动能定理练习(1)
- 格式:doc
- 大小:58.82 KB
- 文档页数:3
动能定理练习一、不定项选择题(每小题至少有一个选项)1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是()A.如果物体所受合外力为零,则合外力对物体所的功一定为零;B.如果合外力对物体所做的功为零,则合外力一定为零;C.物体在合外力作用下做变速运动,动能一定发生变化;D.物体的动能不变,所受合力一定为零。
2.下列说法正确的是()A.某过程中外力的总功等于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定()A.水平拉力相等 B.两物块质量相等C.两物块速度变化相等D.水平拉力对两物块做功相等4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能()A.与它通过的位移s成正比B.与它通过的位移s的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为()/s D.s/4A.s B.s/2 C.26.两个物体A、B的质量之比m A∶m B=2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为()A .s A ∶sB =2∶1 B .s A ∶s B =1∶2C .s A ∶s B =4∶1D .s A ∶s B =1∶47.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( )A .LB .2LC .4LD .0.5L8.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( )A .sin 2θB .cos 2θC .tan 2θD .cot 2θ9.将质量为1kg 的物体以20m /s 的速度竖直向上抛出。
完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
物理动能与动能定理练习题20篇一、高中物理精讲专题测试动能与动能定理1.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。
游客乘坐的滑草车(两者的总质量为60kg ),从倾角为53θ=︒的光滑直轨道AC 上的B 点由静止开始下滑,到达C 点后进入半径为5m R =,圆心角为53θ=︒的圆弧形光滑轨道CD ,过D 点后滑入倾角为α(α可以在075α︒范围内调节)、动摩擦因数为33μ=的足够长的草地轨道DE 。
已知D 点处有一小段光滑圆弧与其相连,不计滑草车在D 处的能量损失,B 点到C 点的距离为0=10m L ,10m/s g =。
求:(1)滑草车经过轨道D 点时对轨道D 点的压力大小;(2)滑草车第一次沿草地轨道DE 向上滑行的时间与α的关系式;(3)α取不同值时,写出滑草车在斜面上克服摩擦所做的功与tan α的关系式。
【答案】(1)3000N ;(2)3sin cos 32t αα=⎛⎫+ ⎪⎝⎭;(3)见解析 【解析】 【分析】 【详解】(1)根据几何关系可知CD 间的高度差()CD 1cos532m H R =-︒=从B 到D 点,由动能定理得()20CD D 1sin 5302mg L H mv ︒+=-解得D 102m/s v =对D 点,设滑草车受到的支持力D F ,由牛顿第二定律2D D v F mg m R-= 解得D 3000N F =由牛顿第三定律得,滑草车对轨道的压力为3000N 。
(2)滑草车在草地轨道DE 向上运动时,受到的合外力为sin cos F mg mg αμα=+合由牛顿第二定律得,向上运动的加速度大小为sin cos F a g g mαμα==+合因此滑草车第一次在草地轨道DE 向上运动的时间为Dsin cos v t g g αμα=+代入数据解得t =⎝⎭(3)选取小车运动方向为正方向。
①当0α=时,滑草车沿轨道DE 水平向右运动,对全程使用动能定理可得[]01sin (1cos )+=00f mg L R W θθ+--代入数据解得16000J f W =-故当0α=时,滑草车在斜面上克服摩擦力做的功为6000J W =克1②当030α<≤︒时,则sin cos g g αμα≤滑草车在草地轨道DE 向上运动后最终会静止在DE 轨道上,向上运动的距离为2D22(sin cos )v x g g αμα=+摩擦力做功为22cos f W mg x μα=-⋅联立解得2f W =故当030α<≤︒时,滑草车在斜面上克服摩擦力做的功为2W =克③当3075α︒<≤︒时sin cos g g αμα>滑草车在草地轨道DE 向上运动后仍会下滑,若干次来回运动后最终停在D 处。
动能定理针对练习1.下列关于运动物体所受的合外力、合外力做功和动能变化的关系,正确的是[]A.如果物体所受的合外力为零,那么,合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零2.关于做功和物体动能变化的关系,不正确的是[]A.只要动力对物体做功,物体的动能就增加B.只要物体克服阻力做功,它的动能就减少C.外力对物体做功的代数和等于物体的末动能与初动能之差D.动力和阻力都对物体做功,物体的动能一定变化3一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2 m/s,则下列说法正确的是[]A.手对物体做功12J B.合外力对物体做功12JC.合外力对物体做功2J D.物体克服重力做功10 J4如图2所示,汽车在拱型桥上由A匀速率地运动到B,以下说法正确的是[]A.牵引力与摩擦力做的功相等B.牵引力和重力做的功大于摩擦力做的功C.合外力对汽车不做功D.重力做功的功率保持不变5/球,不计空气阻力,当它到达离抛出点的竖直距离为h的B点时,小球的动能增量为。
