人教版数学高二数学人教A版选修2-1学案空间向量及其加减运算
- 格式:doc
- 大小:795.50 KB
- 文档页数:9
(浙江专版)2018-2019高中数学第三章空间向量与立体几何3.1.1 空间向量及其加减运算学案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018-2019高中数学第三章空间向量与立体几何3.1.1 空间向量及其加减运算学案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018-2019高中数学第三章空间向量与立体几何3.1.1 空间向量及其加减运算学案新人教A版选修2-1的全部内容。
3。
1.1 空间向量及其加减运算学习目标1。
了解空间向量、向量的模、零向量、相反向量、相等向量等概念。
2.会用平行四边形法则、三角形法则作出向量的和与差.3。
了解向量加法的交换律和结合律.知识点一空间向量的概念(1)在空间,把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也用有向线段表示,有向线段的长度表示向量的模,向量a的起点是A,终点是B,则向量a也可记作错误!,其模记为|a|或|错误!|.(2)几类特殊的空间向量名称定义及表示零向量规定长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为-a相等向量方向相同且模相等的向量称为相等向量,同向且等长的有向线段表示同一向量或相等向量知识点二空间向量的加减运算及运算律思考下面给出了两个空间向量a,b,作出b+a,b-a.答案如图,空间中的两个向量a,b相加时,我们可以先把向量a,b平移到同一个平面α内,以任意点O为起点作错误!=a,错误!=b,则错误!=错误!+错误!=a+b,错误!=错误!-错误!=b-a。
3.1 空间向量及其运算3.1.1空间向量及其加减运算内容标准学科素养1.理解空间向量的概念.2.掌握空间向量的加法、减法运算.利用直观抽象提升逻辑推理授课提示:对应学生用书第51页[基础认识]知识点一空间向量的概念预习教材P84-85,思考并完成以下问题如图,一块均匀的正三角形的钢板质量为500 kg,在它的顶点处分别受力F1,F2,F3,每个力与同它相邻的三角形的两边之间的夹角都是60°,且|F1|=|F2|=|F3|=200 kg.这块钢板在这些力的作用下将会怎样运动?这三个力至少为多大时,才能提起这块钢板?图中的三个力F1,F2,F3是既有大小又有方向的量,它们是不在同一平面内的向量.因此,解决这个问题需要空间向量的知识.事实上,不同在一个平面内的向量随处可见.例如,正方体中过同一个顶点的三条棱所表示的三个向量OA→,OB→,OC→就是不同在一个平面内的向量(如图).知识梳理(1)空间向量的定义在空间,把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.(2)空间向量及其模的表示方法空间向量用有向线段表示,有向线段的长度表示向量的模.如图,向量a的起点是A,终点是B,则向量a也可记为AB→,其模记为|a|或|AB→|.(3)特殊向量名称定义及表示零向量规定长度为0的向量叫做零向量,记为0单位向量模为1的向量叫做单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为-a相等向量方向相同且模相等的向量称为相等向量,在空间,同向且等长的有向线段表示同一向量或相等向量预习教材P 85-86,思考并完成以下问题 平面向量的加、减法满足怎样的运算法则?提示:加法有三角形法则和平行四边形法则,减法有三角形法则.空间中任意两个向量都可以平移到一个平面内,成为同一平面内的两个向量. 已知空间向量a ,b ,我们可以把它们移到同一个平面α内,以任意点O 为起点,作向量OA →=a ,OB →=b .那么a +b 和a -b 如图所示.知识梳理 (1)空间向量的加法、减法类似于平面向量,定义空间向量的加法和减法运算(如图):OB →=OA →+AB →=a +b ; CA →=OA →-OC →=a -b . (2)空间向量加法的运算律空间向量的加法运算满足交换律及结合律: ①交换律:a +b =b +a ;②结合律:(a +b )+c =a +(b +c ).[自我检测]1.下列命题正确的是( )A .若向量a 与b 的方向相反,则称向量a 与b 为相反向量B .零向量没有方向C .若a 是单位向量,则|a |=1D .若向量m ,n ,p 满足m =n ,n =p ,则不一定有m =p 答案:C2.已知空间四边形ABCD 中,AB →=a ,BC →=b ,AD →=c ,则CD →等于( ) A .a +b -c B .c -a -b C .c +a -bD .c +a +b答案:B授课提示:对应学生用书第52页探究一 空间向量及相关概念的理解[例1] 给出下列命题:①在同一条直线上的单位向量都相等;②只有零向量的模等于0;③在正方体ABCD -A 1B 1C 1D 1中,AD 1→与BC 1→是相等向量;④在空间四边形ABCD 中,AB →与CD →是相反向量;⑤在三棱柱ABC -A 1B 1C 1中,与AA 1→的模一定相等的向量一共有4个.其中正确命题的序号为________.