简便方法
- 格式:doc
- 大小:22.50 KB
- 文档页数:3
简便计算的十四种方法班别:姓名:学号:第一种(第1至6种运用乘法分配律)(300+6)×12 25×(4+8) 125×(35+8) 15×(40-8)=300×12+6×12=3600+72=3672第二种163×43+57×163 325×113-325×13 32×16+14×32 78×4+78×3+78×3 =163×(43+57)=163×100=16300第三种84×101 504×25 78×102 25×204 =84×(100+1)=84×100+84×1=8400+84=8484第四种99×64 99×16 125×79 25×39 =(100-1)×64=100×64-1×64=6400-64=6336第五种83+83×99 56+56×99 99×99+99 75×101-75 =83×1+83×99=83×(1+99 )=83×100=8300第六种81+9×91 49+7×93 64+92×8 75×5+25 =9×9+9×91=9×(9+91 )=9×100=900第七种(连加:用加法交换律和加法结合律)425+14+186 732+580+268 1034+780+220+166 278+463+22+37第八种(连减:用凑整和去尾方法)1200-624-76 2100-728-772 2.73-0.27-0.73 8.47-5.27-2.47 643-167-133-143 87.3-21.3-17.3-18.7第九种(连乘:用乘法交换律和乘法结合律)125×21×8 25×93×4 25×28 72×125 25×32×125第十种(连除:用被除数除于后两个数的积)3600÷25÷4 8100÷4÷75 3000÷125÷8 1250÷25÷5第十一种(去括号:括号前面是减号或除号,去括号后,括号里面的要变号)2.14-(0.86+0.14)787-(87-29)3.65-(0.65+1.18)455-(155+230)第十二种(加括号:括号前面是减号或除号,加括号后,括号里面的要变号)576-285+85 8.25-6.57+0.57 690-177+77 75.5-28.7+8.7第十三种(多减一个,要加回一个)871-299 157-99 363-199 968-599=871-300+1=571+1=572第十四种(加减混合的简便运算:连符号一起移动数字)672+36-72425-38+757.48+3.51-1.48+1.4924.5-20.3+55.5-19.7 0.38+0.62-0.38+0.62。
数学简便方法大全以下是50条关于数学简便方法的大全,不包括真实姓名和引用:1. 乘法口诀表:通过背诵乘法口诀表可以快速计算乘法结果。
2. 四舍五入法:将小数四舍五入到最接近的整数,可以简化计算。
3. 合并同类项:在代数表达式中,将具有相同变量和指数的项合并,可以简化计算。
4. 负数乘法法则:两个负数相乘的结果为正数,一个正数和一个负数相乘的结果为负数。
5. 平方法则:计算一个数的平方可以简化为将该数的各个位上的数字平方后相加。
6. 比例法则:利用比例法则可以快速计算含有比例关系的数值。
7. 乘法的分配律:若a、b、c为任意数,则a*(b+c) = a*b + a*c。
8. 求解方程:利用等式两边对称性,可以将方程转化为更简单的形式进行求解。
9. 十进制化简:将分数化为最简形式时,可以将其转化为十进制表示进行化简计算。
10. 乘法交换律:交换乘法中两个数的位置不影响结果,即a*b = b*a。
11. 异常处理:当进行数学运算时,及时检测并处理异常情况能提高计算效率。
12. 指数法则:在进行指数计算时,利用指数法则可以简化计算过程。
13. 比例尺计算:通过比例尺可以快速计算物体的实际长度。
14. 相对速度计算:利用相对速度的概念,可以简化追及问题的计算。
15. 基本排列组合:掌握基本的排列组合知识可以处理多种数学问题。
16. 减法的分配律:若a、b、c为任意数,则a-(b+c) = a-b-c。
17. 等差数列求和:利用等差数列的求和公式可以快速计算数列的和。
18. 投影计算:在三角形中,计算投影可以简化问题的求解。
19. 四则运算顺序:按照加减乘除的顺序进行计算,可以避免混淆和错误。
20. 数列递推法:对于已知数列的递推关系,可以快速求解后续项。
21. 字母代换法:将字母代换为具体数值进行计算,可以简化复杂的代数运算。
22. 常用三角函数:掌握常用三角函数的数值和性质,可以简化三角问题的计算。
23. 面积比较法:通过比较图形的面积可以判断大小关系而不需要具体计算数值。
