3.5.2 直线和圆弧DDA法插补原理
- 格式:ppt
- 大小:706.00 KB
- 文档页数:20
数控机床的插补原理及方法1概述在数控加工中,被加工零件的轮廓形状千变万化、形状各异。
数控系统的主要任务,是根据零件数控加工程序中的有关几何形状、轮廓尺寸的数控及其加工指令,计算出数控机床各运动坐标轴的进给方向及位移量,分别驱动各坐标轴产生相互协调的运动,从而使得伺服电机驱动机床工作台或刀架相对主轴(即刀具相对工件)的运动轨迹以一定的精度要求逼近所加工零件的理想外形轮廓尺寸。
2插补的基本概念数控系统的主要作用是控制刀具相对于工件的运动轨迹。
一般根据运动轨迹的起点坐标、终点坐标和轨迹的曲线方程,有数控系统实时地算出各个中间点的坐标,即“插入、补上”运动轨迹各个中间点的坐标,通常把这个过程称为“插补”。
机床伺服系统根据这些坐标值控制各坐标轴协调运动,走出规定的轨迹。
插补工作可以由软件或硬件来实现。
早期的硬件数控系统(NC系统)都采用的数字逻辑电路来完成插补工作,在NC中有一个专门完成插补运算的装置,称为插补器。
现代数控系统(CNC或MNC系统),插补工作一般用软件来完成,或软硬件结合实现插补。
而无论是软件数控还是硬件数控,其插补运算的原理基本相同。
它的作用都是根据给定的信息进行数字计算,在计算过程中不断向各个坐标轴发出相互协调的进给脉冲,使刀具相对于工件按指定的路线移动。
3对插补器的基本要求和插补方法的分类对于硬件插补器的要求如下。
1)插补所需的原始数据较少。
2)有较高的插补精度,插补结果没有累积误差,局部偏差应不超过所允许的误差(一般应小于一个脉冲当量)。
3)沿进给线路,进给速度恒定且符合加工要求。
4)电路简单可靠。
插补器的形式很多,从产生的数学模型分,有一次(直线插补器)、二次(圆、抛物线、双曲线、椭圆)插补器及高次曲线插补器等。
从基本原理分,有数字脉冲乘法器、逐点比较法插补器、数字积分器、比较积分法插补器等。
常用的插补方法有基准脉冲插补法和数据采样插补法两种。
数控原理与应用姓名:闫超学号:20092427班级:数控09-2插补原理插补的基本概念数控系统根据零件轮廓线型的有限信息,计算出刀具的一系列加工点、完成所谓的数据“密化”工作。
插补有二层意思:一是用小线段逼近产生基本线型<如直线、圆弧等);二是用基本线型拟和其它轮廓曲线。
插补运算具有实时性,直接影响刀具的运动。
插补运算的速度和精度是数控装置的重要指标。
插补原理也叫轨迹控制原理。
五坐标插补加工仍是国外对我国封锁的技术。
下面以基本线型直线、圆弧生成为例,论述插补原理插补方法的分类硬件插补器完成插补运算的装置或程序称为插补器软件插补器软硬件结合插补器1.基准脉冲插补每次插补结束仅向各运动坐标轴输出一个控制脉冲,各坐标仅产生一个脉冲当量或行程的增量。
脉冲序列的频率代表坐标运动的速度,而脉冲的数量代表运动位移的大小。
基准脉冲插补的方法很多,如逐点比较法、数字积分法、脉冲乘法器等。
2.数据采样插补采用时间分割思想,根据编程的进给速度将轮廓曲线分割为每个插补周期的进给直线段<又称轮廓步长)进行数据密化,以此来逼近轮廓曲线。
然后再将轮廓步长分解为各个坐标轴的进给量<一个插补周期的近给量),作为指令发给伺服驱动装置。
该装置按伺服检测采样周期采集实际位移,并反馈给插补器与指令比较,有误差运动,误差为零停止,从而完成闭环控制。
数据采样插补方法有:直线函数法、扩展DDA、二阶递归算法等逐点比较法早期数控机床广泛采用的方法,又称代数法,适用于开环系统。
1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。
每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。
逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。
特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。
