a,取a=0.2,b=-0.8,则==-0.25,a+b=0.2+(-0.8)=0.6,a+b2=0.2+(-0.8)2=0.2+0.64=0.84,a-b=0.2-(-0.8)=0.2+0.8=1,最大的是1,故选项D正确,方法二:由数轴可得:b<0<a,因为<0,a+b<0,a+b2>0,a-b>0,而a-b>a+b2,所以a-b最大,故选:D.根据有理数的运算结果进行判断.此题主要考查了有理数的加减、乘除运算,正确掌握相关运算法则是解题关键.10.【答案】B【解析】解:∵,∴,解得:,∵,∴当时,。
2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。
青岛版七年级数学上册期中考试题一、选择题(每小题3分,共计36分)1、-3的相反数是 A 、-3 B 、31 C 、31- D 、3 2、用一个平面去截一个正方体,截面不可能是 A 、圆 B 、五边形C 、六边形D 、梯形3、下面四个数中比-2小的数是 A 、1 B 、0 C 、-1 D 、-34、如图,点B 、C 、D 在射线AM 上,则图中的射线有A 、6条B 、5条C 、4条D 、1条5、要反映泰安市一天内气温的变化情况宜采用A 、条形统计图B 、扇形统计图C 、频数分布图D 、折线统计图6、2010年6月3日,人类首次模拟火星载人航天飞行试验“火星-500”正式启动。
包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的“火星之旅”。
将12480用科学记数法表示应为 A 、31048.12⨯ B 、5101248.0⨯ C 、410248.1⨯ D 、310248.1⨯7、如图,在数轴上表示到原点的距离为3个单位长度的点有A 、D 点B 、A 点C 、A 点和D 点D 、B 点和C 点8、某年泰安市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高 A 、16℃ B 、20℃ C 、-16℃ D 、-20℃9、如图所示,A 、B 、C 、D 四个图形中各有一条射线和一条线段,他们能相交的是10、计算(-1)2011+12012应等于 A 、1 B 、-2 C 、1- D 、011、一个正方体的表面展开图如下图所示,则原正方体中的“☆”所在面的对面所标的字是A 、上B 、海C 、世D 、博12、你喜欢吃面条吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示,这样捏河道()次后,可拉出64根细面条。
A 、5B 、6C 、7D 、8二、填空题(直接填写最后结果,每小题3分,共18分)13、点动成 ,线动成 ,面动成 。
2020-2021学年度第一学期期中测试人教版七年级数学试题一.选择题(共12小题)1.以下是四位同学画的数轴,其中正确的是 ( ) A.B.C.D.2.下列各式:ab ,3x y-,3x,﹣xy 2,0.1,3π,x 2+2xy +y 2,其中单项式有( ) A. 5个B. 4个C. 3个D. 2个3.地球与太阳之间的距离约为149600000千米,用科学计数法表示是()千米 A. 1496×105 B. 149.6×106 C. 14.96×107 D. 1.496×108 4.邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ). A . 19℃B. -19 ℃C. 15℃D. -15℃5.下列计算正确的是( ) A 2a +3b =5abB. 3a ﹣2a =1C. 3a 2b ﹣2ab 2=a 2bD. 2a 2+a 2=3a 2 6.下列各组数中,相等的是( ) A. ﹣1与(﹣2)+(﹣3) B. |﹣5|与﹣(﹣5) C.243与916D. (﹣2)2与﹣47.当m =-1时,代数式2m+3的值是( ) A. -1B. 0C. 1D. 28.下列多项式是五次多项式的是( ) A. x 3+y 2 B. x 2y 3+xy +4C. x 5y ﹣lD. x 5﹣y 6+19.若a 与b 互相反数,则2a b +-等于( ).A. -2B. 2C. -1D. 110.数轴上点A、B表示的数分别是a、3,它们之间的距离可以表示为()A. a+3B. a﹣3C. |a+3|D. |a﹣3|11.已知3x﹣y=5,则代数式6x﹣2y的值为()A. ﹣10B. ﹣4C. 4D. 1012.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A. 甲比乙多B. 乙比甲多C. 甲、乙一样多D. 无法确定二.填空题(共6小题)13.如果收入1000元表示为+1000元,则-700元表示__________.14.单项式233x y的系数为______.15.把5×5×5写成乘方的形式__________16.5.14567精确到0.001位得到的近似数是_____.17.如果单项式6x m y和3x3y n是同类项,则n=_____.18.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h,3h后甲船比乙船多航行_____km.三.解答题(共8小题)19.把下列各数填入相应集合的括号内.+8.5,﹣312,0.3,0,﹣3.4,12,﹣9,﹣1.2,20%,﹣2.(1)正数集合:{_____…};(2)整数集合:{_____…};(3)非正整数集合:{_____…};(4)负分数集合:{_____…}.20.计算:(1)(﹣0.1)﹣(﹣4.6)﹣(+8.9)+(+5.4)(2)(﹣2)2×3﹣|﹣16|÷421.在数轴上表示下列各数,并用“<”把它们连接起来.3,﹣|﹣5|,0,﹣72,﹣(﹣2).22.先化简,再求值:(x2y﹣xy2)﹣(xy2+x2y),其中x=12,y=﹣123.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km):+9 -3 -5 +4 -8 +6 -3 -6 -4 +7(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)将最后一名乘客送到目的地,出租车一共行驶多少千米?(3)若每千米的价格为2.4元,司机一下午的营运额是多少元?24.