简便运算的规律和方法在日常生活和学习中,我们经常会遇到各种各样的运算问题,如加减乘除、百分数计算、分数运算等。
正确、简便的运算方法可以帮助我们高效地解决这些问题,提高计算效率。
下面,我将介绍一些简便运算的规律和方法,希望对大家有所帮助。
一、加减乘除的简便规律。
1. 加法,对于两位数相加,我们可以利用进位和补数的方法来简化计算。
例如,计算58+37,我们可以先计算个位数相加得到15,然后再计算十位数相加得到90,最终得到结果95。
2. 减法,对于两位数相减,我们可以利用借位和补数的方法来简化计算。
例如,计算73-48,我们可以先计算个位数相减得到5,然后再计算十位数相减得到2,最终得到结果25。
3. 乘法,对于两位数相乘,我们可以利用竖式乘法来简化计算。
例如,计算24×37,我们可以按照个位数和十位数相乘的方式进行计算,最终得到结果888。
4. 除法,对于两位数相除,我们可以利用长除法来简化计算。
例如,计算96÷8,我们可以按照长除法的步骤进行计算,最终得到结果12。
二、百分数计算的简便方法。
1. 百分数转化为小数,将百分数除以100即可得到对应的小数。
例如,75%转化为小数为0.75。
2. 小数转化为百分数,将小数乘以100即可得到对应的百分数。
例如,0.6转化为百分数为60%。
3. 计算百分数的增减,当计算百分数的增减时,可以直接对原数进行相应的百分比增减运算。
例如,100的20%增加为120,100的30%减少为70。
三、分数运算的简便技巧。
1. 分数的加减,对于分数的加减,我们可以先将分母化为相同的数,然后对分子进行相应的运算。
例如,计算1/4+2/3,我们可以将分母化为12,然后对分子进行相应的加法运算,最终得到结果11/12。
2. 分数的乘法,对于分数的乘法,我们可以直接将分子和分母分别相乘,然后进行约分。
例如,计算2/3×3/4,我们可以直接得到结果6/12,然后进行约分得到1/2。
常用的七种简便运算方法在日常生活和学习中,人们经常需要进行各种运算。
为了提高计算速度和准确性,人们发展了一些简便运算方法。
下面介绍七种常见的简便运算方法。
一、乘法运算乘法是一种常见的运算,我们可以通过快速的心算来简化乘法运算。
以下是常见的三种乘法运算方法:1.整数乘法当两个整数相乘时,我们可以使用分配律和结合律来简化运算。
例如,计算48×5:首先,我们可以将5分解成2和3的和:48×5=48×(2+3)。
然后,应用分配律,得到:48×(2+3)=48×2+48×3最后,进行心算得出:48×2=96,48×3=144将结果相加,得到:96+144=240。
所以,48×5=240。
2.十位数乘法当一个数以0结尾,另一个数是两位数时,我们可以使用十位数乘法来简化运算。
例如,计算40×32:首先,将32分解成30和2的和:40×32=40×(30+2)。
然后,应用分配律,得到:40×(30+2)=40×30+40×2最后,进行心算得出:40×30=1200,40×2=80。
将结果相加,得到:1200+80=1280。
所以,40×32=1280。
3.另一个乘法快速计算方法是经过适当分解,再通过相应的加减法操作,运算速度更快且容易进行。
例如,计算98×7:首先,将98分解成90和8的和:98×7=(90+8)×7然后,应用分配律,得到:(90+8)×7=90×7+8×7最后,进行心算得出:90×7=630,8×7=56将结果相加,得到:630+56=686所以,98×7=686二、除法运算除法是一种常见的运算,我们可以使用心算和简化方法来快速计算除法。
简便运算大全在日常生活和工作中,我们经常需要进行各种简便运算,比如加减乘除、百分比计算、平方根求值等等。
本文将为大家介绍一些常见的简便运算方法,希望能够帮助大家更加便捷地进行数学计算。
一、加减乘除。
1. 加法,加法是最基本的运算之一,例如,3 + 5 = 8。
在进行加法运算时,我们只需要将两个数相加即可得到结果。
2. 减法,减法是加法的逆运算,例如,9 4 = 5。
在进行减法运算时,我们只需要将被减数减去减数即可得到结果。
3. 乘法,乘法是重复加法的简化形式,例如,6 ×7 = 42。
在进行乘法运算时,我们只需要将两个数相乘即可得到结果。
4. 除法,除法是乘法的逆运算,例如,12 ÷ 3 = 4。
在进行除法运算时,我们只需要将被除数除以除数即可得到结果。
二、百分比计算。
百分比是表示数值相对于100的比例关系,常用于表示增长率、减少率、比例等。
例如,75%表示75/100,即0.75。
在进行百分比计算时,我们可以利用以下公式:百分数 = (所求数 / 总数)× 100%。
