简便方法归类
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
四年级数学用简便方法计算的几种类型类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加)(40+8)×25 125×(8+80)36×(100+50)24×(2+10)86×(1000-2)15×(40-8)类型二:(注意:两个积中相同的因数只能写一次)36×34+36×66 75×23+25×23 63×43+57×6393×6+93×4 325×113-325×13 28×18-8×28类型三:(提示:把102看作100+1;81看作80+1,再用乘法分配律)78×102 69×102 56×101 52×102 125×81 25×41类型四:(提示:把99看作100-1;39看作40-1,再用乘法分配律)31×99 42×98 29×99 85×98 125×79 25×39类型五:(提示:把83看作83×1,再用乘法分配律)83+83×99 56+56×99 99×99+9975×101-75 125×81-125 91×31-91四年级数学简便计算:方法归类一、交换律(带符号搬家法)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
适用于加法交换律和乘法交换律。
256+78—56 450×9÷50=256—56+78 =450÷50×9=200+78 =9×9=278 =81二、结合律(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
小学数学8种简便计算方法归类(精编版)小学阶段(中、高年级)的简便运算,在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。
如果学生没真正理解运算定律、性质,他只能照葫芦画瓢。
在实际解题的过程当中,学生的思路不清晰,常出现这样或那样的错误。
因此,培养学生思维的灵活性就显得尤为重要。
1.提取公因式这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)2.借来借去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1-43.拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×254.加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例如:5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)5.拆分法和乘法分配律结合这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:34×9.9 = 34×(10-0.1)案例再现:57×101=?6.利用基准数在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
四年级数学用简便方法计算的几种类型类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加)(40+8)×25 125×(8+80)36×(100+50)24×(2+10) 86×(1000-2)15×(40-8)类型二:(注意:两个积中相同的因数只能写一次)36×34+36×66 75×23+25×23 63×43+57×6393×6+93×4 325×113-325×13 28×18-8×28类型三:(提示:把102看作100+1;81看作80+1,再用乘法分配律)78×102 69×102 56×101 52×102 125×81 25×41类型四:(提示:把99看作100-1;39看作40-1,再用乘法分配律)31×99 42×98 29×99 85×98 125×7925×39类型五:(提示:把83看作83×1,再用乘法分配律)83+83×99 56+56×99 99×99+9975×101-75 125×81-125 91×31-91四年级数学简便计算:方法归类一、交换律(带符号搬家法)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
适用于加法交换律和乘法交换律。
256+78-56 450×9÷50=256—56+78 =450÷50×9=200+78 =9×9=278 =81二、结合律(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
四年级数学简便计算:乘除法篇一、乘法:1. 因数含有5或15、35、45等的算式:例如:35×16我们根据需要将16拆分成2×8,这样原式变为35×2×8。
因为这样就可以先得出整十的数,运算起来比较简便。
2. 因数含有25和125的算式:例如①:25×42×4我们牢记25×4=100,所以交换因数位置,使算式变为25×4×42. 同样含有因数125的算式要先用125×8=1000。
例如②:25×32 此时我们要根据25×4=100将32拆成4×8,原式变成25×4×8。