为绿化校园,安排七年级三个班植树,其中,一班植树x棵,二班植树的棵数是一班的2倍少20棵,三班植树的棵数是二班的一半多15棵.(1)三个班共植树多少棵?(用含x的式子表示)(2)当x=30时,三个班中哪个班植树最多?25.对于有理数a、b,定义运算:a⊕b=a×b+|a|﹣b,符合有理数的运算法则和运算律.(1)计算(﹣2)⊕(﹣2)的值;(2)填空:3⊕(﹣2)(﹣2)⊕3(填“>”或“=”或“<”);(3)计算[(﹣5)⊕4]⊕(﹣2)的值;26.福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示). 若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?答案与解析一.选择题(共12小题)1.以下是四位同学画的数轴,其中正确的是 ( ) A. B. C.D.【答案】B 【解析】 【分析】根据数轴的概念:规定了原点、正方向和单位长度的直线叫数轴,进行判断. 【详解】解:A 、没有原点,错误; B 、正确;C 、原点左边的数反了,错误;D 、单位长度不统一,错误. 故选B .【点睛】考查了数轴的概念,注意数轴的三要素缺一不可. 2.下列各式:ab ,3x y-,3x,﹣xy 2,0.1,3π,x 2+2xy +y 2,其中单项式有( ) A. 5个 B. 4个C. 3个D. 2个【答案】B 【解析】 【分析】直接利用单项式的定义分析得出答案. 详解】解:ab ,3x y-,3x,﹣xy 2,0.1,3π,x 2+2xy +y 2, 单项式有ab ,﹣xy 2,0.1,3π共4个. 故选:B .【点睛】本题考查单项式的定义,熟记定义是本题的解题关键,注意单独的一个数字或字母也是单项式. 3.地球与太阳之间的距离约为149600000千米,用科学计数法表示是()千米 A. 1496×105B. 149.6×106C. 14.96×107D. 1.496×108【答案】D 【解析】由科学记数法的定义可知,把一个数记为:10n a ⨯(其中110a ≤<,n 为整数且n 比原数的整数位数小1)的形式叫科学记数法,所以149600000化成科学记数法表示应为:81.49610⨯,所以A 、B 、C 均错,D 正确, 故选D.点睛:在把一个绝对值较大的数用科学记数法表示时,我们要注意两点:①a 必须满足:110a ≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n ).4.邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ). A. 19℃ B. -19 ℃C. 15℃D. -15℃【答案】A 【解析】 【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】解:17-(-2) =17+2 =19℃. 故选A .【点睛】本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键. 5.下列计算正确的是( ) A. 2a +3b =5ab B. 3a ﹣2a =1 C. 3a 2b ﹣2ab 2=a 2b D. 2a 2+a 2=3a 2【答案】D 【解析】 【分析】根据合并同类项法则即可求出答案.【详解】解:A 原式无法合并,故选项A 错误; B 原式=a ,故选项B 错误;C 原式无法合并计算,故选项C 错误;D 原式=3a 2,故选项D 正确; 故选:D .【点睛】本题考查合并同类项的计算,掌握合并同类项的法则是本题的解题关键. 6.下列各组数中,相等的是( ) A. ﹣1与(﹣2)+(﹣3) B. |﹣5|与﹣(﹣5) C.243与916D. (﹣2)2与﹣4【答案】B 【解析】 【分析】根据有理数的减法法则,绝对值的性质,相反数的定义,有理数的乘方的定义对各选项进行计算,然后利用排除法求解.【详解】解:A 、(﹣2)+(﹣3)=﹣5,﹣1≠﹣5,故本选项错误; B 、|﹣5|=5,﹣(﹣5)=5,5=5,故本选项正确;C 、234=94,94≠916,故本选项错误;D 、(﹣2)2=4,4≠﹣4,故本选项错误. 故选:B .【点睛】本题考查有理数的运算,掌握运算法则是本题的解题关键. 7.当m =-1时,代数式2m+3的值是( ) A. -1 B. 0C. 1D. 2【答案】C 【解析】 【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=⨯-+=; 故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.8.下列多项式是五次多项式的是( ) A. x 3+y 2 B. x 2y 3+xy +4C. x 5y ﹣lD. x 5﹣y 6+1【答案】B 【解析】 【分析】五次多项式,即其次数最高次项的次数为五次.也就是说,每一项都可以是五次,也可以低于五次,但不可以超过五次.【详解】解:A 、该多项式是三次二项式,故本选项错误. B 、该多项式是五次三项式,故本选项正确. C 、该多项式是六次二项式,故本选项错误. D 、该多项式是六次三项式,故本选项错误. 故选:B .【点睛】本题考查多项式的项与次数,熟记定义是本题的解题关键. 9.若a 与b 互为相反数,则2a b +-等于( ). A. -2 B. 2C. -1D. 1【答案】A 【解析】 【分析】利用相反数的定义求出a+b 的值,代入计算,即可求出值. 【详解】∵a 与b 互为相反数, ∴a+b=0, ∴2a b +-=0-2=-2. 故选A.【点睛】此题考查相反数,解题关键在于掌握其定义.10.数轴上点A 、B 表示的数分别是a 、3,它们之间的距离可以表示为( ) A. a +3 B. a ﹣3C. |a +3|D. |a ﹣3|【答案】D 【解析】 【分析】由距离的定义和绝对值的关系容易得出结果.【详解】∵点A.B表示的数分别是a、3,∴它们之间的距离=|a-3|故选:D.【点睛】此题考查绝对值,数轴,难度不大11.已知3x﹣y=5,则代数式6x﹣2y的值为()A. ﹣10B. ﹣4C. 4D. 10【答案】D【解析】【分析】原式变形后,将已知等式代入计算即可求出值.【详解】∵3x﹣y=5,∴原式=2(3x﹣y)=10,故选D.【点睛】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.12.