例如,某班级有60名学生,其中男生占总人数的40%,则男生人数为60 ×40% = 24人。
三、平方根求值。
平方根是一个数的平方等于另一个数时,这两个数互为平方根。
例如,√9 = 3,因为3 × 3 = 9。
在进行平方根求值时,我们可以利用计算器或者手算方法得到结果。
四、小数运算。
小数运算是运用于小数的加减乘除等运算。
在进行小数运算时,我们需要注意小数点的位置,确保运算的准确性。
例如,0.6 + 0.25 = 0.85。
五、分数运算。
分数是表示整体的若干等分之一,分母表示等分数的总份数,分子表示取得的份数。
在进行分数运算时,我们可以通过通分、约分等方法简化计算,确保结果的准确性。
六、整数指数运算。
整数指数运算是指数为整数的幂运算,例如,2^3 = 8。
在进行整数指数运算时,我们可以通过连乘的方式或者计算器进行运算,得到结果。
12种简便运算技巧运算是我们日常生活中必不可少的一项技能,而掌握一些简便的运算技巧,能够帮助我们更高效地进行计算。
本文将介绍12种简便运算技巧,帮助读者在运算时更得心应手。
一、巧用乘法交换律乘法交换律指的是,两个数相乘的结果不受乘法顺序的影响。
例如,对于两个数的乘积,可以根据乘法交换律将其顺序调换,从而使得计算更加简便。
二、利用乘法分配律乘法分配律指的是,一个数与两个数的和相乘,等于这个数分别与这两个数相乘后的和。
利用乘法分配律,我们可以将复杂的乘法运算转化为简单的加法运算。
三、使用乘法的技巧在进行乘法运算时,我们可以利用一些技巧来简化计算。
例如,当两个乘数中有一个是10的倍数时,可以利用尾数和0的关系来进行计算,从而减少计算量。
四、使用除法的技巧在进行除法运算时,我们也可以利用一些技巧来简化计算。
例如,可以利用乘法的逆运算——除法,将一个除法运算转化为乘法运算,从而简化计算步骤。
五、巧用加法交换律和结合律加法交换律指的是,两个数相加的结果不受加法顺序的影响;加法结合律指的是,三个数相加的结果不受加法运算顺序的影响。
利用这两个法则,我们可以灵活地调整运算顺序,使得计算更加简便。
六、使用加法的技巧在进行加法运算时,我们也可以利用一些技巧来简化计算。
例如,当两个加数相差较大时,可以利用数位和的关系,通过分解运算,减少计算量。
七、巧用减法的技巧在进行减法运算时,我们可以利用一些技巧来简化计算。
例如,可以将减法运算转化为加法运算,从而减少计算的复杂度。
八、使用指数的技巧在进行指数运算时,我们可以利用一些技巧来简化计算。
例如,利用指数运算的性质,可以将复杂的指数运算转化为简单的乘法运算。
九、使用根号的技巧在进行根号运算时,我们也可以利用一些技巧来简化计算。
例如,利用根号运算的性质,可以将复杂的根号运算转化为简单的乘法运算。
十、使用百分数的技巧在进行百分数运算时,我们可以利用一些技巧来简化计算。
例如,利用百分数的性质,可以将百分数转化为小数或分数,从而简化计算步骤。
小学数学8种简便计算方法归类小学数学中,有很多种简便计算方法,可以帮助学生更快地计算出结果。
下面将其归类为8种简便计算方法。
方法一:整数的乘法加法法则当两个整数相乘时,可以将其中一个整数拆分成几个较小的整数相加,再与另一个整数相乘。
例如,计算57×8时,可以将8拆分为5和3,然后计算57×5和57×3,最后将结果相加得到最终答案。
方法二:整数的乘10法则当一个整数乘以10时,可以在原整数末尾添加一个零。
例如,计算57×10时,只需在57的后面添加一个零,即得570。
方法三:整数的除10法则当一个整数除以10时,可以将该整数的末尾的零去掉。
例如,计算570÷10时,只需去掉570的末尾的零,即得57方法四:整数的乘法乘方法则当一个整数的乘方为2的幂时,可以利用整数的乘积规律简化计算。
例如,计算57×57时,可以将57拆分为50和7,然后计算50×50和50×7,最后将结果相加得到最终答案。
方法五:整数的除法分解法则当一个整数除以一个较大的整数时,可以将被除数拆分成几个较小的部分,再分别除以除数。
例如,计算226÷7时,可以将226拆分为210和16,然后分别计算210÷7和16÷7,最后将结果相加得到最终答案。
方法六:整数的因数分解法则当一个整数需要因式分解时,可以将该整数分解为几个较小的整数的乘积。
例如,计算36的因数时,可以将36分解为2×2×3×3,即36的因数为2和3的平方。
方法七:小数的近似法则当计算小数加减法时,可以将小数近似为最接近的整数进行计算,再将结果近似为小数。
例如,计算3.4+2.6时,可以将3.4近似为3,2.6近似为3,然后计算3+3得到6,最后将6近似为6.0。
方法八:小数的乘法除法法则当计算小数的乘法时,可以将小数的乘积的小数点位置向左移动到合适的位置,再将结果近似为小数。
