概率论与数理统计(1-3章重点梳理)
- 格式:doc
- 大小:8.46 MB
- 文档页数:16
考研数学一大纲重点梳理概率论与数理统计部分概率论和数理统计是考研数学一科目中的重要部分,本文将针对概率论与数理统计这一大纲进行重点梳理。
首先,我们将介绍概率论的基本概念和理论,然后详细讨论数理统计的相关内容。
一、概率论的基本概念和理论1. 概率的基本概念概率是研究随机现象的定量描述,用来描述事件发生的可能性大小。
概率可以用数值表示,范围在0到1之间,其中0代表不可能事件,1代表必然事件。
2. 概率的运算规则概率的运算规则包括加法规则和乘法规则。
加法规则适用于互斥事件,乘法规则适用于独立事件。
3. 随机变量和概率分布随机变量是用来描述随机现象的变量,可以分为离散随机变量和连续随机变量。
概率分布描述了随机变量的取值与概率之间的关系,常见的概率分布包括二项分布、泊松分布和正态分布等。
4. 期望和方差期望是随机变量的平均值,用来描述随机变量的集中趋势;方差是随机变量与期望之间的差异程度,用来描述随机变量的离散程度。
二、数理统计的相关内容1. 抽样与抽样分布抽样是指从总体中选取一部分个体进行观察和研究的过程,抽样分布是指样本统计量的概率分布。
常见的抽样分布包括正态分布、t分布和F分布等。
2. 参数估计参数估计是利用样本数据来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。
点估计是用单个数值来估计参数的值,区间估计是用一个区间来估计参数的值。
3. 假设检验假设检验是根据样本提供的信息,对总体的某个参数是否满足某种假设进行判断。
假设检验可以分为单侧检验和双侧检验,常见的假设检验方法包括z检验和t检验等。
4. 方差分析方差分析是用来比较两个或多个总体间均值差异是否显著的统计方法。
方差分析可以分为单因素方差分析和多因素方差分析,常用的方法包括单因素方差分析和双因素方差分析等。
5. 回归分析回归分析是用来研究自变量与因变量之间的关系的方法。
简单线性回归是一种自变量和因变量之间存在线性关系的回归分析方法,多元线性回归是多个自变量和一个因变量之间的回归分析方法。
《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件 (2)§4等可能概型(古典概型) (3)§5.条件概率 (4)§6.独立性 (4)第二章随机变量及其分布 (5)§1随机变量 (5)§2离散性随机变量及其分布律 (5)§3随机变量的分布函数 (6)§4连续性随机变量及其概率密度 (6)§5随机变量的函数的分布 (7)第三章多维随机变量 (7)§1二维随机变量 (7)§2边缘分布 (8)§3条件分布 (8)§4相互独立的随机变量 (9)§5两个随机变量的函数的分布 (9)第四章随机变量的数字特征 (10)§1.数学期望 (10)§2方差 (11)§3协方差及相关系数 (11)第五章 大数定律与中心极限定理 (12)§1. 大数定律 ...................................................................................... 12 §2中心极限定理 . (13)第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。
随机事件和概率考查的主要内容有:(1)事件之间的关系与运算,以及利用它们进行概率计算;概率论与数理统计知识点与考点第一章知识点:18§1.1 随机试验:随机试验的三个特点。
(1)样本空间:样本空间;样本点;(2)随机事件:随机事件;事件发生;基本事件;必然事件;不可能事件;(3)事件间的关系与事件的运算:包含关系;相等关系;互不相容;和事件、积事件、差事件、对立事件;(4)事件的运算律。
§1.2、概率的定义及运算:(1)频率定义;(2)概率的统计定义,(3)概率公理化定义,(4)古典概型,(5)几何概型§1.3、条件概率:(1)定义;(2)性质;(3)乘法公式。
(4)全概率公式,(5)贝叶斯公式;,§1.4事件的独立性:(1)两事件相互独立的性质;(2)三(多)个事件相互独立的定义,(3)伯努利试验模型考点:1、事件的表示和运算,2、有关概率基本性质的命题,3、古典概型的计算,4、几何概型的计算,5、事件的独立性的命题,6、条件概率与积事件概率的计算,7、全概率公式和Bayce公式的命题,8、Bernoulli试验。
第二章知识点:19§2.1 (1) 随机变量的定义;(2)随机变量的分布函数及其性质§2.2 离散型随机变量及其概率分布:(1)离散型随机变量的定义;(2)离散型随机变量的分布律;几种常见的离散型随机变量:(1) (0-1)分布;(2) 二项分布;(3) 泊松分布;(4)超几何分布;(5)几何分布;(6)帕斯卡(Pascal)分布,掌握每一种分布的模型,写出其分布律或分布密度。
§2.3连续型随机变量及其概率分布:(1)分布函数的定义;(2)分布函数的基本性质;(3)分布函数与离散型随机变量的分布律之间的联系;(4)连续型随机变量的概率密度的定义;(5)概率密度的性质;几种常见的连续型随机变量(一)均匀分布:(1)概率密度;(2)分布函数;(二)正太分布:(1)概率密度;(2)分布函数;§2.4 随机变量的函数的分布(1)离散型随机变量的函数的分布(2)连续型随机变量的函数的分布考点:1、有关分布律、分布函数以及分布密度的基本概念的命题,2、有关分布律、分布密度以及分布函数之间的关系的命题,3、已知事件发生的概率,反求事件中的参数,4、利用常见分布求相关事件的概率,5、求随机变量的分布律、分布密度以及分布函数,6、求随机变量函数的分布。
概率论与数理统计第三章章节总结
概率论与数理统计的第三章主要介绍了随机变量及其分布、随机变量的离散概率和连续概率、期望和方差的计算、贝叶斯统计学等内容。
以下是本章的总结:
1. 随机变量及其分布
第三章第一小节介绍了随机变量的定义和性质,并介绍了离散型和连续型随机变量的区别。
然后,章节第二小节介绍了随机变量的分布,其中包括概率分布、密度函数、期望和方差的计算方法。
这些内容对于理解随机变量的分布非常重要。
2. 随机变量的离散概率和连续概率
第三章第三小节介绍了随机变量的离散概率和连续概率。
离散概率讨论的是离散型随机变量在某一范围内的取值概率,而连续概率讨论的是连续型随机变量在某一区间内的概率。
这些概念对于理解随机变量的性质和分布非常重要。
3. 期望和方差的计算
第三章第四小节介绍了期望和方差的计算方法。
期望是指一个随机变量的平均值,可以通过计算各个取值的概率和总和来实现。
方差是指一个随机变量在各个取值之间的差异,可以通过计算各个取值的差值和总和来实现。
这些内容对于计算随机变量的期望和方差非常重要。
4. 贝叶斯统计学
第三章第五小节介绍了贝叶斯统计学的原理和应用。
贝叶斯统计
学可以用来预测未来事件的概率,也可以用于概率模型的建模和优化。
这些内容对于实际应用非常有帮助。
综上所述,概率论与数理统计的第三章主要介绍了随机变量的分布、离散概率和连续概率、期望和方差的计算、贝叶斯统计学等内容,是学习概率论和统计学的重要基础。