[解析] ①错误,在同一条直线上的单位向量,方向可能相同,也可能相反,故它们不一定相等;②正确,零向量的模等于0,模等于0的向量只有零向量; ③正确,AD 1→与BC 1→的模相等,方向相同;④错误,空间四边形ABCD 中,AB →与CD →的模不一定相等,方向也不一定相反;⑤错误,在三棱柱ABC -A 1B 1C 1中,与AA 1→的模一定相等的向量是A 1A →,BB 1→,B 1B →,CC 1→,C 1C →,一共有5个.[答案] ②③方法技巧 解决空间向量相关概念的问题时,注意以下几点: (1)向量的两个要素是大小与方向,两者缺一不可; (2)单位向量的方向虽然不一定相同,但长度一定为1;(3)两个向量的模相等,则它们的长度相等,但方向不确定,即两个向量(非零向量)的模相等是两个向量相等的必要不充分条件;(4)由于方向不能比较大小,因此“大于”“小于”对向量来说是没有意义的,但向量的模是可以比较大小的.跟踪探究 1.下列说法正确的是( )A .若|a |=|b |,则a ,b 的长度相同,方向相同或相反B .若向量a 是向量b 的相反向量,则|a |=|b |C .两个向量相等,若它们的起点相同,则其终点不一定相同D .若|a |>|b |,|b |>|c |,则a >c解析:对于A ,由|a |=|b |可得a 与b 的长度相同,但方向不确定;对于B ,a 与b 是相反向量,则它们的模相等,故B 正确;对于C ,两向量相等,若它们的起点相同,则它们的终点一定相同,故C 错;对于D ,向量不能比较大小,故D 错.答案:B探究二 空间向量的加法与减法运算[教材P 86练习3]在图中,用AB →,AD →,AA ′→表示A ′C →,BD ′→及DB ′→.解析:A ′C →=A ′A →+AC →=A ′A →+AB →+AD →=AB →+AD →-AA ′→; BD ′→=BD →+DD ′→=BA →+BC →+DD ′→=-AB →+AD →+AA ′→; DB ′→=DB →+BB ′→=DA →+DC →+AA ′→=-AD →+AB →+AA ′→. [例2] 如图,在长方体ABCD -A 1B 1C 1D 1中,下列各式运算结果为BD 1→的是( )①A 1D 1→-A 1A →-AB →; ②BC →+BB 1→-D 1C 1→; ③AD →-AB →-DD 1→; ④B 1D 1→-A 1A →+DD 1→. A .①② B .②③ C .③④D .①④[解析] ①A 1D 1→-A 1A →-AB →=AD 1→-AB →=BD 1→; ②BC →+BB 1→-D 1C 1→=BC 1→+C 1D 1→=BD 1→;③AD →-AB →-DD 1→=BD →-DD 1→=BD →-BB 1→=B 1D →≠BD 1→;④B 1D 1→-A 1A →+DD 1→=BD →+AA 1→+DD 1→=BD 1→+AA 1→≠BD 1→,故选A. [答案] A方法技巧 1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使有关向量首尾相接,从而便于运算.(2)巧用平移:利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果.2.化简空间向量的常用思路(1)分组:合理分组,以便灵活运用三角形法则、平行四边形法则进行化简.(2)多边形法则:在空间向量的加法运算中,若是多个向量求和,还可利用多边形法则,若干个向量的和可以将其转化为首尾相接的向量求和.(3)走边路:灵活运用空间向量的加法、减法法则,尽量走边路(即沿几何体的边选择途径). 跟踪探究 2.如图,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的是________(填序号).①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.解析:①(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;②(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→;③(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;④(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.所以所给四个式子的运算结果都是AC 1→.答案:①②③④授课提示:对应学生用书第53页[课后小结]空间向量的加法、减法运算法则与平面向量相同,在空间向量的加法运算中,如下事实常帮助我们简化运算:(1)首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量,求若干个向量的和,可以通过平移将其转化为首尾相接的向量求和;(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为0.[素养培优]1.对空间向量的有关概念理解不清致误 下列说法中,错误的个数为( )(1)若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同. (2)若向量AB →,CD →满足|AB →|=|CD →|,AB →与CD →同向,则AB →>CD →.(3)若两个非零向量AB →,CD →满足AB →+CD →=0,则AB →,CD →互为相反向量. (4)AB →=CD →的充要条件是A 与C 重合,B 与D 重合. A .1 B .2 C .3D .4易错分析 向量相等,则向量的方向相同,模相等,但表示它们的有向线段的起点未必相同,终点也未必相同.