[]A6物体在水平恒力作用下,在水平面上由静止开始运动当位移s 时撤去F,物体继续前进3s 后停止运动,若路面情况相同,则物体的摩擦力和最大动能是[ ]______,在空气中克服空气阻力所做的功是______。
13、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s 做的功W .14、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g =10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .ff 15、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.16、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求:(1)阻力的大小. (2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离.17.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
动能动能定理基础习题一、深刻理解动能定理1.一辆汽车一辆汽车以v1=6m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6m,如果汽车以v2=8m/s的速度行驶,在同样路面上急刹车后滑行的距离s2应为()A.6。
4m B.5。
6m C.7。
2m D.10.8m2.一子弹以水平速度v射入一树干中,射入深度为S. 设子弹在树中运动所受阻力是恒定的,那么子弹以v/2的速度水平射入树干中,射入深度是( )A. S B。
S/2 C。
错误!S D。
S/43、关于物体的动能,下列说法中正确的是()A.一个物体的动能可能小于零B.一个物体的动能与参考系的选取无关C.动能相同的物体速度一定相同D.两质量相同的物体,若动能相同,其速度不一定相同4、关于公式W=E k2-E k1= E k,下述正确的是()A、功就是动能,动能就是功B、功可以变为能,能可以变为功C、动能变化的多少可以用功来量度D、功是物体能量的量度5. 光滑水平面上的物体,在水平恒力F作用下,由静止开始运动。
经过路程L1速度达到v,又经过路程L2速度达到2v,则在L1和L2两段路程中,F对物体所做功之比为( )A. 1:1B. 1:2C.1:3D.1:46。
下列说法中正确的是()A。
物体所受合外力对物体做功多,物体的动能就一定大B. 物体所受合外力对物体做正功,物体的动能就一定增大C。
物体所受合外力对物体做正功,物体的动能有可能减小D. 物体所受合外力对物体做功多,物体的动能的变化量就一定大7、下列关于运动物体所受合外力和动能变化的关系正确的是()A、如果物体所受合外力为零,则合外力对物体做的功一定为零B、如果合外力对物体所做的功为零,则合外力一定为零C、物体在合外力作用下做变速运动,动能一定发生变化D、物体的动能不变,所受合外力一定为零二、应用动能定理求变力做功8。
如图,物体沿一圆面从A 点无初速度的滑下,滑至圆面的最低点B 时速度为6m/s ,求这个过程中物体克服阻力做的功。
动能定理综合练习题(一)1、如图所示,竖直固定放置的斜面DE 与一光滑的圆弧轨道ABC 相连,C 为切点,圆弧轨道的半径为R ,斜面的倾角为θ.现有一质量为m 的滑块从D 点无初速下滑,滑块可在斜面和圆弧轨道之间做往复运动,已知圆弧轨道的圆心O 与A 、D 在同一水平面上,滑块与斜面间的动摩擦因数为μ,求:(1)滑块第一次至左侧AC 弧上时距A 点的最小高度差h . (2)滑块在斜面上能通过的最大路程s .2、如图所示,质量为m 的物体从倾角为θ的斜面上的A 点以速度v 0 沿斜面上滑,由于μmg cos θ<mg sin θ,所以它滑到最高点后又滑下来,当它下滑到B 点时,速度大小恰好也是v 0,设物体与斜面间的动摩擦因数为μ,求AB 间的距离. 3、一劲度系数k =800 N/m 的轻质弹簧两端分别连接着质量均为12 kg 的物体A 、B ,将它们竖直静止放在水平面上,如图14所示.现将一竖直向上的变力F 作用在A 上,使A 开始向上做匀加速运动,经0.40 s 物体B 刚要离开地面.g =10.0 m/s 2,试求:(1)物体B 刚要离开地面时,A 物体的速度v A ; (2)物体A 重力势能的改变量;(3)弹簧的弹性势能公式:E p =12kx 2,x 为弹簧的形变量,则此过程中拉力F 做的功为多少?4、如图所示,粗糙斜面AB 与竖直平面内的光滑圆弧轨道BCD 相切于B 点,圆弧轨道的半径为R ,C 点在圆心O 的正下方,D 点与圆心O 在同一水平线上,∠COB =θ。
现有质量为m 的物块从D 点无初速释放,物块与斜面间的动摩擦因数为μ,重力加速度为g 。
求: (1)物块第一次通过C 点时对轨道压力的大小; (2)物块在斜面上运动离B 点的最远距离。
5、如图所示装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度s =5m ,轨道CD 足够长且倾角θ=37°,A 、D 两点离轨道BC 的高度分别为=1h 4.30m 、=2h 1.35m 。
动能定理基础练习1、两个物体A 、B 的质量之比为m A :m B =2 :1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止经过的距离之比为( )A 、 s A :sB =2 :1 B 、s A :s B =1 :2C 、 s A :s B =4 :1D 、s A :s B =1 :42.如图33—1所示,一物体由A 点以初速度v 0下滑到底端B ,它与档板B 做无动能损失的碰撞后又滑回到A 点,其速度正好为零,设A 、B 两点高度差为h ,则它与档板碰撞前的速度大小为 ( )A . 4220v gh + B . gh 2 C . 2220v gh + D . 202v gh +3.一质量为m 的小球,用长为L 的轻绳悬挂于O 点。
