量子力学 不确定关系
- 格式:ppt
- 大小:140.50 KB
- 文档页数:12
测不准原理的应用及意义1、测不准原理的定义及理论背景1.1 测不准原理的定义测不准原理由量子力学创始人德国物理学家海森堡于1927年提出,又名“不确定关系”,英文"Uncertainty principle",是量子力学的一个基本原理,本身为傅立叶变换导出的基本关系:若复函数与构成傅立叶变换对,且已由其幅度的平方归一化(即相当于的概率密度相当于的概率密度,‘’表示复共轭),则无论的形式如何,与标准差的乘积不会小于某个常数(该常数的具体形式与的形式有关)。
1.2 测不准原理的理论背景测不准原理是物质世界的一个基本的不可回避的性质,人们习惯于对物体运动轨迹的准确描述,大到天体如何运行,小到微尘如何飞扬。
这种认识必须基于对物体能够准确定位。
为了预测一个物体的运动状态,必须准确测量它的位置和速度。
测定必须施加一个物理量作用于作为被测对象的物体之上,这在任何一种测量中都无法幸免。
显然,对在微观粒子尺度空间的测量方法用光照最合适。
然而,光照是无法把粒子的位置确定到比光的波长更小的程度的。
为了测定的准确,必须用更短波长的光,这意味着光子的能量更高,这样测定对粒子速度的扰动将很厉害。
因此,不能同时准确的测定粒子的位置和速度。
事实上,宏观世界和微观世界都受到测不准原理的制约,只不过对宏观物体的测量,一定波长的光已经足够精确,且扰动对其速度的影响小到远远无法计较。
测不准原理揭示了微观粒子运动的基本规律:粒子在客观上不能同时具有确定的坐标位置及相应的动量。
如果微观粒子的位置的不确定范围是,同时测得的微粒的动量的不确定范围是。
与的乘积总是大于。
这里,为普朗克Plank常数。
测不准原理来源于微观粒子的波粒二象性,是微观粒子的基本属性,所谓的测不准与测量仪器的精度无关。
1.2.1 海森伯海森伯在创立矩阵力学时,对形象化的图象采取否定态度。
但他在表述中仍然需要使用“坐标”、“速度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇。
y受到了干扰才使它们变得不确定了。
在罗伯逊和邓文基等人的证明方法中,完全是从量子力学的基本假定出发的。
这表明测不准关系的成立,仅仅是由微观粒子本身固有的特性所决定的。
4.1.3关于名称和译名的争议海森堡的名著《量子论的物理原理》于1930年同时用英文和德文出版,在德文版中他用unbestimm theit一词(表示不确定的性质),这相当于英文的indeterm Inacy【9】,而在英文版中他用的词是uncertainty。
由于英文版的内容较详细,且传播广,影响大,所以国际上多数人采用uncertainty一词。
在关于量子理论基本解释的长期争论中,名词的使用也相应地出现了分歧。
例如,德布罗意(deBroglie)和玻姆(Bohm)都曾用indeterminacy一词来表明他们对量子理论的基本解释方面的意见。
而在我国关于名词的使用方面与国外并不一致,可能是由于在我国关于量子理论解释的争论尚未普遍展开。
1975年科学出版社出版的(英汉物理学名词)中,将indeterminacy和uncertainty两个词都译成“测不准”。
在此前后的绝大多数文献中也都采用这一词。
1997年科学出版社出版的(物理学名词)中, 将uncertainty 一词改译成“不确定性”,并将indeterminacy 删去,此后有些国内的文献已将“测不准”改为“不确定性”。
但也有一些文献或著作中仍然沿用“测不准”一词,表明我国有些物理学家对这一名词译法的改动持保留意见,也有人提议“测不准”与“不确定”二词并用。
4.2对有争议问题的讨论4.2.1关于统计解释与非统计解释的争论这一争论的焦点之一就是单个粒子是否有波动性的问题。
微观粒子具有波动性,早在1927年已被戴维孙( Davison)与革末( Germer)的著名实验所证实。
遗憾的是,这类实验的结果一般都只能说明大量粒子的统计行为呈现波动性,而不能直接说明单个粒子的行为也呈现波动性,于是有些人认为单个粒子不具有波动性,从而也就认为测不准关系只对粒子系综成立,不适用于单个粒子体系。
不确定性原理在量子力学里,不确定性原理(uncertainty principle,又译不确定原理、测不准原理)表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式;其中,是约化普朗克常数。
维尔纳·海森堡于1927年发表论文给出这原理的原本启发式论述,因此这原理又称为“海森堡不确定性原理”。
[1][2]根据海森堡的表述,测量这动作不可避免的搅扰了被测量粒子的运动状态,因此产生不确定性。
同年稍后,厄尔·肯纳德(Earl Kennard)给出另一种表述。
[3]隔年,赫尔曼·外尔也独立获得这结果[4]。
按照肯纳德的表述,位置的不确定性与动量的不确定性是粒子的秉性,它们共同遵守某极限关系式,与测量动作无关。
这样,对于不确定性原理,有两种完全不同的表述。
[5]追根究柢,这两种表述等价,可以从其中任意一种表述推导出另一种表述。
[6]:10长久以来,不确定性原理与另一种类似的物理效应(称为观察者效应)时常会被混淆在一起。
[5][7]观察者效应指出,对于系统的测量不可避免地会影响到这系统。
为了解释量子不确定性,海森堡的表述所援用的是量子层级的观察者效应。
[8]之后,物理学者渐渐发觉,肯纳德的表述所涉及的不确定性原理是所有类波系统的内秉性质,它之所以会出现于量子力学完全是因为量子物体的波粒二象性,它实际表现出量子系统的基础性质,而不是对于当今科技实验观测能力的定量评估。
[9]在这里特别强调,测量不是只有实验观察者参与的过程,而是经典物体与量子物体之间的相互作用,不论是否有任何观察者参与这过程。
[10][注1]类似的不确定性关系式也存在于能量和时间、角动量和角度等物理量之间。
由于不确定性原理是量子力学的重要结果,很多一般实验都时常会涉及到关于它的一些问题。
有些实验会特别检验这原理或类似的原理。
例如,检验发生于超导系统或量子光学系统的“数字-相位不确定性原理”。