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A. 甲比乙多B. 乙比甲多C. 甲、乙一样多D. 无法确定【答案】C【解析】【分析】根据题意,把商品原价看作单位“1”,则甲的方案有关系式:现价=原价×(1+8%)×(1﹣8%),则现价是原价的99.36%;乙的方案有关系式:1×(1+8%)×(1﹣8%),则现价是原价的99.36%,从而求解.【详解】解:甲:把原来的价格看作单位“1”,1×(1+8%)×(1﹣8%)=1.08×92%=99.36%;乙:把原来的价格看作单位“1”,1×(1﹣8%)×(1+8%)=92%×1.08=99.36%;则甲、乙两个商家对这件商品的最终定价一样多.故选:C.【点睛】本题考查了列代数式,完成本题要注意前后提价与打折分率的单位“1”是不同的.二.填空题(共6小题)13.如果收入1000元表示为+1000元,则-700元表示__________.【答案】支出700元【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】“正”和“负”相对,所以如果收入1000元表示为+1000元,则-700元表示支出700元.故答案是:支出700元.【点睛】考查了正负数的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.单项式233x y的系数为______.【答案】1 3【解析】【分析】单项式的系数是指单项式中的数字因数.【详解】23231=33x yx y,所以单项式233x y的系数为13.故答案为1 3【点睛】此题考查的是单项式的系数的概念.15.把5×5×5写成乘方的形式__________【答案】35【解析】【分析】根据有理数乘方的定义解答.【详解】5×5×5=35. 故答案是:35. 【点睛】考查了有理数的乘方的定义,注意指数是底数的个数.16.5.14567精确到0.001位得到的近似数是_____.【答案】5.146.【解析】【分析】把万分位上的数字6进行四舍五入即可.【详解】解:5.14567≈5.146(精确到0.001).故答案为5.146.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.17.如果单项式6x m y和3x3y n是同类项,则n=_____.【答案】1.【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值.【详解】解:∵单项式6x m y和3x3y n是同类项,∴m=3,n=1.故答案为:1【点睛】本题考查同类项的定义,熟记定义是本题的解题关键.18.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h,3h后甲船比乙船多航行_____km.【答案】6a.【解析】【分析】顺水速度=船速+水速,逆水速度=船速﹣水速.根据路程公式求出甲、乙航行的路程,从而得出答案.【详解】解:3h后甲船航行的路程为3×(50+a)=150+3a(km),3h后乙船航行的路程为3(50﹣a)=150﹣3a(km),则3h后甲船比乙船多航行150+3a﹣(150﹣3a)=6a(km),故答案为:6a.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.三.解答题(共8小题)19.把下列各数填入相应集合的括号内.+8.5,﹣312,0.3,0,﹣3.4,12,﹣9,﹣1.2,20%,﹣2.(1)正数集合:{_____…};(2)整数集合:{_____…};(3)非正整数集合:{_____…};(4)负分数集合:{_____…}.【答案】(1)正数集合:{+8.5,0.3,12,20% …};(2)整数集合:{0,12,﹣9,﹣2…};(3)非正整数集合:{0,﹣9,﹣2…};(4)负分数集合:{﹣312,﹣3.4,﹣1.2…},【解析】【分析】根据有理数的分类,可得答案.【详解】解:(1)正数集合:{+8.5,0.3,12,20% …};(2)整数集合:{0,12,﹣9,﹣2…};(3)非正整数集合:{0,﹣9,﹣2…};(4)负分数集合:{﹣312,﹣3.4,﹣1.2…},【点睛】本题考查有理数的分类,熟记有理数的定义及其分类是本题的解题关键.20.计算:(1)(﹣0.1)﹣(﹣4.6)﹣(+8.9)+(+5.4)(2)(﹣2)2×3﹣|﹣16|÷4【答案】(1)1;(2)8.【解析】【分析】(1)根据加法交换律和结合律简便计算;(2)先算乘方,再算乘除,最后算加减;如果有绝对值,要先做绝对值内的运算.【详解】解:(1)原式=﹣0.1+4.6﹣8.9+5.4=﹣(0.1+8.9)+(4.6﹣5.4)=﹣9+10=1;(2)原式=4×3﹣16÷4=12﹣4=8.【点睛】本题考查有理数的混合运算,掌握运算法则正确计算是本题的解题关键. 21.在数轴上表示下列各数,并用“<”把它们连接起来.3,﹣|﹣5|,0,﹣72,﹣(﹣2).【答案】见详解;﹣|﹣5|<﹣72<0<﹣(﹣2)<3.【解析】【分析】首先分别在数轴上表示,再根据数轴上的数右边的总比左边的大可得答案.【详解】解:如图:根据数轴可得﹣|﹣5|<﹣72<0<﹣(﹣2)<3.【点睛】本题考查用数轴上的点表示有理数及数的大小比较,利用数轴数形结合思想解题是本题的解题关键.22.先化简,再求值:(x2y﹣xy2)﹣(xy2+x2y),其中x=12,y=﹣1【答案】﹣2xy2;﹣1.【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=x2y﹣xy2﹣xy2﹣x2y=﹣2xy2,当x =12,y =﹣1时, 原式=212(1)12-⨯⨯-=- . 【点睛】本题考查整式的化简求值,掌握去括号法则,正确计算是本题的解题关键.23.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km ):(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)将最后一名乘客送到目的地,出租车一共行驶多少千米?(3)若每千米的价格为2.4元,司机一下午的营运额是多少元? 【答案】(1)出租车离鼓楼出发点3千米,在鼓楼西方;(2)55;(3)132.【解析】【分析】(1)根据有理数的加法运算,可得出租车离鼓楼出发点多远,在鼓楼什么方向;(2)将所有的行驶路程相加即可.