§2 标准正交基§5 子空间
- 格式:doc
- 大小:183.50 KB
- 文档页数:3
第九章欧氏空间[教学目标]1理解欧氏空间、内积、向量的长度、夹角、正交和度量矩阵的概念。
2理解正交组、正交基、标准正交基和正交矩阵的概念,理解n维欧氏空间的标准正交基的存在性和标准正交基之间过渡矩阵的性质,重点掌握施密特正交化方法。
3理解欧氏空间同构的定义和同构的充要条件。
4理解正交变换的定义及正交变换与正交矩阵的关系,掌握正交变换的几个等价条件。
5理解子空间的正交和正交补的概念,掌握正交补的结构和存在唯一性。
6理解对称变换的定义和对称变换与对称矩阵之间的关系,掌握实对称矩阵特征值的性质,重点掌握用正交变换把实对称矩阵及实二次型化为对角形和标准形的方法。
[教学重难点]欧氏空间的定义,求向量的长度和夹角的方法,施密特正交化方法,正交变换与正交矩阵的关系,用正交变换把实对称矩阵及实二次型化为对角形和标准形的方法。
[教学方法]讲授,讨论和习题相结合。
[教学时间]18学时。
[教学内容]欧氏空间的定义和性质,标准正交基,同构,正交变换,子空间,对称矩阵的标准形,向量到子空间的矩离、最小二乘法*。
[教学过程]§1 定义、性质定义1:设V 是R 上的一个线性空间,在V 上定义了一个二元实函数,称为内积,记为),(βα,如果它具有以下性质:(1)),(),(αββα= (2)),(),(βαβαk k = (3)),(),(),(γβγαγβα+=+(4)0),(≥αα当且仅当0=α时0),(=αα。
这里R k V ∈∈,,,γβα,则V 称为欧几里得空间(简称欧氏空间) 例1、例2。
练习:394P 1(1)。
定义2:非负实数),(αα称为α的长度,记为α 性质:ααk k =单位向量:长度为1的向量。
α单位化:αα-Cauchy Буняковский不等式:βα,∀,有βαβα≤),(等号成立当且仅当βα,线性相关。
在不同内积中,-Cauchy Буняковский不等式的具体例子:例1中,22221222212211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ例2中,2121)()()()(⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰⎰ba ba badx x g dx x f dx x g x f 394P 1、(2)中,∑∑∑∑∑∑======≤n j ni j i ijn j ni ji ijnj ni j i ij y y ax x ay x a 111111定义3:非零向量βα,的夹角βα,为βαβαβα),(arccos,=, πβα≤≤,0。
§5 子空间一、 欧氏空间中的正交子空间 1.定义:1) 1V 与2V 是欧氏空间V 中的两个子空间,如果对1V α∀∈,V β∈,恒有(),0αβ=,则称子空间1V 与2V 为正交的,记作12V V ⊥. 2) 对给定向量V α∈,如果对∀1V β∈,恒有(),0αβ=,则称向量α 与子空间1V 正交,记作1V α⊥. 注:① 12V V ⊥当且仅当1V 中每个向量都与2V 正交. ② {}12120V V V V ⊥⇒⋂=.( ()12,00V V αααα∀∈⋂⇒=⇒=.) ③ 当1V α⊥且V α∈时,必有0α=. 2.两两正交的子空间的和必是直和. 证明:设子空间12,,,s V V V 两两正交, 要证明12s V V V ⊕⊕⊕,只须证: 12s V V V +++中零向量分解式唯一. 设 12s ααα+++=0, i i V α∈, 1,2,,i s = 12V V ⊥, i j ≠∴ ()()()12,0,,0i i s i i ααααααα=+++==由内积的正定性,可知 0,i α= 1,2,,i s = 二、子空间的正交补 1.定义:如果欧氏空间V 的子空间12,V V 满足12V V ⊥,并且12V V V +=, 则称 2V 为1V 的正交补.2.n 维欧氏空间V 的每个子空间1V 都有唯一正交补. 证明:当{}10V =时,V 就是1V 的唯一正交补. 当{}10V ≠时,1V 也是有限维欧氏空间. 取1V 的一组正交基12,,,,m εεε 由定理1,它可扩充成V 的一组正交基 121,,,,,,,m m n εεεεε+ 记子空间()12,,.m n L V εε+= 显然, 12V V V +=.