故(1)(4)错误.反过来,方向相同,模相等的向量是相等向量,只能用“=”连接,故(2)错误. 自我纠正 (1)错误,两个空间向量相等,其模相等且方向相同,但与起点和终点的位置无关.(2)错误,向量的模可以比较大小,但向量不能比较大小.(3)正确,由AB →+CD →=0,得AB →=-CD →,所以AB →,CD →互为相反向量.(4)错误,由AB →=CD →,|AB →|=|CD →|,且AB →,CD →同向,但A 与C ,B 与D 不一定重合. 故一共有3个错误命题,正确答案为C. 答案:C2.对向量减法的三角形法则理解记忆不清致误在长方体ABCD -A 1B 1C 1D 1中,化简DA →-DB →+B 1C →-B 1B →+A 1B 1→-A 1B →.易错分析 DA →-DB →+B 1C →-B 1B →-B 1B →+A 1B 1→-A 1B →=AB →+CB →+B 1B →=DC →+DA →+B 1B →=DB →+D 1D →=D 1B →.自我纠正 DA →-DB →+B 1C →-B 1B →+A 1B 1→-A 1B →=BA →+BC →+BB 1→=BD →+BB 1→=BD →+DD 1→=BD 1→.。
3.1 空间向量及其运算 3.1.1 空间向量及其加减运算1.了解向量及其运算由平面向空间推广的过程,了解空间向量的概念.2.掌握空间向量的加法、减法运算.1.空间向量(1)定义:在空间,把具有大小和方向的量叫做空间向量. (2)长度:向量的大小叫做向量的长度或模.(3)表示法⎩⎪⎨⎪⎧①几何表示法:空间向量用有向线段表示;②字母表示法:用字母表示,若向量a 的起点是A ,终点是B ,可记作a ,也可记作AB →, 其模记为|a |或|AB →|(4)特殊向量单位向量、零向量都只是规定了向量的模长而没有规定向量的方向.单位向量有无数个,它们的方向不确定,因此,它们不一定相等;零向量也有无数个,它们的方向任意,但规定所有的零向量都相等.2.空间向量的加减法与运算律平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算是对有限个向量求和,交换相加向量的顺序,其和不变.判断(正确的打“√”,错误的打“×”)(1)两个有共同起点且相等的向量,其终点必相同.( ) (2)两个有公共终点的向量,一定是共线向量.( ) (3)在空间中,任意一个向量都可以进行平移.( )(4)空间两非零向量相加时,一定可用平行四边形法则运算.() 答案:(1)√ (2)× (3)√ (4)×空间两个向量a ,b 互为相反向量,已知|b |=3,则下列结论不正确的是( ) A .a =-b B .a +b=0 C .a 与b 方向相反D.|a |=3答案:B已知空间四边形ABCD ,连接AC ,BD ,则AB →+BC →+CD →为( ) A.AD → B.BD → C.AC → D.0答案:A下列命题中为真命题的是( ) A .向量AB →与BA →的长度相等B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等 答案:A探究点1 空间向量的概念[学生用书P49](1)给出下列命题: ①零向量没有确定的方向;②在正方体ABCD -A 1B 1C 1D 1中,AA 1→=-C 1C →;③若向量a 与向量b 的模相等,则a ,b 的方向相同或相反; ④在四边形ABCD 中,必有AB →+AD →=AC →. 其中正确命题的序号是________; (2)如图所示,在以长、宽、高分别为AB =3,AD =2,AA 1=1的长方体ABCD -A 1B 1C 1D 1的八个顶点中的两点为起点和终点的向量中,①单位向量共有多少个? ②试写出模为5的所有向量.【解】 (1)①正确;②正确,因为AA 1→与C 1C →的大小相等方向相反,即互为相反向量,所以AA 1→=-C 1C →;③|a |=|b |,不能确定其方向,所以a 与b 的方向不能确定;④中只有当四边形ABCD 是平行四边形时,才有AB →+AD →=AC →.综上可知,正确命题为①②.故填①②.(2)①由于长方体的高为1,所以长方体4条高所对应的AA 1→,A 1A →,BB 1→,B 1B →,CC 1→,C 1C →,DD 1→,D 1D →这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共有8个.②由于这个长方体的左、右两侧的对角线长均为5,故模为5的向量有AD 1→,D 1A →,A 1D →,DA 1→,BC 1→,C 1B →,B 1C →,CB 1→共8个.特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们互为相反向量.如图所示,以长方体ABCD -A 1B 1C 1D 1的八个顶点的两点为始点和终点的向量中.(1)试写出与AB →相等的所有向量; (2)试写出AA 1→的相反向量.解:(1)与向量AB →相等的所有向量(除它自身之外)有A 1B 1→,DC →及D 1C 1→共3个. (2)向量AA 1→的相反向量为A 1A →,B 1B →,C 1C →,D 1D →. 探究点2 空间向量的加减运算[学生用书P49]如图所示,已知长方体ABCD -A ′B ′C ′D ′.化简下列向量表达式,并在图中标出化简结果.(1)AA ′→-CB →; (2)AA ′→+AB →+B ′C ′→.