(3)根据乘车收费:单价×里程,可得司机一下午的营业额.【详解】(1)9−3−5+4−8+6−3−6−4+7=−3,答:将最后一名乘客送到目的地,出租车离鼓楼出发点3千米,在鼓楼西方;(2) 9+|−3|+|−5|+4+|−8|+6+|−3|+|−6|+|−4|+7=55(千米).故租车一共行驶55千米(3) (9+|−3|+|−5|+4+|−8|+6+|−3|+|−6|+|−4|+7)×2.4=132(元),答:每千米的价格为2.4元,司机一下午的营业额是132元. 【点睛】此题考查正数和负数,解题关键在于掌握其性质和运算法则. 24.为绿化校园,安排七年级三个班植树,其中,一班植树x 棵,二班植树的棵数是一班的2倍少20棵,三班植树的棵数是二班的一半多15棵. (1)三个班共植树多少棵?(用含x 的式子表示) (2)当x =30时,三个班中哪个班植树最多? 【答案】(1) 4x ﹣15(棵);(2) 二班植树最多,理由见解析(1)根据一班植树x棵,二班植树的棵数比一班的2倍少20棵得出二班植树(2x﹣20)棵,三班植树的棵数比二班的一半多15棵,得出三班植树=12(2x﹣20)+15=(x+5)棵;(2)将x=30代入求出各班植树棵树即可.【详解】(1)一班植树x棵,二班植树的棵数为(2x﹣20)棵,三班植树的棵数为(x+5)棵;三个班共植树x+2x﹣20+x+5=4x﹣15(棵);(2)把x=30代入2x﹣20=40(棵);把x=30代入x+5=35(棵),∵30<35<40,∴二班植树最多.【点睛】考查了用字母列式表示数量关系及整式的化简和求值,分别表示出各班植树棵数是解题关键.25.对于有理数a、b,定义运算:a⊕b=a×b+|a|﹣b,符合有理数的运算法则和运算律.(1)计算(﹣2)⊕(﹣2)的值;(2)填空:3⊕(﹣2)(﹣2)⊕3(填“>”或“=”或“<”);(3)计算[(﹣5)⊕4]⊕(﹣2)的值;【答案】(1)8;(2)>(3)59.【解析】【分析】(1)根据题意,可得(﹣2)⊕(﹣2)=(﹣2)×(﹣2)+|﹣2|﹣(﹣2),再先算乘法,后算加减法,如果有绝对值,要先做绝对值内的运算;(2)先分别求出3⊕(﹣2)和(﹣2)⊕3,再比较大小即可解答本题;(3)先求出(﹣5)⊕4=﹣19,再求出(﹣19)⊕(﹣2)的值即可解答本题.【详解】解:(1)(﹣2)⊕(﹣2)=(﹣2)×(﹣2)+|﹣2|﹣(﹣2)=4+2+2=8;(2)∵3⊕(﹣2)=3×(﹣2)+|3|﹣(﹣2)=﹣6+3+2=(﹣2)×3+|﹣2|﹣3=﹣6+2﹣3=﹣7,﹣1>﹣7,∴3⊕(﹣2)>(﹣2)⊕3;(3)∵(﹣5)⊕4=(﹣5)×4+|﹣5|﹣4=﹣20+5﹣4=﹣19,∴[(﹣5)⊕4]⊕(﹣2)=(﹣19)⊕(﹣2)=(﹣19)×(﹣2)+|﹣19|﹣(﹣2)=38+19+2=59.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.26.福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?【答案】(1)(4800+30x),(5400+27x);(2)见解析;(3) 在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.【解析】【分析】(1)先根据题意列出算式,再化简即可;(2)把x=100代入(1)中的代数式,求出结果,再比较即可;(3)比较划算的方方案是:在A 网店买40个足球和40个跳绳,在B 网店买60个跳绳,求出即可.【详解】解:(1)()540027x +. 若在A 网店购买,需付款150×40+30(x-40)=(30x+4800)元, 若在B 网店购买,需付款150×90%×40+30×90x=(27x+5400)元, 故答案为27x+5400,27x+5400;(2)当x=100时在A 网店购买需付款:4800304800301007800x +=+⨯=元;在B 网店购买需付款:5400275400271008100x +=+⨯=元. ∵348120030++⨯⨯ ∴当100x =时应选择在A 网店购买合算.(3)当100x =时在A 网店购买需付款:4800304800301007800x +=+⨯=元;在B 网店购买需付款:5400275400271008100x +=+⨯=元.在A 网店购买40个足球配送40个跳绳,再在B 网店购买60个跳绳合计需付款:150********%7620⨯+⨯⨯=元.∵762078008100<<∴省钱的购买方案是:在A 网店购买40个足球配送40个跳绳,再在B 网店购买60个跳绳,付款7620元.【点睛】本题考查列代数式和求代数式的值,能正确根据题意列出代数式是解题关键.。
青岛版2019--2020学年度第一学期期中考试七年级数学考试时间:100分钟;满分120分一、单选题1.(3分)﹣3的倒数是()A.﹣13B.13C.3D.﹣32.(3分)下列图形中能比较大小的是( )A.两条线段B.两条直线C.直线与射线D.两条射线3.(3分)按照下图的运算顺序,输入1x=,最后输出的结果为()A.12- B.7 C.7- D.124.(3分)如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A 地到B地有三条水路、两条陆路,从B地到C地有4条陆路可供选择,走空中,从A 地不经B地直线到C地,则从A地到C地可供选择的方案有( )A.10种B.20种C.21种D.626种5.(3分)数据240 000 000用科学记数法表示为( )A.24×107B.0.24×109C.2.4×108D.2.486.(3分)如图下列说法中正确的是( )A.画一条长为35cm直线AB B.直线AC、线段BC、射线BC中直线AC最长C.射线AC比射线AB长D.线段AB与线段BA相等7.(3分)下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况8.(3分)某校年级(1)班在“迎中考日誓师”活动中打算制作一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字如图是该班同学设计的正方体挂坠的平面展开图,那么“谁”对面的字是()A.成B.功C.其D.我9.