又对 11221m m x x x V αεεε∀=+++∈,112m m n n x x V βεε++=++∈,()()1111,,,0m n m ni i j j i j i j i j m i j m x x x x αβεεεε==+==+⎛⎫=== ⎪⎝⎭∑∑∑∑∴ 12V V ⊥. 即2V 为1V 的正交补. 再证唯一性. 设23,V V 是1V 的正交补,则1213V V V V V =⊕=⊕对2,V α∀∈由上式知 13V V α∈⊕ 即有 13,ααα=+ 1133,V V αα∈∈ 又 1213,V V V V ⊥⊥ ∴ 131,,αααα⊥⊥从而有 ()()()()()1131113111,,,,,0ααααααααααα=+=+== 由此可得 10α=,即有 3V α∈ ∴ 23V V ⊆. 同理可证 32V V ⊆, ∴ 23.V V = 唯一性得证. 注:① 子空间W 的正交补记为W ⊥.即{}|W V W αα⊥=∈⊥② n 维欧氏空间V 的子空间W 满足: i) ()WW ⊥⊥=ii) dim dim dim W W V n ⊥+== iii) W W V ⊥⊕=ⅳ) W 的正交补W ⊥必是W 的余子空间. 但一般地,子空间W 的余子空间未必是其正交补. 3.内射影设W 是欧氏空间V 的子空间,由,V W W ⊥=⊕对,V α∀∈有唯一的12,W W αα⊥∈∈,使12ααα=+称1α为α在子空间W 上的内射影. 小结:两空间正交、直和、正交补。
§2 标准正交基一、正交向量组1.定义5 欧氏空间V 的一组非零的向量, 如果它们两两正交,就称为一个正交向量组. 按定义,由单个非零向量所成的向量组也是正交向量组.2.正交向量组是线性无关的.3.上述结果说明,在n 维欧氏空间中,两两正交的非零向量不能超过n 个.二、标准正交基1.定义6 在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基; 由单位向量组成的正交基称为标准正交基组.对一组正交基进行单位化就得到一组标准正交基. 2. 设n εεε,,,21 是一组标准正交基,由定义,有⎩⎨⎧≠==.,0;,1),(j i j i j i 当当εε (1)显然,(1)式完全刻画了标准正交基的性质. 换句话说,一组基为标准正交基的 充要条件是:它的度量矩阵为单位矩阵.3.因为度量矩阵是正定矩阵的,根据第五章关于正定二次型的结果,正定矩阵 合同于单位矩阵.这说明在n 维欧氏空间中存在一组基,它的度量矩阵是单位矩阵. 由此断言,在n 维欧氏空间中,标准正交基是存在的.4.在标准正交基下,向量的坐标可以通过内积简单地表示出来,即n n εαεεαεεαεα),(),(),(2211+++= . (2)在标准正交基下,内积有特别简单的表达式.设.2211n n x x x εεεα+++=.2211n n y y y εεεβ+++=那么.),(2211Y X y x y x y x n n '=+++= βα (3)这个表达式正是几何中向量的内积在直角坐标系中坐标表达式的推广.应该指出,内积的表达式(3),对于任一组标准正交基都是一样的. 这说明了,所有的 标准正交基,在欧氏空间中有相同的地位.三、标准正交基的存在性及其正交化方法1.把一组线性无关的向量变成一单位正交向量组的方法在一些书和文献中 称为施密特(Schimidt )正交化过程 设 12,,,m ααα 是一组线性无关的向量(1) 正交化11βα= 2122111(,)(,)αββαβββ=-313233121122(,)(,)(,)(,)αβαββαββββββ=--43414244123112233(,)(,)(,)(,)(,)(,)αβαβαββαβββββββββ=---由此推出11(,)(,)k k i k k i i i i αββαβββ-==-∑(2) 单位化例1 1234(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,1,1,1)αααα===-=-- 变成单位正交组2.定理1 n 维欧氏空间中任一个正交向量组都能扩充成一组标准正交基. 应该注意,定理的证明实际上也就给出了一个具体的扩充正交向量组的方法.如果从任一个非零向量出发,按证明中的步骤逐个地扩充,最后就得到一组正交基.、 再单位化,就得到一组标准正交基.3.定理2 对于n 维欧氏空间中任意一组基n εεε,,,21 ,都可以找到一组标准 正交基n ηηη,,,21 ,使=),,,(21i L εεε .,,2,1,),,,(21n i L i =ηηη应该指出,定理中的要求=),,,(21i L εεε .,,2,1,),,,(21n i L i =ηηη就相当于由基n εεε,,,21 到基n ηηη,,,21 的过渡矩阵是上三角形的.