江苏2018年高中数学竞赛预赛试题
- 格式:docx
- 大小:817.45 KB
- 文档页数:3
2018年高中数学联赛江苏赛区试题一、填空题<本题共10小题,每小题7分,要求将答案直接写在横线上)1.复数.答案:-82.已知直线是圆地一条对称轴,则实数答案:3.某班共有30名学生,若随机抽查两位学生地作业,则班长或团支书地作业被抽中地概率是<结果用最简分数表示).答案:4.已知,则.答案:5.已知向量a,b满足,则以向量与表示地有向线段为邻边地平行四边形地面积为.答案:6.设数列{a n}地前n项和为S n.若{S n}是首项及公比都为2地等比数列,则数列{a n3}地前n项和等于.答案:7.设函数.若f(a>=f(b>,且0<a<b,则ab地取值范围是.答案:(0,2>8.设f (m>为数列{a n}中小于m地项地个数,其中,则答案:69.一个等腰直角三角形地顶点分别在底边长为4地正三棱柱地三条侧棱上,则此直角三角形地斜边长是.答案:4错误!10.已知m是正整数,且方程有整数解,则m所有可能地值是.答案:3,14,30二、解答题<本大题共4小题,每小题20分,共80分)11.已知圆与抛物线有公共点,求实数h地取值范围.解:设公共点<cosθ,sinθ),代入抛物线方程,AB P得因为,所以12.设.若时,,且在区间上地最大值为1,求地最大值和最小值.解:由题意函数图象为开口向上地抛物线,且在区间上单调递增,故有,从而且.若有实根,则,在区间有即消去c ,解出即,这时,且.若无实根,则,将代入解得.综上.所以,单调递减故.13.如图,P 是内一点. <1)若P 是地内心,证明:; <2)若且,证明:P 是地内心.证明:<1)14.已知是实数,且存在正整数n 0,使得为正有理数.证明:存在无穷多个正整数n,使得为有理数.证明:设,其中p,q为互质地正整数,则.设k为任意地正整数,构造,则.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
2018年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2018A1、设集合{}99,,3,2,1 =A ,集合{}A x x B ∈=|2,集合{}A x x C ∈=2|,则集合C B 的元素个数为◆答案:24★解析:由条件知,{}48,,6,4,2 =C B ,故C B 的元素个数为24。
2018A 2、设点P 到平面α的距离为3,点Q 在平面α上,使得直线PQ 与平面α所成角不小于030且不大于060,则这样的点Q 所构成的区域的面积为 ◆答案:π8★解析:设点P 在平面α上的射影为O ,由条件知⎥⎦⎤⎢⎣⎡∈=∠3,33tan OQ OP OQP ,即[]3,1∈OQ ,所以区域的面积为πππ81322=⨯-⨯。
2018A 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是偶数的概率为 ◆答案:109★解析:先考虑def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为101!672=,故所求为1091011=-2018A 4、在平面直角坐标系xOy 中,椭圆C 1:2222=+by a x (0>>b a )的左右焦点分别是21,F F ,椭圆C 的弦ST 与UV 分别平行于x 轴和y 轴,且相交于点P ,已知线段PT PV PS PU ,,,的长分别为6,3,2,1,则21F PF ∆的面积为◆答案:15★解析:由对称性,不妨设点P ()00,y x 在第一象限,则220=-=PSPT x ,120=-=PUPV y即()1,2P 。
进而可得()2,2U ,()1,4S ,代入椭圆方程解得:202=a ,52=b ,从而151152212102121=⨯⨯=⨯=∆y F F S F PF 。
{}{}{}{}∈⎢,3⎥,即OQ∈[1,3],6⨯6=36种,从而abc+def为奇数的概率为722018年全国高中数学联合竞赛一试(A卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2018A1、设集合A=1,2,3, ,99,集合B=2x|x∈A,集合C=x|2x∈A,则集合B C 的元素个数为◆答案:24★解析:由条件知,B C=2,4,6, ,48,故B C的元素个数为24。
2018A2、设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与平面α所成角不小于300且不大于600,则这样的点Q所构成的区域的面积为◆答案:8π★解析:设点P在平面α上的射影为O,由条件知tan∠OQP=OP⎡3⎤OQ⎣3⎦所以区域的面积为π⨯32-π⨯12=8π。
2018A3、将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为◆答案:9 10★解析:先考虑abc+def为奇数时,abc,def一奇一偶,①若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样共有6⨯6=36种;②若abc为偶数,由对称性得,也有119=,故所求为1-=6!1010102018A4、在平面直角坐标系xOy中,椭圆C:x2y2+a2b2=1(a>b>0)的左右焦点分别是F,F,12椭圆C的弦ST与U V分别平行于x轴和y轴,且相交于点P,已知线段PU,PS,PV,PT的长分别为1,2,3,6,则∆PF F的面积为12★解析:由对称性,不妨设点 P x , y在第一象限,则 x = PT -PS 即 P 2,1 。