(3分)如图所示的扇形的圆心角度数分别为30°,40°,50°,则剩下扇形是圆的()A.13B.23C.14D.3410.(3分)如图,AB=1.6,延长AB至点C,使得AC=4AB,D是BC的中点,则AD等于()A.2.4B.3.2C.4 D.4.8二、填空题11.(4分)用“>”、“=”或“<”填空.(1)一1_________0 (2)0.1_________—10 (3)一67________一5612.(4分)一个立方体的各个面上分别都写有1,2,3,4,5,6中的一个数字,不同的面上写的数字各不相同,则三个图形中底面上各数之和是________.13.(4分)122-的倒数________,(5)--的绝对值________,3--的相反数________. 14.(4分)若∣x ∣=6,则x=_______________.15.(4分)圆柱的侧面展开图是_____________,棱柱的侧面展开图是__________,圆锥的侧面展开图是____.16.(4分)如果向北走4米记作+4米,那么-3米表示____________________________.17.(4分)已知AB=8cm ,若点C 在AB 的延长线上,且B 为AC 的一个三等分点,则AC= ______cm .18.(4分)小明一家三口随旅游团外出旅游,旅途的费用支出情况如图所示.若他们共支出了4 800元,则在购物上用去了_______ 元.三、解答题19.(9分)计算:(1)﹣24+|3﹣4|﹣2×(﹣1)2008 (2)12.5(5)4()25--⨯-⨯⨯-(3)(1511262-+)÷(﹣124)20.(7分)已知|a +3|+|b ﹣5|=0,x ,y 互为相反数,c 与d 互为倒数.求:3(x +y )﹣a ﹣2b +(3cd )的值.(cd 表示c 乘d )21.(7分)下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来.-112,0 ,2,-|-3|,-(-3.5).22.(7分)某中学现有学生740人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为(2)在图2中,将“体育”部分的图形补充完整;(3)爱好“书画”的人数占被调查人数的百分比(4)估计这个八年级现有学生中,有多少人爱好书画?23.(7分)下表是某条河流一周内的水位变化情况(正数表示水位比前一天上升,负数表示水位比前一天下降,单位:米):与上周星期日相比,本周星期日河流的水位是上升还是下降了?24.(7分)根据下列要求画图:(1)作射线AB,直线AC;(2)连接CD,AD,BC;(3)延长线段AD,反向延长线段BC;(4)线段AC,BD相较于点O.25.(7分)如图,线段,点E,F分别是线段AB,CD的中点,cm,求线段AB,CD的长.26.(7分)某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?参考答案1.D【解析】-13的倒数是-3.故选D.点睛:若两个数乘积为1,那么这两个数互为倒数.2.A【解析】【分析】直接利用直线、射线、线段的性质分析得出答案.【详解】A.两条线段可以比较大小,故此选项正确.B.直线没有长度,无法比较,故此选项错误;C.直线与射线没有长度,无法比较,故此选项错误;D.射线没有长度,无法比较,故此选项错误.故选A.【点睛】本题考查了直线、射线、线段,正确掌握它们的性质是解题的关键.3.A【解析】【分析】根据运算顺序,把x=1代入下面的关系式,然后计算即可得解.【详解】x=1时,0.5×1-1=0.5-1=-0.5,即最后输出的结果为-0.5.故选A.【点睛】本题考查了代数式求值,准确判断出所使用的函数关系式是解题的关键.4.C【解析】【分析】本题只需分别数出A到B、B到C、A到C的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.5.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数据240000000用科学记数法表示为2.4×108,故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.D【解析】【分析】根据直线、射线、线段的性质解答即可.【详解】∵直线和射线都无法度量,故A、B、C错误;线段AB与线段BA相等,故D正确.故选D.本题考查了直线、射线、线段,正确把握相关性质是解题的关键.7.A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:了解某校七年级(1)班学生期中数学考试的成绩,适合用全面调查方式;了解一批签字笔的使用寿命适合用抽样调查方式;了解市场上酸奶的质量情况适合用抽样调查方式;了解某条河流的水质情况适合用抽样调查方式;故选:A.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:因为正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“我”与“谁”是相对面,故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.B∵30°+40°+50°=120°,∴余下的扇形的度数是360°−120°=240°,240°÷360°=23,∴剩下扇形是圆的2 3 .故选B.10.C【解析】【分析】根据AC与AB的关系,可得AC的长,根据线段的和差,可得BC的长,根据线段中点的性质,可得AD的长,再根据线段的和差,可得答案.【详解】解:由AC=4AB,AB=1.6,得AC=6.4,由线段的和差,得BC=AC-AB=6.4-1.6=4.8由点D是线段BC的中点,得BD=12BC=12×4.8=2.4,AD=AB+BD=1.6+2.4=4.故选C.【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差. 11.<><【解析】【分析】根据有理数大小比较的方法可以解答本题.【详解】(1)-1<0,故答案为:<;(2)0.1>0>-10,故答案为:>;(3)∵67>56,∴−67<−56,故答案为:<.