四、正交矩阵上面讨论了标准正交基的求法.由于标准正交基在欧氏空间中占有特殊的地位,所以有必要来讨论从一组标准正交基到另一组标准正交基的基变换公式. 设n εεε,,,21 与n ηηη,,,21 是欧氏空间V 中的两组标准正交基,它们之间的 过渡矩阵是)(ij a A =,即=),,,(21n ηηη ⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n n a a a a a a a a a 21222211121121),,,(εεε 因为n ηηη,,,21 是标准正交基,所以⎩⎨⎧≠==.,0;,1),(j i j i j i 当当ηη (4) 矩阵A 的各列就是n ηηη,,,21 在标准正交基n εεε,,,21 下的坐标.按公式(3),(4)式可以 表示为⎩⎨⎧≠==+++.,0;,12211j i j i a a a a a a nj ni j i j i 当当 (5)(5)式相当于一个矩阵的等式E A A =' (6)或者A A '=-1定义7 n 组实数矩阵A 称为正交矩阵,如果E A A ='由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准 正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基.最后指出,根据逆矩阵的性质,由E A A ='即得E A A ='写出来就是⎩⎨⎧≠==+++.,0;,12211j i j i a a a a a a jn in j i j i 当当 (7)(5)式是矩阵列与列之间的关系,(7)式是矩阵行与行之间的关系.这两组关系是等价的.例2 考虑定义在闭区间]2,0[π上一切连续函数所作成的欧氏空间]2,0[πC .函数组1,cos ,sin ,,cos ,sin ,.x x nx nx构成]2,0[πC 的一个正交组.把上面的每一向量除以它的长度,就得到]2,0[πC 的一个标准正交组:.,sin 1,cos 1,,sin 1,cos 1,21 nx nx x x πππππ例3 欧氏空间n R 的基(0,,0,1,0,,0i i ε=()),n i ,,2,1 = 是n R 的一个标准正交基.。
§2 标准正交基一、正交向量组 定义:设V为欧氏空间,非零向量12,,,m V ααα∈,如果它们两两正交,则称之为正交向量组. 注:① 若0α≠,则α是正交向量组. ② 正交向量组必是线性无关向量组. 证:设非零向量12,,,m V ααα∈两两正交. 令 11220m m k k k ααα+++=, i k R ∈则 ()()11,,,0m mi j j j i j i i i j j k a k a a k a a α==⎛⎫=== ⎪⎝⎭∑∑由 0i a ≠知 (),0i j a a >, ∴ 0i k =, 1,2,,i m = 故 12,,,m ααα线性无关.③ 欧氏空间中线性无关向量组未必是正交向量组. 例如:3R 中 ()11,1,0α=,()21,0,1α=线性无关. 但12,αα不是正交向量组.()12,10αα=≠.④ n 维欧氏空间中正交向量组所含向量个数≤n 二、标准正交基 1. 几何空间3R 中的情况在直角坐标系下()1,0,0i =,()0,1,0j =,()0,0,1k =是由单位向量构成的正交向量组,即()()(),,,0i j j k k i ===1i j k ===i ,j ,k 是3R 的一组基.设 111x i y j z k α=++,3222x i y j z k R β=++∈ ① 从 ()1,i x α=,()1,j y α=,()1,k z α= 得 ()()(),,,i i j j k k αααα=++ ② ()121212,x x y y z z αβ=++③ α=④,arccos βθ=即在基,,i j k 下,3R 中的与内积有关的度量性质有简单的表达形式. 2. 标准正交基的定义n 维欧氏空间中,由n 个向量构成的正交向量组称为正交基; 由单位向量构成的正交基称为标准正交基. 