进 而 可 得 U2,2 , S 4,1 , 代 入 椭 圆 方 程 解 得 : a 2 = 20 , b 2 = 5 , 从 而 2 2[ ]◆答案: π - 2,8 - 2π ][ ] [ ][ ] 所以 π - 2 < x < 8 - 2π ,即不等式的解集为 π - 2,8 - 2π ] ⎩bx 2 - 2bx = 0◆答案: 15()2 = 2 ,y 0 =PV - PU2= 1( ) ( ) ( )S ∆PF 1F2=1 1F F ⨯ y = ⨯ 2 15 ⨯ 1 = 15 。
2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。
若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。
若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。
8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。
2017-2018年全国高中数学联赛江苏赛区初赛试题(4月20日8:00至10:00)一.填空题(本大题共10小题,每小题7分,共70分)1.若2x ≥,则函数1()1f x x x 的最小值是.2.已知函数()e x f x .若()2f a b ,则(3)(3)f a f b 的值是.3.已知数列n a 是各项均不为0的等差数列,公差为d ,n S 为前n 项和,且满足221n n a S ,*n N ,则数列n a 的通项n a .4.若函数2223,0,()2,0x x x f x x ax x ≥是奇函数,则实数a 的值是.5.已知函数10()lg ||3f x x .若关于x 的方程2()5()60f x f x 的实根之和为m ,则()f m 的值是.6.设、都是锐角,且5cos 5,3sin()5,则cos 等于.7.四面体ABCD 中,3AB ,5CD ,异面直线AB 和CD 之间的距离为4,夹角为o 60,则四面体ABCD 的体积为.8.若满足3ABC ,3AC ,BC m 的ABC △恰有一解,则实数m 的取值范围是.9.设集合1,2,,8S ,A ,B 是S 的两个非空子集,且A 中的最大数小于B 中的最小数,则这样的集合对(,)A B 的个数是.10.如果正整数m 可以表示为224x y (x ,y Z ),那么称m 为“好数”.问1,2,3,…,2017-2018中“好数”的个数为.二.解答题(本大题共4小题,每小题20分,共80分)11.已知a ,b ,c 为正实数,x y z a b c ,1110x y z ,求abc 的值.12.已知1F ,2F 分别是双曲线2222:1(0,0)xy C a b a b 的左右焦点,点B 的坐标为(0,)b ,直线1F B 与双曲线C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若21212MF F F ,求双曲线C 的离心率.13.如图,已知ABC 是锐角三角形,以AB 为直径的圆交边AC 于点D ,交边AB上的高CH 于点E .以AC 为直径的半圆交BD 的延长线于点G .求证:AG AE .14.(1)正六边形被3条互不交叉(端点可以重合)的对角线分割成4个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.怎样分割并涂色可以使红色三角形个数与蓝色三角形个数的差最大?(2)凸2016边形被2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.将每个三角形区域涂上红、栏两种颜色之一,使得有公共边的三角形涂的颜色不同.在上述分割并涂色的所有情形中,红色三角形个数与蓝色三角形个数之差的最大值是多少?证明你的结论.。
最新-2018年全国⾼中数学联赛试题及参考答案精品2018年全国⾼中数学联赛试题及参考答案试题⼀、选择题(本题满分36分,每⼩题6分)1、函数f (x)=log1/2(x2-2x-3)的单调递增区间是()。
(A)(-∞,-1)(B)(-∞,1)(C)(1,+∞)(D)(3, +∞)2、若实数x,y满⾜(x+5)2+(y-12)2=142,则x2+y2的最⼩值为()。
(A)2 (B)1 (C)√3(D)√23、函数f(x)=x/1-2x-x/2()(A)是偶函数但不是奇函数(B)是奇函数但不是偶函数(C)既是偶函数⼜是奇函数(D)既不是偶函数也不是奇函数4、直线x/4+y/3=1与椭圆x2/16+y2/9=1相交于A,B两点,该椭圆上点P,使得ΔPAB⾯积等于3,这样的点P共有()。
(A)1个(B)2个(C)3个(D)4个5、已知两个实数集合A={a1,a2,…,a100}与B={b1,b2,…,b50},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≤f(a2)≤…≤f(a100)则这样的映射共有()。
(A)C50100(B)C4899(C)C49100(D)C49996、由曲线x2=4y,x2=-4y,x=4,x=-4围成的图形绕y轴旋转⼀周所得旋转体的体积为V1;满⾜x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转⼀周所得旋转体的体积为V2,则()。
(A)V1=(1/2)V2 (B)V1=(2/3)V2 (C)V1=V2 (D)V1=2V2⼆、填空题(本题满分54分,每⼩题9分)7、已知复数Z1,Z2满⾜∣Z1∣=2,∣Z2∣=3,若它们所对应向量的夹⾓为60°,则∣(Z1+Z2)/(Z1+Z2)∣=。
8、将⼆项式(√x+1/(24√x))n的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的幂指数是整数的项共有个。