【点睛】本题考查有理数大小比较、绝对值,解答本题的关键是明确有理数大小比较的方法.12.12【解析】【分析】本题可从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【详解】第一个正方体已知2,3,5,第二个正方体已知2,4,5,第三个正方体已知1,2,4,且不同的面上写的数字各不相同,则可知三个图形底面数字分别为:1,6,5.故数字之和为12.故答案为:12.【点睛】考查正方体的基本性质,结合图形进行分析即可.13.2553【解析】【分析】根据倒数、绝对值、相反数的定义即可求解.【详解】−212=−52,它的倒数是−25;|−(−5)|=|5|=5;−|−3|=−3,它的相反数是3.故答案是:−25、5、3.【点睛】本题考查了倒数、绝对值、相反数的定义,解题的关键是熟练的掌握倒数、绝对值、相反数的定义.14.6【解析】【分析】绝对值的逆向运算,因为|+6|=6,|-6|=6,且|x|=6,所以x=±6.【详解】|x|=6,所以x=±6.故答案为:±6.【点睛】考查绝对值,熟练掌握a表示数轴上表示数a的点与原点的距离.15.长方形长方形扇形【解析】【分析】根据圆柱、棱柱、圆锥的特点解答即可.【详解】圆柱的侧面展开图为长方形,棱柱的侧面展开图为长方形,圆锥的侧面展开图为扇形.故答案为:长方形;长方形;扇形.点睛:本题考查了立体图形的侧面展开图,熟记几个常见的立体图形的侧面展开图的特征,是解决此类问题的关键.16.向南走3米.【解析】试题分析:如果向北走4米记作+4米,南、北是两种相反意义的方向,那么﹣3米表示向南走3米;故答案为:向南走3米.考点: 负数的意义及其应用.17.12或24【解析】解:本题要分两种情况讨论:①如果,BC 占线段AC 的三分之一,则AC 等于12cm ;②如果AB 占线段AC 的三分之一,AC 等于24cm .∴AC=12或24cm .18.1200【解析】∵小明一家支出分为三种即路费,食宿,和购物,而前两项占了75%∴购物就占到总支出的25%∴总购物支出为:4800×25%=1200元19.(1)19-;(2)2-;(3)1174-【解析】【分析】(1)先去括号,然后进行计算即可;(2)先去绝对值符号和括号,然后再进行计算即可;(3)先计算括号内的,然后计算除法,最后计算加法即可;【详解】解:(1)原式=2053719-++-=-; (2)原式=51542225-⨯-⨯⨯-=-; (3)原式=1311731044-÷+=-; 【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 20.(1)-17;(2)6.【解析】【分析】(1)根据有理数的乘法、乘方和加减法可以解答本题.(2)先把除法转化为乘法,再利用乘法分配律进行计算即可. 【详解】(1)原式=−16+1−2×1=−16+1−2=−17.(2)原式=(1511262-+)×(-24)=-2+20-12=6.【点睛】此题考查有理数的混合运算,解题关键在于掌握运算法则.21.﹣4【解析】【分析】利用非负数的性质,相反数,倒数的性质求出各自的值,代入原式计算即可求出值.【详解】∵|a+3|+|b﹣5|=0,x,y互为相反数,c与d互为倒数,∴则原式【点睛】此题考查了有理数的混合运算,以及非负数的性质:绝对值,熟练掌握运算法则是解本题的关键.22.答案见解析【解析】试题分析:先计算-|-3|=-3,-(-3.5)=3.5,再根据数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.试题解析:-|-3|=-3,-(-3.5)=3.5,,用数轴表示为:,它们的大小关系为:−|−3|<−112<0<2<−(−3.5).23.(1)126°;(2)图略;(3)10% ;(4)74. 【解析】【分析】(1)利用“电脑”部分所占百分比是35%,乘以360度,即可求得所对应的圆心角的度数;(2)先求出总人数,再分别减去各部分的人数,得出“体育”部分的人数;(3)爱好“书画”的人数除以总人数即得爱好“书画”的人数占被调查人数的百分数:(4)利用样本估计总体即可.【详解】(1)360°×35%=126°,即“电脑”部分所对应的圆心角为126°;(2)28÷35%=80(人),80-28-24-8=20(人).画图,如图所示;(3)8÷80×100%=10%,即爱好“书画”的人数占被调查人数的百分数是10%;(4)7400×10%=74(人),即该中学现有的学生中,有74人爱好“书画”.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图则能直接反映部分占总体的百分比大小.24.下降了.【解析】【分析】只要求出本周7天水位变化的和即可.【详解】解:+0.25+0.1-0.4+0.05-0.3+0.24-0.35=-0.41,则与上周星期日相比,本周星期日河流的水位下降了0.41米.故答案为:下降了.【点睛】本题考查了有理数的加减法,掌握有理数的加减法则是解题的关键.25.见解析【解析】【分析】对于(1),连接AB、AC,将线段AB延长,即可得到射线AB,将线段AC向正反两个方向延长,即可得到直线AC;对于(2),连接CD,AD,BC,对于(3),按照要求作图即可;对于(4),连接BD,线段AC,即AC与BD的交点为O即可.【详解】(1)如图所示,(2)如图所示,(3)如图所示,(4)如图所示,【点睛】此题考查直线、射线、线段,解题关键在于掌握其作图法则.26.16cm;20cm;【解析】【分析】先BD=x,则CD=5x,AB=4x,再根据点E,F分别是AB,CD的中点,得到EF=ED+DF=3.5x,根据EF=14,可得x的值,进而得到AB,CD的长.【详解】解:因为,设BD=x,则CD=5x,AB=4x,∵点E,F分别是AB,CD的中点,∴EB=AB=2x,DF=CD=2.5x,∴ED=x,∴EF=ED+DF=3.5x,又∵EF=14,∴3.5x=14,解得x=4,∴CD=5x=20cm,AB=4x=16cm.【点睛】此题考查两点间的距离,解题关键在于结合图形进行计算.27.(1)他们没能最终登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128升.【解析】【分析】(1)约定前进为正,后退为负,依题意列式求出和,再与500比较即可;(2)要消耗的氧气,需求他共走了多少路程,这与方向无关.【详解】(1)根据题意得:150﹣32﹣43+205﹣30+25﹣20﹣5+30+75﹣25=330米,500﹣330=170米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640米,640×0.04×5=128升.答:(1)他们没能最终登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128升.【点睛】此题考查了正数和负数在实际生活中的应用,而且用到了有理数的加法,需同学们熟练掌握有理数的加法法则.。