注:① 由正交基的每个向量单位化,可得到一组标准正交基. ② n 维欧氏空间V 中的一组基1,,n εε为标准正交基()1,,1,2,0i j i ji j n i j εε=⎧⇔==⎨≠⎩③ n 维欧氏空间V 中的一组基1,,n εε为标准正交基当且仅当其度量矩阵 ()(),i j n A E εε==.④ n 维欧氏空间V 中的标准正交基的作用: 设1,,n εε为V 的一组标准正交基,则 (i) 设 1122n n x x x V αεεε=+++∈ 由(1) ,(),i i x αε= .有 ()()()1122,,,n n ααεεαεεαεε=+++ (2) (ii) ()11221,nn n i i i x y x y x y x y αβ==+++=∑ (3)这里 1122n n x x x αεεε=+++ , 1122n n y y y βεεε=+++ .(iii) α=3. 标准正交基的构造─施密特(Schmidt)正交化过程1) (定理1) n 维欧氏空间中任一个正交向量组都能扩充成一组正交基.证:设 12,,,m ααα欧氏空间V中的正交向量组,对n m -作数学归纳法. 当0n m -=时, 12,,,m ααα就是一组正交基了.假设n m k -=时结论成立,即此时可找到向量12,,k βββ 使 12,,m ααα,12,,k βββ 成为一组正交基.现在来看()11n m k -=+≥的情形. 因为m n <,所以必有向量β不能被12,,m ααα线性表出, 作向量 ()111220m m mk k k αβααα+=---≠ i k R ∈ 待定. 从正交向量组的性质知()()()1,,,,i m i i i i k ααβααα+=-1,2,.i m = 于是取 ()(),,i i i i k βααα=1,2,.i m =可得()1,0,i m αα+= 1,2,.i m = 即 121,,,,m m αααα+ 为正交向量组.由归纳法假设知,对这1m +个向量构成的正交组可扩充得正交基. 于是定理得证.2)(定理2) 对于n 维欧氏空间中任一组基12,,n εεε都可找到一组标准正交基12,,,n ηηη,使()()1212,,,,,i i L L εεεηηη=, 1,2,,i n = 证:(基本方法─逐个构成出满足要求的12,,,n ηηη.)首先,可取 1111ηεε=.一般地,假定已求出12,,,m ηηη是单位正交的 ,且()()1212,,,,,i i L L εεεηηη=, 1,2,i m = (4)当m<n 时,因为有 ()112,,,m m L εεεε+∉ 由(4)知 1m ε+不能被12,,,m ηηη线性表出. 按定理1证明中的方法,作向量111122m m m m k k k ξεηηη++=---, ()()1,,m i i i i k εηηη+=即 ()1111,mm m m i i i ξεεηη+++==-∑ (5)则 10m ε+≠ 且 ()1,0m i εη+=, 1,2,i m = 再设 1111m m m ηξξ+++=.可知 121,,,,m m ηηηη+ 是单位正交向量组.从(4)和(5)知 121,,,,m m ηηηη+与121,,,m m εεεε+是等价向量组,因此,有()()121121,,,,,,m m L L εεεηηη++=由归纳原理,定理2得证. 注:① 由()()1212,,,,,,i i L L εεεηηη=, 1,2,i n = 知,若 ()()1212,,,,,,i n T ηηηεεε=,则过渡矩阵()ij T t =是上三角形(即0,ij t i j =>) 且 0,ij t > 1,2,i n = ②Schmidt 正交化过程:1。
第二章内积空间§1 内积空间的概念§2 正交基及子空间的正交关系§3 内积空间的同构§4 正交变换§5 点到子空间的距离与最小二乘法§6 复内积空间(酉空间)§7 正规矩阵§8 厄米特二次型§9 力学系统的小振动()()()()()()()())( ,,,),( )3( )( ,,, 2 ;,, )1( , , V z z y z x z y x R y x y x x y y x y x R V ∈+=+∈==→λλλ满足:向量的内积内积的定义时,等号成立当且仅当,0),( (4)θ=≥x x x 此时的V 就成为(实)内积空间1. 内积空间的概念()()()为一个内积空间。