例如③:72×125 我们根据125×8=1000将72拆成8×9,原式变成8×125×9。
重点例题:125×32×25 =(125×8)×(4×25)3.乘法分配律的应用:例如:56×32+56×68我们注意加号两边的算式中都含有56,意思是32个56加上68个56的和是多少,于是可以提出56将算式变成56×(32+68)如果是56×132—56×32 一样提出56,算是变成56×(132-32)注意:56×99+56 应想99个56加上1个56应为100个56,所以原式变为56×(99+1) 或者56×101-56 =56×(101-1)另外注意综合运用,例如:36×58+36×41+36 =36×(58+41+1)47×65+47×36-47 =47×(65+36-1) 4.乘法分配律的另外一种应用:例如:102×47我们先将102拆分成100+2 算式变成(100+2)×47 然后注意将括号里的每一项都要与括号外的47相乘,算式变为:100×47+2×47例如:99×69 我们将99变成100-1 算式变成(100-1)×69 然后将括号里的数分别乘上69,注意中间为减号,算式变成:100×69-1×69二、除法:1.连续除以两个数等于除以这两个数的乘积:例如:32000÷125÷8 我们可以将算式变为32000÷(125×8)=32000÷10002.例如:630÷18 我们可以将18拆分成9×2 这时原式变为630÷(9×2)注意要加括号,然后打开括号,原式变成630÷9÷2=70÷2三、乘除综合:例如6300÷(63×5)我们需要打开括号,此时要将括号里的乘号变为除号,原式变为6300÷63÷5四年级数学简便计算:加减法篇一、加法:1.利用加法交换律例如:254+158+246我们首先观察发现254与246相加可以凑成整百,于是交换158和246两个加数的位置,变成254+246+158。
小学数学简便运算归类复习小学数学中,从一年级到六年级一直贯穿着一个内容,那就是简便运算。
在整数范围、小数范围、分数范围内都做为一个内容重复出现。
而这个内容也正是小学数学中的一个难点,现在把其整理出来,供参考。
同时欢迎留言补充。
一、运用加法结合律进行简算(a+b)+c=a+(b+c) 例1、5.76+13.67+4.24+6.33 =(5.76+4.24)+(13.67+6.33) =10+10 =20 例2、37.24+23.79-17.24 =37.24-17.24+23.79 =20+23.79 =43.79 二、运用乘法结合律进行简算:这种题型往往含特殊数字之间相乘(a×b)×c=a×(b×c) 特殊数字之间相乘:25×4=100 125×8=1000 25×8=200 125×4=500 例3、4×3.78×0.25 =4×0.25×3.78 =1×3.78 =3.78 例4、125×246×0.8 =125×0.8×246 =100×246 =24600 三、利用乘法分配律进行简算: (a+b)×c=a×c+b×c (a-b)×c=a×c-b×c 做这种题,一定不要急着去算,先要分析各数字之间的特殊关系。
也就是先要仔细观察,找到做题的窍门。
例5、(2.5+12.5)×40 =2.5×40+12.5×40 =100+500 =600 例6、3.68×4.79+6.32×4.79 =(3.68+6.32)×4.79 =10×4.79 =47.9 例7. 26.86×25.66-16.86×25.66 =(26.86-16.86) ×25.66 =10×25.66 =256.6 例8、5.7×99+5.7 = 5.7×(99+1) =5.7×100 =570 三、利用加减乘除把数拆分后再利用乘法分配律进行简算:例9、34×9.9 =34×(10-0.1) =34×10-34×0.1 =340-3.4 =336.6 例10、57×101 =57×(100+1) =57×100+57×1 =5757 例11、7.8×1.1 =7.8×(1+0.1) =7.8×1+7.8×0.1 =7.8+0.78 =8.58 例12、25×32 =25×4×8 =100×8 =800 例13、125×0.72 =125×8×0.09 =1000×0.09 =90 例14、87×2/85 =(85+2) ×2/85 =85×2/85+2×2/85 =2+4/85 =2又4/85 四、连减与连除a-b-c=a-(b+c) a÷b÷c=a÷(b×c) 例15、56.5-3.7-6.3 =56.5-(3.7+6.3) =56.5-10 =46.5 例16、32.6÷0.4÷2.5 =32.6÷(0.4×2.5) =32.6÷1 =32.6 五、需要变形才能进行的简便运算:做这一类题,要先观察,找出规律,然后变形后进行简算。
小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符号搬家”。
(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;a ×b ×c=a ×c ×b,a ÷b ÷c=a ÷c ÷b,a ×b ÷c=a ÷c ×b,a ÷b ×c=a ×c ÷b)二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a -(b-c), a-b-c= a-( b +c);2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)a ×b ×c=a ×(b ×c), a ×b ÷c=a ×(b ÷c), a ÷b ÷c=a ÷(b ×c), a ÷b ×c=a ÷(b ÷c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