常用的七种简便运算方法方法一:带符号搬家法当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+ba+b-c=a-c+ba-b+c=a+c-ba-b-c=a-c-ba×b×c=a×c×ba÷b÷c=a÷c÷ba×b÷c=a÷c×ba÷b×c=a×c÷b)方法二:结合律法(一)加括号法1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。
)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
)。
方法三:乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配例:8×(3+7)=8×3+8×7=24+56=802.提取公因式注意相同因数的提取。
例:9×8+9×2=9×(8+2)=9×10=903.注意构造,让算式满足乘法分配律的条件。
例:8×99=8×(100-1)=8×100-8×1=800-8=792方法四:凑整法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦,有借有还,再借不难嘛。
例:9999+999+99+9=(10000-1)+(1000-1)+(100-1)+(10-1)=(10000+1000+100+10)-4=11110-4=11106方法五:拆分法拆分法就是为了方便计算把一个数拆成几个数。
小学数学简便计算的几种方法
一、分组湊整法:
直接根据运算定律和性质,把算式中能奏成整十、整百、整千-的数先计算,使计算筒便。
例如: (1) 218+17+82=(218+82)+ 17=300+ 17=317
二、补数计算法:
対接近整百、整千的数,可以补上一个数,使它成内整百、整千的数,使计算筒便
例如: 4616-998=4616- (1000-2) =4616-1000+2=3616+2=3618
三、转化计算法:
一个数乘(或除以5,25,125, 可以装化内乘(或除以)
10· 2,100+4, 1000, 8来代替,从而使计算筒便。
例如: 968X 125=968X (1000-8)=968- 8X 1000= 121 X 1000= 121000
四、分解计算法:
把已知数适当分解,然后,应用运算性质,使计算简便
例如: (1) 192+16=192- (4x4) =192+4+4=48+4=12
(2) 1836+18=1836+ (2x9) =1836+2+9=918+9=102
五、基准数计算法:
求一些大小不等而又比较接近的几个数之和,可以从中选定一个数作为基准数,然后把各个数与基准数的差,累计起来,再加上基准数与项数之积。
例如: 38+41+37+43+45+39+44+42= (40-2) + (40+1) + (40-
3) + (40+3) + (40+5) + (40-1) + (40+4) + (40+2) =40X8+(1+3+5+4+2-2-3-
1 =320+9=329。
简便运算方法1、运用加法交换律或加法结合律先把两个能凑成整十整百……的数相加,和不变。
用字母表示:(a+b)+c= a+(b+c) 。
如:28+31+72=(28+72)+31 。
2、运用乘法交换律或乘法结合律先把两个能凑成整十整百……的数相乘,积不变。
用字母表示:(a×b) ×c= a×(b×c) 。
如:15×8×125×2=(15×2)×(8×125)。
3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把所得的积相加。
用字母表示:(a+b) ×c= a×c+ b×c。
如:(125+9)×8=125×8+9×8 。
36×15+64×15=(36+64)×15 。
4、两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再把所得的积相减。
用字母表示:(a - b) ×c= a×c - b×c。
如:(125-9)×8=125×8-9×8 。
123×26-23×26=(123-23)×26 。
6、两个数的和除以一个数,可以先把它们与这个数分别相除,再把所得的商相加。
用字母表示:(a+b) ÷c= a÷c+ b÷c。
如:(147+98)÷49=147÷49+98÷49 。
32÷6+28÷6=(32+28)÷6 。
7、两个数的差除以一个数,可以先把它们与这个数分别相除,再把所得的商相减。
用字母表示:(a-b) ÷c= a÷c-b÷c。
如:(147-98)÷49=147÷49-98÷49 。