高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)
- 格式:doc
- 大小:672.00 KB
- 文档页数:15
高考必刷题物理动能与动能定理题及解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
高考物理动能与动能定理解题技巧分析及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
开始时让连着A 的细线与水平杆的夹角α。
现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭2.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)(1)一、高中物理精讲专题测试动能与动能定理1.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上与圆弧的圆心O 等高的P 点由静止释放,结果它能在两轨道间做往返运动.已知物体与轨道AB 间的动摩擦因数为μ,重力加速度为g .试求:(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s ;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力的大小;(3)为使物体能顺利到达圆弧轨道的最高点D (E 、O 、D 为同一条竖直直径上的3个点),释放点距B 点的距离L 应满足什么条件.【答案】(1)2(sincos )tanBgR v ;RL(2)(32cos )N F mg ;(3)(32cos )2(sincos )R L …【解析】【分析】【详解】(1)设物体释放后,第一次到达B 处的速度为1v ,根据动能定理可知:21cos 1coscossin2R mgR mg mv解得:2(sincos )tanBgR v 物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有coscos 0mgR mgL 得物体在AB 轨道上通过的总路程为RL(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为2v v ,由动能定理知:221(1cos )2v mgR m 在E 点,由牛顿第二定律有22Nmv F mgR解得物体受到的支持力(32cos )NF mg 根据牛顿第三定律,物体对轨道的压力大小为(32cos )NNF F mg ,方向竖直向下.(3)设物体刚好到达D 点时的速度为D v 此时有2DmvmgR 解得:Dv gR设物体恰好通过D 点时释放点距B 点的距离为0L ,有动能定理可知:2001[sin(1cos )]cos 2D mg L R mg L mv 联立解得:(32cos )2(sin cos )R L 则:(32cos )2(sin cos )R L …答案:(1)2(sincos )tanBgR v ;RL(2)(32cos )N F mg ;(3)(32cos )2(sincos )R L …2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥mgR.3.在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ.B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.【答案】185gd【解析】【详解】设在发生碰撞前的瞬间,木块A 的速度大小为v 0;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量守恒定律和动量守恒定律,得222121112222mv mv mv 0122mv mv mv ,式中,以碰撞前木块A 的速度方向为正,联立解得:013v v ,2023v v 设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得21112mgd mv,2221222m gd mv ().按题意有:21d d d .联立解得:0185v gd=4.质量为M 的小车固定在地面上,质量为m 的小物体(可视为质点)以v 0的水平速度从小车一端滑上小车,小物体从小车另一端滑离小车时速度减为02v ,已知物块与小车之间的动摩擦因数为.求:(1)此过程中小物块和小车之间因摩擦产生的热Q 以及小车的长度L.(2)若把同一小车放在光滑的水平地面上,让这个物体仍以水平速度v 0从小车一端滑上小车.a. 欲使小物体能滑离小车,小车的质量M 和小物体质量m 应满足什么关系?b. 当M =4m 时,小物块和小车的最终速度分别是多少?【答案】(1)2038Q mv ,238v Lg(2)a. M>3m ;b.025v ,320v 【解析】【详解】(1) 小车固定在地面时,物体与小车间的滑动摩擦力为fmg ,物块滑离的过程由动能定理220011()222v fLm mv ①解得:238v Lg物块相对小车滑行的位移为L ,摩擦力做负功使得系统生热,Q fL可得:238Qmv (2)a.把小车放在光滑水平地面上时,小物体与小车间的滑动摩擦力仍为f .设小物体相对小车滑行距离为L时,跟小车相对静止(未能滑离小车)共同速度为v ,由动量守恒定律:mv 0=(M +m)v②设这过程小车向前滑行距离为s.对小车运用动能定理有:212fsMv③对小物体运用动能定理有:22011()22f Ls mvmv④联立②③④可得220011()()22mv fLmvM m Mm⑤物块相对滑离需满足LL 且2038fLmv联立可得:3M m ,即小物体能滑离小车的质量条件为3Mmb.当M=4m 时满足3M m ,则物块最终从小车右端滑离,设物块和车的速度分别为1v 、2v .由动量守恒:012mv mv Mv由能量守恒定律:222012111()222fLmvmv Mv 联立各式解得:1025v v ,20320v v 5.雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关,雨滴间无相互作用且雨滴质量不变,重力加速度为g ;(1)质量为m 的雨滴由静止开始,下落高度h 时速度为u ,求这一过程中空气阻力所做的功W .(2)研究小组同学观察发现,下雨时雨滴的速度跟雨滴大小有关,较大的雨滴落地速度较快,若将雨滴看作密度为ρ的球体,设其竖直落向地面的过程中所受空气阻力大小为f=kr 2v 2,其中v 是雨滴的速度,k 是比例常数,r 是球体半径.a. 某次下雨时,研究小组成员测得雨滴落地时的速度约为v 0,试计算本场雨中雨滴半径r的大小;b. 如果不受空气阻力,雨滴自由落向地面时的速度会非常大,其v-t 图线如图所示,请在图中画出雨滴受空气阻力无初速下落的v -t 图线.(3)为进一步研究这个问题,研究小组同学提出下述想法:将空气中的气体分子看成是空间中均匀分布的、静止的弹性质点,将雨滴的下落看成是一个面积为S 的水平圆盘在上述弹性质点中竖直向下运动的过程.已知空气的密度为ρ0,试求出以速度v 运动的雨滴所受空气阻力f 的大小.(最后结果用本问中的字母表示)【答案】(1)212Wmumgh (2)234kv rg,(3)22f Sv【解析】【详解】(1)由动能定理:212mgh Wmu解得:212Wmu mgh(2)a. 雨滴匀速运动时满足:322043r gkr v ,解得2034kv rgb. 雨滴下落时,做加速度逐渐减小的加速运动,最后匀速下落,图像如图.(3)设空气分子与圆盘发生弹性碰撞.在极短时间t 内,圆盘迎面碰上的气体质点总质量为:m S v t以F 表示圆盘对气体分子的作用力,对气体根据动量定理有:F ·t =m ·2v解得:22FSv由牛顿第三定律可知,圆盘所受空气阻力22F F Sv6.如图所示,AB 为倾角37的斜面轨道,BP 为半径R=1m 的竖直光滑圆弧轨道,O为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为=0.25,现有一质量m=2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的 1.5倍,sin370.6,37cos 0.8,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ;(2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m .【答案】(1)5m/s P v (2)v C =9m/s (3)6m/smv 【解析】【详解】(1)在P 点,根据牛顿第二定律:2PPvmgN mR解得: 2.55m/sP v gR(2)由几何关系可知BP 间的高度差(1cos37)BPh R 物块C 至P 过程中,根据动能定理:2211sin37cos37=22BPPC mgL mgh mgL mv mv 联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点,物块C 至E 过程中根据动能定理:21cos37sin37sin 53=02m mgL mgL mgR mv 解得:6m/smv7.如图1所示是某游乐场的过山车,现将其简化为如图2所示的模型:倾角θ=37°、L=60cm 的直轨道AB 与半径R=10cm 的光滑圆弧轨道BCDEF 在B 处平滑连接,C 、F 为圆轨道最低点,D 点与圆心等高,E 为圆轨道最高点;圆轨道在F 点与水平轨道FG 平滑连接,整条轨道宽度不计,其正视图如图3所示.现将一质量m=50g 的滑块(可视为质点)从A端由静止释放.已知滑块与AB 段的动摩擦因数μ1=0.25,与FG 段的动摩擦因数μ2=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10m/s 2.(1)求滑块到达E 点时对轨道的压力大小F N ;(2)若要滑块能在水平轨道FG 上停下,求FG 长度的最小值x ;(3)若改变释放滑块的位置,使滑块第一次运动到D 点时速度刚好为零,求滑块从释放到它第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程s .【答案】(1)F N =0.1N (2)x=0.52m (3)93m160s 【解析】【详解】(1)滑块从A 到E ,由动能定理得:211sin 1cos2cos2Emg L R RmgL mv代入数据得:30m/s 5Ev 滑块到达E 点:2NEvmgF m R代入已知得:F N =0.1N (2)滑块从A 下滑到停在水平轨道FG 上,有12sin 1coscos 0mg L R mgL mgx 代入已知得:x=0.52m (3)若从距B 点L 0处释放,则从释放到刚好运动到D 点过程有:010sin +(1cos )]cos 0mg L R R mgL [代入数据解得:L 0=0.2m从释放到第一次返回最高点过程,若在轨道AB 上上滑距离为L 1,则:111sincosmg L L mg L L 解得:111sin cos 1sincos2L L L 同理,第二次返回最高点过程,若在斜轨上上滑距离为L 2,有:212111sin cos 11sincos22L L L L 故第5次返回最高点过程,若在斜轨上上滑距离为L 5,有:5512L L 所以第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程012345932222m160L L L L L L s8.如图所示,在粗糙水平轨道OO 1上的O 点静止放置一质量m=0.25kg 的小物块(可视为质点),它与水平轨道间的动摩擦因数μ=0.4,OO 1的距离s=4m .在O 1右侧固定了一半径R=0.32m 的光滑的竖直半圆弧,现用F=2N 的水平恒力拉动小物块,一段时间后撤去拉力.(g=10m/s 2)求:(1)为使小物块到达O 1,求拉力F 作用的最小距离;(2)若将拉力变为F 1,使小物块从O 点由静止开始运动至OO 1的中点时撤去拉力,恰能使小物块经过半圆弧的最高点,求F 1的大小.【答案】(1)2m (2)3N 【解析】【分析】【详解】(1)为使小物块到达O 1,设拉力作用的最小距离为x根据动能定理知:00Fx mgs 解得:0.40.25104m2m2mgs xF(2)当小物块恰好过最高点时:2vmg mR从O 点运动到最高点的过程由动能定理得:2112022s F mgs mg R mv解得:13F N9.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。