小球在水平力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图33—2所示,则力F 所做的功为 ( )A . mgLcos θB .FLsin θC . mgL(1-cos θ)D .FLcos θ4.如图8-4所示,均匀长直木板长L=40cm ,放在水平桌面上,它的右端与桌边相齐,木板质量m=2kg ,与桌面间的摩擦因数μ=0.2,今用水平推力F 将其推下桌子,则水平推力至少做功为( )(g 取2/10s m )A .0.8JB .1.6JC .8JD .4J5、 静止在光滑水平面上的物体,在水平恒力F 作用下,经过时间t ,获得动能为k E .若作用力的大小改为F/2,而获得的动能仍为E k ,则力F/2作用时间应为( )A.4tB.22tC.2tD. 2t6、水平面上的一个质量为m 的物体,在一水平恒力F 作用下,由静止开始做匀加速直线运动,经过位移s 后撤去F ,又经过位移2s 后物体停了下来,则物体受到的阻力大小应是( )A 、B 、2FC 、D 、3F7、物体在水平恒力作用下,在水平面上由静止开始运动,当位移为s时撤去F,物体继续前进3 s后停止运动,若路面情况相同,则物体的摩擦力和最大动能是A. B.C. D.8.一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( )A.0B.8JC.16JD.32J9.质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则:A.质量大的物体滑行距离小B.它们滑行的距离一样大C.质量大的物体滑行时间短D.它们克服摩擦力所做的功一样多10.一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( )A.返回斜面底端的动能为EB.返回斜面底端时的动能为3E/2C.返回斜面底端的速度大小为2υD.返回斜面底端的速度大小为2υ11、已知物体与固定斜面及水平地面间的动摩擦因数均为μ(斜面与水平地面间有一段极短的弧吻合)。
1、质量为m的滑块沿着高为h,长为L的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下滑到底端的过程中:()
A、重力对滑块所做的功为mgh
B、滑块克服阻力所做的功等于mgh
C、合力对滑块所做的功为mgh
D、合力对滑块所做的功不能确定
2、一个质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度是2m/s,则下列说法中错误的是(g取10m/s2)
A、手对物体做功12J
B、合外力对物体做功12J
C、合外力对物体做功2J
D、物体克服重力做功10J
3、质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能
A.与它通过的位移s成正比
B.与它通过的位移的平方成正比
C.与它运动的时间t成正比
D.与它运动的时间的平方成正比
4.速度为v的子弹,恰可穿透一固定着的木板,如果子弹速度为2v,子弹穿透木板的阻力视为不变,则可穿透同样的木块()
A.2块
B.3块
C.4块
D.1块
5、一质量为 m的小球,用长为l的轻绳悬挂于O点。
小球在水平拉力F作用下,从平衡位置P点很缓慢地移动到Q点,如图2-7-3所示,则拉力F所做的功为()
A. mglcosθ
B. mgl(1-cosθ)
C. Flcosθ
D. Flsinθ
4质量M=1kg的物体,在水平拉力F的作用下,沿粗糙水平面运动,经过位移4m时,拉力
F停止作用,运动到位移是8m时物体停止,运动过程中E
k-S的图线如
图所示。
求:(1)物体的初速度多大?(2)物体和平面间的摩擦系数为
多大?(3)拉力F的大小?(g取102
m s/)
8如图所示,半径R=1m的1/4圆弧导轨与水平面相接,从圆弧导轨顶端A,静止释放一个质量为m=20g的小木块,测得其滑至底端B时速度V B=3m/s,以后沿水平导轨滑行BC =3m而停止.
求:(1)在圆弧轨道上克服摩擦力做的功?
(2)BC段轨道的动摩擦因数为多少?
10如图所示,物体自倾角为θ、长为L 的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s ,则物体与斜面间的动摩擦因数为多少。
11如图所示,斜面倾角为θ,滑块质量为m ,滑块与斜面的动摩擦因数为μ,从距挡板为s 0的位置以v 0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P 碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后
停止滑行的总路程s .
17如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点.求:
(1)释放点距A 点的竖直高度;
(2)落点C 与A 点的水平距离
A C D
B O
18如图,一个质量为0.6kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失)。
已知圆弧的半径R=0.3m ,
θ=60 0,小球到达A 点时的速度 v=4 m/s 。
(取g =10 m/s 2)求:
(1) 小球做平抛运动的初速度v 0 ;
(2) P 点与A 点的水平距离和竖直高度;
(3) 小球到达圆弧最高点C 时对轨道的压力。
7、如以竖直初速度v 0抛出一个质量为m 的小球,当小球返回出发点时的速度大小为0v 4
3,求小球在运动过程中受的平均阻力f 和小球能上升的最大高度。
8.如图5-7-5所示,斜面长为s ,倾角为θ,一物体质量为m ,从斜面底端的A 点开始以初速度v 0沿斜面向上滑行.斜面与物体间的动摩擦因数为μ,物体滑到斜面顶端B 点时飞出斜面,最后落在与A 点处于同一水平面上的C 处,则物体落地时的速度大小为多少?
B P v 0 A
C O θ R。