逐点比较法直线插补<1)偏差函数构造对于第一象限直线OA上任一点(X,Y>:X/Y = Xe/Ye 若刀具加工点为Pi<Xi,Yi),则该点的偏差函数Fi可表示为若Fi= 0,表示加工点位于直线上;若Fi> 0,表示加工点位于直线上方;若Fi< 0,表示加工点位于直线下方。
插补原理介绍范文插补原理是用来实现数控机床加工的基本原理,它是数控机床进行加工时控制运动轨迹和速度的核心机制。
以下是关于插补原理的详细介绍。
1.插补原理的基本概念插补原理是指根据数学模型和运动规划策略,通过计算机控制系统控制多个成分运动轨迹和速度的基本方法。
在数控机床加工中,常常需要进行直线插补、圆弧插补和螺线插补等运动,插补原理正是用来实现这些运动方式的关键。
2.插补原理的基本流程插补原理的基本流程包括坐标系转换、插值计算和控制指令生成等步骤。
首先,需要将加工对象的几何模型转换为机床坐标系下的坐标系,这样才能进行后续的数学计算。
然后,在插值计算中,根据加工轨迹的特点和要求,进行插值计算,得到每个时刻的位置和速度信息。
最后,根据计算结果,生成相应的控制指令,通过伺服系统控制机床的运动。
3.插补原理的数学模型插补原理的数学模型通常采用多项式函数来描述曲线的运动轨迹。
对于直线插补,可以使用线性函数或者高次多项式函数来进行描述。
而对于圆弧插补,通常采用二次多项式函数或者三次贝塞尔曲线来进行描述。
不同的数学模型能够更加准确地描述曲线的形状和运动轨迹,并且在实际应用中需要根据具体情况选取合适的模型。
4.插补原理的运动规划策略插补原理的运动规划策略是根据实际需要,通过数学计算得到加工路径和速度的最优解。
在运动规划中,需要综合考虑加工效率、精度要求、工件形状和加工工艺等因素,通过合理选择插补速度和运动路径,使得加工效果最好。
同时,还需要考虑机床本身的运动特性和限制条件,以便在满足加工要求的前提下尽可能提高机床的工作效率。
5.插补原理的实现方法插补原理的实现方法主要包括离散插值法和参数插值法两种。
离散插值法是将连续的曲线插值问题转化为离散点的插值问题,根据已知的离散点进行插值计算。
参数插值法则是根据给定的控制参数,通过数学计算得到曲线的运动轨迹。
离散插值法适用于简单的插值问题,而参数插值法适用于复杂的曲线插值问题。
插补是在组成轨迹的直线段或曲线段的起点和终点之间,按一定的算法进行数据点的密化工作,以确定一些中间点。
从而为轨迹控制的每一步提供逼近目标。
逐点比较法是以四个象限区域判别为特征,每走一步都要将加工点的瞬时坐标与相应给定的图形上的点相比较,判别一下偏差,然后决定下一步的走向。
如果加工点走到图形外面去了,那么下一步就要向图形里面走;如果加工点已在图形里面,则下一步就要向图形外面走,以缩小偏差,这样就能得到一个接近给定图形的轨迹,其最大偏差不超过一个脉冲当量(一个进给脉冲驱动下工作台所走过的距离)。
直线插补是用在计算机图形显示,或则数控加工的近似走刀等情况下的.以数控加工为例子一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等. 数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x和y方向.插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y 方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y方向走一小段,直到在实际轮廓上方以后,再向x方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补.联动与插补决定质点空间位置需要三个坐标,决定刚体空间位置需要六个坐标。
一个运动控制系统可以控制的坐标的个数称做该运动控制系统的轴数。
一个运动控制系统可以同时控制运动的坐标的个数称做该运动控制系统可联动的轴数。