小学数学简便计算方法归类城关镇卸旗小学闵诗义在小学数学计算中,简便计算是一个常用而且难度较大的问题,学会掌握简便计算,对提高学生数学成绩有很大帮助。
现将小学数学简便计算方法归纳如下:一、运用交换律进行简算(带符号搬家)例1:137+65-37=137-37+65=100+65=165例2:25÷100×4=25×4÷100=100÷100=1二、运用加法结合律进简算(a+b)+c=a+(b+c)例3、5.76+13.66+4.24=13.66+(5.76+4.24)=13.66+10=23.66例4、37.24+23.59-17.24=37.24-17.24+23.59=20+23.59=43.59三、运用乘法结合律进行简算(这种题型往往含特殊数字之间相乘,如:4×25=100 8×125=1000 8×25=200 125×4=500)(a×b) ×c=a×(b×c)例5、4×3.68×0.25=4×0.25×3.68=1×3.68=3.68例6、125×296×0.8=125×0.8×296=100×296=29600四、利用乘法分配律进行计算(做这类题不能急着去算,应先分析数量之间的特殊关系,找到解决问题的窍门)(a+b) ×c=ac+bc (a-b) ×c=ac-bc例7、(1.25+2.5)×32=1.25×32+2.5×32=1.25×8×4+2.5×4×8=400+80=480例8、3.58×6.92+6.42×6.92=(3.58+6.42) ×6.92=10×6.92=69.2例9、37.89×25.25-17.89×25.25=(37.89-17.89) ×25.25=20×25.25=505例10、87.96×99+87.96=87.96×(99+1)=87.96×x100=8796五、拆分法(利用加减乘除把数拆分后再用乘法分配律进行计算)例11、26×9.9=26×(10-0.1)=26×10-26×0.1=260-2.6=257.4例12、86×101=86×(100+1)=86×100+86=8686例13、9.8×1.1=9.8×(1+0.1)=9.8+0.98=10.78例14、32×125=4×8×125=4×1000=4000例15、25×0.36=25×4×0.09=100×0.09=9例16、67×2/65=(65+2)x2/65=2+4/65=2又4/65六、连减或连除a-b-c=a-(b+c) a÷b÷c=a÷(b×c) 例17、63.5-37.2-12.8=63.5-(37.2+12.8)=63.5-50=13.5例18、56.3÷0.8÷12.5=56.3÷(0.8×12.5)=56.3÷10=5.638、这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批忍不断往前走的人手中。
四年级数学简便计算:乘除法篇一、乘法:1.因数含有25和125的算式:例如①:25×42×4我们牢记25×4=100,所以交换因数位置,使算式变为25×4×42. 同样含有因数125的算式要先用125×8=1000。
例如②:25×32 此时我们要根据25×4=100将32拆成4×8,原式变成25×4×8。
例如③:72×125 我们根据125×8=1000将72拆成8×9,原式变成8×125×9。
重点例题:125×32×25 =(125×8)×(4×25)2.因数含有5或15、35、45等的算式:例如:35×16我们根据需要将16拆分成2×8,这样原式变为35×2×8。
因为这样就可以先得出整十的数,运算起来比较简便。
3.乘法分配律的应用:例如:56×32+56×68我们注意加号两边的算式中都含有56,意思是32个56加上68个56的和是多少,于是可以提出56将算式变成56×(32+68)如果是56×132—56×32 一样提出56,算是变成56×(132-32)注意:56×99+56 应想99个56加上1个56应为100个56,所以原式变为56×(99+1) 或者56×101-56 =56×(101-1)另外注意综合运用,例如:36×58+36×41+36 =36×(58+41+1)47×65+47×36-47 =47×(65+36-1) 4.乘法分配律的另外一种应用:例如:102×47我们先将102拆分成100+2 算式变成(100+2)×47 然后注意将括号里的每一项都要与括号外的47相乘,算式变为:100×47+2×47例如:99×69 我们将99变成100-1 算式变成(100-1)×69 然后将括号里的数分别乘上69,注意中间为减号,算式变成:100×69-1×69二、除法:1.连续除以两个数等于除以这两个数的乘积:例如:32000÷125÷8 我们可以将算式变为32000÷(125×8)=32000÷10002.例如:630÷18 我们可以将18拆分成9×2 这时原式变为630÷(9×2)注意要加括号,然后打开括号,原式变成630÷9÷2=70÷2三、乘除综合:例如6300÷(63×5)我们需要打开括号,此时要将括号里的乘号变为除号,原式变为6300÷63÷5四年级数学简便计算:加减法篇一、加法:1.利用加法交换律例如:254+158+246我们首先观察发现254与246相加可以凑成整百,于是交换158和246两个加数的位置,变成254+246+158。