【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。
水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。
用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。
已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
开始时让连着A 的细线与水平杆的夹角α。
现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭ 对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。
一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。
已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。
(1)求滑块第一次运动到B 点时对轨道的压力。
(2)求滑块在粗糙斜面上向上滑行的最大距离。
(3)通过计算判断滑块从斜面上返回后能否滑出A 点。
【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】(1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有()212B mg h R mv +=那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且()2N 270N B mg h R mv F mg mg R R+=+=+=故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。
(2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得cos37sin37cos370mg h R R L mgL μ+-︒-︒-︒=()所以1.2m L =(3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得()212cos370.542B mv mg h R mgL mg mgR μ'=+-︒=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。
【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,质量为m=1kg的滑块,在水平力F作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s,长为L=1.4m,今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:s =v 0t 由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩ 相对滑动生成的热量⑪⑫3.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。
质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。
已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。
【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。
设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。
取向左为正方向。
根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。
从A 到C 由机械能守恒定律得:2211111 222C m v m v mgR =+ 由平抛运动的规律有:x =v C t 121122R gt =联立整理得x根据数学知识知当4R =10-4R即R =1.25m 时,水平位移最大为x =5m4.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C时的速度的大小;(2)滑块运动到圆环最低点时对圆环轨道压力的大小;(3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功.【答案】(1)Rg(2)6mg(3)12 mgR【解析】【分析】【详解】(1)小滑块从C点飞出来做平抛运动,水平速度为v0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D到最低点过程中,设DB过程中克服摩擦力做功W1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.5.如图所示,质量m=2kg的小物块从倾角θ=37°的光滑斜面上的A点由静止开始下滑,经过B点后进入粗糙水平面,已知AB长度为3m,斜面末端B处与粗糙水平面平滑连接.试求:(1)小物块滑到B 点时的速度大小.(2)若小物块从A 点开始运动到C 点停下,一共经历时间t =2.5s ,求BC 的距离. (3)上问中,小物块与水平面的动摩擦因数μ多大?