2020-2021学年七年级上学期期中考试数学试题一、选择题1.在1,−2,−3,4这四个数中,任取两个数相乘,所得积最大的是()A. −12B. −2C. 4D. 62.下列说法中,正确的个数是()①一个负数的相反数大于这个负数;②互为倒数的两个数符号相反;③一个正数的相反数小于这个正数;④互为相反数的两个数的和为0.A. 1个B. 2个C. 3个D. 4个3.数轴上表示互为相反数m与−m的点到原点的距离()A. 表示数m的点离原点较远B. 表示数−m的点距原点较远C. 一样远D. 无法比较4.下列说法,错误的是()A. 所有的有理数都可以用数轴上的点表示B. 数轴上的原点表示0C. 在数轴上表示−3的点与表示+1的点的距离是2D. 数轴上表示−513的点在原点负方向513个单位5.2019年“国庆”期间,我市接待海内外游客共690000人次,将690000这个数用科学记数法表示为()A. 6.9×105B. 0.69×106C. 69×104D. 6.9×1066.下列式子中,符合书写规范的是()A. m÷nB. 235x C. yx D. a×20%7.π2与下列哪一个是同类项()A. abB. ab2 C. 22 D. m8.如图所示,边长为a的正方形中阴影部分的面积为()A. a2−π(a2)2 B. a2−πa2 C. a2−πa D. a2−2πa9.下列运算正确的是()A. 3a+2a=5a2B. 3a+3b=3abC. 2a2bc−a2bc=a2bcD. a5−a2=a310.代数式7a3−6a3b+3a2b+3a2+6a3b−3a2b−10a3的值()A. 与字母a,b都有关B. 只与a有关C. 只与b有关D. 与字母a,b都无关11.若当x=3时,代数式x2+mx+2有最小值,则当x2+mx=7时,x的值为()A. x=0或x=6B. x=1或x=7C. x=1或x=−7D. x=−1或x=7二、填空题12.如下图是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为.(1)若单项式−58a2b m与−117x3y4是次数相同的单项式,则m的值为;(2)如果−axy b是关于x、y的四次单项式,且系数为7,那么a+b=.13.用含字母的式子表示:(1)若三角形的底边长是x,底边上的高是y,则该三角形的面积为________;(2)21的n倍可以表示为________;2(3)一个三位数,个位上的数字为a,十位上的数字为b,百位上的数字为c.则这个三位数为________.14.今年1~5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.50亿精确到__________,有效数字有________ 个。
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
2020-2021七年级数学上期中第一次模拟试卷(及答案) (6)一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .+26nB .+86nC .44n +D .8n2.如图,O 在直线AB 上,OC 平分∠DOA (大于90°),OE 平分∠DOB ,OF ⊥AB ,则图中互余的角有( )对.A .6B .7C .8D .93.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .4.若关于x 的方程3x +2a =12和方程2x -4=12的解相同,则a 的值为( ) A .6 B .8 C .-6D .4 5.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x-5=y+5 B .若a=b ,则ac=bcC .若23a b c c=,则2a=3b D .若x=y ,则x y a b = 6.下列各个运算中,结果为负数的是( ) A .2- B .()2-- C .2(2)-D .22- 7.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④8.有理数a 、b 在数轴上对应的位置如图所示:则下列关系成立的是( )A .a-b>0B .a+b>0C .a-b=0D .a+b<0 9.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为( )A .9B .10C .11D .1210.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 11.下列各图经过折叠后不能围成一个正方体的是( )A .B .C .D .12.我县人口约为530060人,用科学记数法可表示为( )A .53006×10人B .5.3006×105人C .53×104人D .0.53×106人 二、填空题13.当k =_____时,多项式x 2+(k ﹣1)xy ﹣3y 2﹣2xy ﹣5中不含xy 项.14.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.15.商店运来120台洗衣机,每台售价是440元,每售出一台可以得到售价15%的利润,其中两台有些破损,按售价打八折出售。
第一学期期中学情检测
初一数学试题
(时间120分钟)
总分 等级
一、选择题(本大题共14个小题,每小题3分,共42分。
每小题给出的四个答案中,只有一项是正确的,请把正确的答案的字母代号选出来,填入下面的答题栏的对应位置) 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案
1.有理数﹣3的相反数是( ) A .﹣3
B .3
C .
D . ﹣
2.如图是由4个大小相同的正方体搭成的几何体,其俯视图是( )
A .
B .
C .
D .
3.在
21
,0,—1,﹣这五个数中,最小的数为( ) A .