三年级美术简便画画方法归类及示例
概述
这份文档将介绍一些适用于三年级学生的简便画画方法,并提
供相关示例。
这些方法旨在帮助他们更轻松地表达自己的创意和想
象力。
以下是归类的方法和示例。
素描方法
1. 简单轮廓素描
使用简单的线条勾勒出物体的外形轮廓,无需过多细节。
示例:画一个苹果,只描绘它的轮廓形状。
2. 形状填充
用基本形状如圆、正方形、三角形等填充物体的外形,再加上
简单的细节线条。
示例:画一个笑脸,用一个大圆画脸,两个小圆
画眼睛。
涂色方法
1. 线条涂色
画出物体的轮廓后,使用彩色线条填充物体内部。
示例:画一
栋房子,用彩色线条填充屋顶、墙壁和门窗。
2. 基础平面涂色
用基本颜色填充物体的不同部分,然后用色铅笔或彩色铅笔涂
上简单的阴影。
示例:画一只草地上的小鸟,用绿色填充草地,用
黄色填充小鸟的身体。
模仿方法
1. 模仿物体纸片
将物体的形状和特征简化成纸片,然后用彩色纸剪出并拼贴在
画纸上。
示例:用不同颜色的纸剪出五颗树叶,拼贴在画纸上。
2. 模仿艺术家作品
选择一位艺术家的作品,用简化的方式模仿其表现风格和形状。
示例:选择蒙德里安的作品,用彩色线条和方块绘制一个简化的城
市风景。
总结
这些简便画画方法适用于三年级美术学习,旨在培养学生的创造力和表达能力。
老师和家长可以根据学生的兴趣和能力选择相应的方法进行指导和支持。
通过这些方法,学生将能够以简单且有趣的方式进行美术创作,并获得成功感和满足感。
四年级数学用简便方法计算的几种类型类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加)(40+8)×25 125×(8+80)36×(100+50)24×(2+10)86×(1000-2)15×(40-8)类型二:(注意:两个积中相同的因数只能写一次)36×34+36×66 75×23+25×23 63×43+57×6393×6+93×4 325×113-325×13 28×18-8×28类型三:(提示:把102看作100+1;81看作80+1,再用乘法分配律)78×102 69×102 56×101 52×102 125×81 25×41类型四:(提示:把99看作100-1;39看作40-1,再用乘法分配律)31×99 42×98 29×99 85×98 125×79 25×39类型五:(提示:把83看作83×1,再用乘法分配律)83+83×99 56+56×99 99×99+9975×101-75 125×81-125 91×31-91四年级数学简便计算:方法归类一、交换律(带符号搬家法)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
适用于加法交换律和乘法交换律。
256+78-56 450×9÷50=256-56+78 =450÷50×9=200+78 =9×9=278 =81二、结合律(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
小学数学中,从一年级到六年级一直贯穿着一个内容,那就是简便运算。
在整数范围、小数范围、分数范围内都做为一个内容重复出现。
而这个内容也正是小学数学中的一个难点。
一、提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借来借去法
看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
三、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法结合律
注意对加法结合律(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+
6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9
=34×(10-0.1)
案例再现:
57×101=?
六、利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。
)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4;
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
(125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
(运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。
6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
八、裂项法(难度高)
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
公式:
点。