可正定义内积为中的任二向量维线性空间若对例n n i i i nnn R y x y x R n ,,,,,,,,, 112121∑==⋅⋅⋅=⋅⋅⋅=ηξηηηξξξ()()()()()()()()()0,,3;,,,)2(;,, )1(,==+=+=y x z x y x z y x y x y x y x θθλλ的性质:内积内积空间之例例1 n 维线性空间R n ()()∑====ni ii n n y x y x 12121),( ,ηξηηηξξξ 此称为欧几里德空间(欧氏空间)()()()为一个内积空间。
可正定义内积为中的任二向量维线性空间若对例n n i i i nnn R y x y x R n ,,,,,,,,, 112121∑==⋅⋅⋅=⋅⋅⋅=ηξηηηξξξ()()()()()()()()()0,,3;,,,)2(;,, )1(,==+=+=y x z x y x z y x y x y x y x θθλλ的性质:内积内积空间之例例2 n 2维线性空间R n ×n ∑==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nj i ijij nn n n n n nn n n n n ba B Ab b b b b b b b b B a a a a a a a a a A 1,212222111211212222111211),( ,()()()为一个内积空间。
§5 子空间
一、 欧氏空间中的正交子空间 1.定义:
1) 1V 与2V 是欧氏空间V 中的两个子空间,如果对1V α∀∈,V β∈,恒有
(),0αβ=,
则称子空间1V 与2V 为正交的,记作12V V ⊥. 2) 对给定向量V α∈,如果对∀1V β∈,恒有
(),0αβ=,
则称向量α 与子空间1V 正交,记作1V α⊥. 注:
① 12V V ⊥当且仅当1V 中每个向量都与2V 正交. ② {}12120V V V V ⊥⇒⋂=.
( ()12,00V V αααα∀∈⋂⇒=⇒=.) ③ 当1V α⊥且V α∈时,必有0α=. 2.两两正交的子空间的和必是直和. 证明:设子空间12,,,s V V V 两两正交, 要证明12s V V V ⊕⊕⊕,只须证: 12s V V V +++中零向量分解式唯一. 设 12s ααα+++=0, i i V α∈, 1,2,,i s = 12V V ⊥, i j ≠
∴ ()()()12,0,,0i i s i i ααααααα=+++==
由内积的正定性,可知 0,i α= 1,2,,i s = 二、子空间的正交补 1.定义:
如果欧氏空间V 的子空间12,V V 满足12V V ⊥,并且12V V V +=, 则称 2V 为1V 的正交补.
2.n 维欧氏空间V 的每个子空间1V 都有唯一正交补. 证明:当{}10V =时,V 就是1V 的唯一正交补. 当{}10V ≠时,1V 也是有限维欧氏空间. 取1V 的一组正交基12,,,,m εεε 由定理1,它可扩充成V 的一组正交基 121,,,,,,,m m n εεεεε+ 记子空间()12,,.m n L V εε+= 显然, 12V V V +=.
又对 11221m m x x x V αεεε∀=+++∈,
112m m n n x x V βεε++=++∈,
()()1111
,,,0m n m n
i i j j i j i j i j m i j m x x x x αβεεεε==+==+⎛⎫=== ⎪⎝⎭∑∑∑∑
∴ 12V V ⊥. 即2V 为1V 的正交补. 再证唯一性. 设23,V V 是1V 的正交补,则
1213V V V V V =⊕=⊕
对2,V α∀∈由上式知 13V V α∈⊕ 即有 13,ααα=+ 1133,V V αα∈∈ 又 1213,V V V V ⊥⊥ ∴ 131,,αααα⊥⊥
从而有 ()()()()()1131113111,,,,,0ααααααααααα=+=+== 由此可得 10α=,即有 3V α∈ ∴ 23V V ⊆. 同理可证 32V V ⊆, ∴ 23.V V = 唯一性得证. 注:
① 子空间W 的正交补记为W ⊥.即
{}|W V W αα⊥=∈⊥
② n 维欧氏空间V 的子空间W 满足: i) ()
W
W ⊥
⊥=
ii) dim dim dim W W V n ⊥+== iii) W W V ⊥⊕=
ⅳ) W 的正交补W ⊥必是W 的余子空间. 但一般地,子空间W 的余子空间未必是其正交补. 3.内射影
设W 是欧氏空间V 的子空间,由,V W W ⊥=⊕对,V α∀∈有唯一的
12,W W αα⊥∈∈,使
12ααα=+
称1α为α在子空间W 上的内射影. 小结:两空间正交、直和、正交补。