2
1 B .0
C .﹣
D .—1
4.下列图形中,能通过折叠围成一个三棱柱的是( )
A .
B .
C .
D .
5.下列计算结果正确的是( ) A .3—8=5
B .—4+7=—11
C .—6﹣9=—15
D .0﹣2=2
6.如图是一个正方体的表面展开图,则原正方体中与“祝”字所在的面相对的面上标的字是( ) A .考
B . 试
C . 顺
D . 利
7.用一个平面去截一个正方体,截面不可能是( ) A .三角形 B .正方形 C .五边形 D .八边形
8.算式(﹣2)÷3×
)3
1-(的结果等于( ) A .
92 B .—2 C .—92
D .2 9.如果由四舍五入得到的近似数75,那原数不可能是( ) A .74.48
B . 74.53
C . 74.87
D . 75.49
10.在已知的数轴上,表示﹣2.75的点是 ( )
A .点E
B . 点F
C . 点G
D . 点H
11.下列各组数中,运算结果相等的是( ) A .(﹣3)2
与﹣32
B .(﹣3)3与﹣33
C .
与
D .34
与43
12.质检员抽查某零件的质量,超过规定尺寸的部分记为正数,不足规定尺寸的部分记为负数,结果第一个0.13 mm ,第二个﹣0.12 mm ,第三个—0.1 mm ,第四个0.15 mm ,则质量最好的零件是( ) A .第一个
B . 第二个
C . 第三个
D . 第四个
13.下列运算错误的是( ) A .﹣8﹣2×6=﹣20 B .(﹣1)2014
+(﹣1)
2013
=0
C . ﹣(﹣3)2
=﹣9
D .
14.式子23
+23
+23
+23
的计算结果用幂的形式表示正确的是( ) A .25
B .29
C . 212
D . 216
二.填空题(本大题共8小题,每小题3分,共24分。
只要求填写最后结果) 15.﹣0.15的相反数是_______ ,绝对值是 _______ ,倒数是 _______ . 16.比较,﹣,﹣的大小关系: ______ .
17.一个直棱柱有10个顶点,那么这个棱柱的底面是 ______边形.
18.一防洪大堤所标的警戒水位是37米,规定在记录每天水位时,高于警戒水位的部分记为正数,低于警戒水位的部分记为负数.若冬季某一天,水位记录为﹣7米,则这天的实际水位为 _________ 米.
19.在数轴上,点A 表示数5,点B 到点A 的距离为3,则点B 表示的数是________ .
20.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水0.32L ,那么100万人每天浪费的水,用科学记数法表示为 _________ L .
21.计算(—1)
2013
+(—0.125×8)
2014
= _________ .
22.有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,…这列数的第26个数是 _________ . 三.解答题(本大题共7小题,满分54分,写出必要的文字说明、证明过程或推演步骤) 23.(本大题4分)
如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:(要求用直尺或三角板画图)
24.(本小题4分)把下列各数填在相应的大括号内: 20,0,—1,3
2
-
,|—1.32|,—(+6),3.14 负整数{ …}; 正分数{ …}; 24.计算下列各题(每小题4分,共20分)
(1)—8—(—1)—(+5) (2)
36)18
7
-9765-43(⨯+
(3)(—81)÷49×94÷(—36) (4)34×
22
1)2-(2712
÷⨯+
(5)—14
—6
1×[2—(—3)2]
26.(本小题9分)
随着我国经济的发展,股市也得到迅速发展,小王上周五在股市以收盘价每股25元买进某公司的股票1000股,在接下来的一周交易日内,他记下该股票每日收盘价比前一天的涨跌情况(单位:元): 星期
一
二
三
四
五
每股涨跌 +2 ﹣0.5 +1.5 ﹣1.8 +0.8 请你根据此表回答下列问题:
(1)星期三收盘时,该股票每股多少元?
(2)本周内,该股票收盘时的最高价、最低价分别是多少?
(3)若小王在本周五以收盘价将全部股票卖出,如果不考虑其他费用。
则他的收益情况如何?
27.(本小题6分)
将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm 、宽为3cm 的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?(结果保留π)
28.(本小题5分)
已知海拔每升高1 000m ,气温下降6℃,某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是﹣1℃.求热气球的高度.
29.学习了有理数的运算后,王老师给同学们出了这样的一道题. 计算7115
16
×()-8,
解:=
)8-()16
1-72(⨯ =72×(—8)—
16
1
×(—8) =—576+
2
1 =2
1575
- 请你灵活运用王老师讲的解题方法计算:13
1262339
÷
初一数学试题参考答案
一、选择题(本大题共14个小题,每小题3分,共42分)
15. 0.15 0.15 20
3
- 16. ﹣_<﹣_<_ 17. 五 18. 30 19. 2或8 20. 3.2×105
21. 0 22. 7
三.解答题(本大题共7小题,满分54分) 23.(本大题4分)解:如图所示:
24.(本小题4分)
负整数{ —1,—(+6) …};正分数{ |—1.32|,3.14 …}; 25.(每小题4分,共20分)
(1)—12 (2)11 (3)1 (4)4 (5)
6
1 26. (本小题9分)(1)28(2)28、26.2(3)(27—25)×1000=2000(元) 27.(本小题6分)解:绕长所在的直线旋转一周得到圆柱体积为:π×32
×4=36πcm 3
. 绕宽所在的直线旋转一周得到圆柱体积:π×42
×3=48πcm 3
. 28. (本小题5分)[6—(—3)]÷6×1000=1500米 29.(本小题6分)(40—
263)×13=40×13—263×13=520—23=5182
1。