(4)若在小物块上始终施加一个水平向左的恒力F ,小物块从A 点由静止出发,沿ABC 路径运动到C 点左侧3.1m 处的D 点停下.求F 的大小.(sin37°=0.6,cos37°=0.8 ) 【答案】(1)6m/s (2)1.5s (3)0.4μ=(4) 2.48N F = 【解析】 【详解】(1)根据机械能守恒得:21sin 372AB B mgs mv ︒=解得:2sin3721030.6m/s 6m/s B AB v gs =︒=⨯⨯⨯=;(2)物块在斜面上的加速度为:21sin 6m/s a g θ==在斜面上有:2112AB s a t =代入数据解得:11s t =物块在BC 段的运动时间为:21 1.5s t t t =-=BC 段的位移为:21(0) 4.5m 2BC B s v t =+=(3)在水平面上,有:220B v a t =﹣解得:2224m/s Bv a t -==-. 根据牛顿第二定律有:2mg ma μ=﹣代入数据解得:0.4μ=.(4)从A 到D 的过程,根据动能定理得:()sin cos 0AB BD AB BD mgs F s s mgs θθμ++-=代入数据解得:2.48N F = 【点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力.6.如图所示,在倾角为θ=37°的斜面底端有一个固定挡板D ,处于自然长度的轻质弹簧一端固定在挡板上,另一端在O 点,已知斜面OD 部分光滑,PO 部分粗糙且长度L =8m 。
质量m =1kg 的物块(可视为质点)从P 点静止开始下滑,已知物块与斜面PO 间的动摩擦因数μ=0.25,g 取10m/s 2, sin37°=0.6,cos37°=0.8。
求: (1)物块第一次接触弹簧时速度的大小(2)若弹簧的最大压缩量d =0.5m ,求弹簧的最大弹性势能(3)物块与弹簧接触多少次,反弹后从O 点沿斜面上升的最大距离第一次小于0.5m【答案】(1)8m/s (2)35J (3)5次 【解析】 【详解】(1)物块在PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦力,此过程应用动能定理得:21sin cos 2mgL mgL mv θμθ-=解得物块第一次接触弹簧时物体的速度的大小为:()2sin cos 8v gL θμθ=-=m/s(2)物块由O 到将弹簧压缩至最短的过程中,重力势能和动能减少、弹簧的弹性势能增加,由能量守恒定律可得弹簧的最大弹性势能E p21sin 352p E mv mgd θ=+=J (3)物块第一次接触弹簧后,物体从O 点沿斜面上升的最大距离1s ,由动能定理得:2111cos 02mgs mgs mv μθ--=-解得:14s m =物块第二次接触弹簧后,物块从O 点沿斜面上升的最大距离2s ,由动能定理得:1212sin ()cos ()0mg s s mg s s θμθ--+=解得:22s m =故物块每经过一次O 点,上升的最大距离为上一次的12所以,物块第一次返回时沿斜面上升的最大距离为:12L s = 则第n 次上升的最大距离为:2n nL s = 因为12n s m <,所以n>4,即物块与弹簧接触5次后,物块从O 点沿斜面上升的最大距离小于12m7.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上与圆弧的圆心O 等高的P 点由静止释放,结果它能在两轨道间做往返运动.已知物体与轨道AB 间的动摩擦因数为μ,重力加速度为g .试求:(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s ;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力的大小;(3)为使物体能顺利到达圆弧轨道的最高点D (E 、O 、D 为同一条竖直直径上的3个点),释放点距B 点的距离L 应满足什么条件.【答案】(1)2(sin cos )tan B gR v θμθθ-=;RL μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )RL θθμθ+-…【解析】 【分析】 【详解】(1)设物体释放后,第一次到达B 处的速度为1v ,根据动能定理可知:21cos 1cos cos sin 2R mgR mg mv θθμθθ-= 解得:B v =物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有cos cos 0mgR mgL θμθ-=得物体在AB 轨道上通过的总路程为RL μ=(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为2v v ,由动能定理知:221(1cos )2v mgR m θ-=在E 点,由牛顿第二定律有22N mv F mg R-= 解得物体受到的支持力(32cos )N F mg θ=-根据牛顿第三定律,物体对轨道的压力大小为(32cos )N N F F mg θ'==-,方向竖直向下.(3)设物体刚好到达D 点时的速度为D v 此时有2Dmv mg R= 解得:D v =设物体恰好通过D 点时释放点距B 点的距离为0L ,有动能定理可知:2001[sin (1cos )]cos 2D mg L R mg L mv θθμθ-+-=联立解得:0(32cos )2(sin cos )RL θθμθ+=-则:(32cos )2(sin cos )R L θθμθ+-… 答案:(1)2(sin cos )tan B gR v θμθθ-=;RL μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )RL θθμθ+-…8.如图所示,四分之一光滑圆弧轨道AO 通过水平轨道OB 与光滑半圆形轨道BC 平滑连接,B 、C 两点在同一竖直线上,整个轨道固定于竖直平面内,以O 点为坐标原点建立直角坐标系xOy 。