【解】 (1)AA ′→-CB →=AA ′→-DA →=AA ′→+AD →=AA ′→+A ′D ′→=AD ′→. (2)AA ′→+AB →+B ′C ′→=(AA ′→+AB →)+B ′C ′→ =AB ′→+B ′C ′→=AC ′→. 向量AD ′→,AC ′→如图所示.[变问法]试把本例(2)中长方体中的体对角线所对应向量AC ′→用向量AA ′→,AB →,AD →表示. 解:在平行四边形ACC ′A ′中,由平行四边形法则可得AC ′→=AC →+AA ′→, 在平行四边形ABCD 中,由平行四边形法则可得AC →=AB →+AD →, 故AC ′→=AB →+AD →+AA ′→.空间向量加法、减法运算的两个技巧(1)向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使向量间首尾相接.(2)利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果.化简(AB →-CD →)-(AC →-BD →)=________.解析:法一:(利用相反向量的关系转化为加法运算) (AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD → =AB →+DC →+CA →+BD → =AB →+BD →+DC →+CA →=0.法二:(利用向量的减法运算法则求解) (AB →-CD →)-(AC →-BD →) =(AB →-AC →)+BD →-CD → =CB →+BD →-CD →=CD →-CD →=0. 答案:01.在空间四边形OABC 中,OA →+AB →-CB →等于( ) A.OA → B .AB → C.OC →D .AC →解析:选C.OA →+AB →-CB →=OA →+AB →+BC →=OC →,故选C. 2.给出以下命题:①若向量a 是向量b 的相反向量,则|a |=|b |; ②空间向量的减法满足结合律;③在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→. 其中正确命题的个数是( ) A .0B .1C .2 D.3解析:选C.由相反向量的定义知①正确;减法不满足结合律,②错误;③中由AC 瘙綊A 1C 1,知AC →=A 1C 1→,正确.故选C.3.如图所示,已知平行六面体ABCD -A 1B 1C 1D 1,M 为A 1C 1与B 1D 1的交点,化简下列向量表达式.(1)AA 1→+A 1B 1→; (2)AA 1→+A 1M →-MB 1→; (3)AA 1→+A 1B 1→+A 1D 1→; (4)AB →+BC →+CC 1→+C 1A 1→+A 1A →. 解:(1)AA 1→+A 1B 1→=AB 1→.(2)AA 1→+A 1M →-MB 1→=AA 1→+A 1M →+MD 1→=AD 1→. (3)AA 1→+A 1B 1→+A 1D 1→=AA 1→+A 1C 1→=AC 1→. (4)AB →+BC →+CC 1→+C 1A 1→+A 1A →=0. 4.在如图所示的平行六面体中,求证:AC →+AB →′+AD →′=2AC →′. 证明:因为平行六面体的六个面均为平行四边形, 所以AC →=AB →+AD →,AB →′=AB →+AA →′,AD →′=AD →+AA →′, 所以AC →+AB →′+AD →′=(AB →+AD →)+(AB →+AA →′)+(AD →+AA →′) =2(AB →+AD →+AA →′). 又因为AA →′=CC →′,AD →=BC →,所以AB →+AD →+AA →′=AB →+BC →+CC →′=AC →+CC →′=AC →′. 所以AC →+AB →′+AD →′=2AC →′.[学生用书P 50][学生用书P 127(单独成册)])[A 基础达标]1.已知空间向量AB →,BC →,CD →,AD →,则下列结论正确的是( ) A.AB →=BC →+CD →B.AD →=AB →+CD →+BC →C.AD →=AB →+BC →-CD →D.BC →=BD →+CD →解析:选B.根据空间向量的加减运算可得B 正确. 2.给出下列命题:①向量AB →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有公共终点的向量,一定是共线向量;④若向量AB →与向量CD →是共线向量,则点A ,B ,C ,D 必在同一条直线上; ⑤有向线段就是向量,向量就是有向线段. 其中假命题的个数为( ) A .2 B .3 C .4D.5解析:选C.①真命题;②假命题,若a 与b 中有一个为零向量时,其方向不确定;③假命题,终点相同并不能说明这两个向量的方向相同或相反;④假命题,共线向量所在直线可以重合,也可以平行;⑤假命题,向量可用有向线段来表示,但并不是有向线段.故假命题的个数为4.3.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( ) A.AB →=AC →+BC → B.AB →=-AC →-BC → C.AC →与BC →同向 D.AC →与CB →同向解析:选D.由|AB →|=|AC →|+|BC →|=|AC →|+|CB →|,知A ,B ,C 三点共线且C 点在线段AB 上,所以AC →与CB →同向.4.在正方体ABCD -A 1B 1C 1D 1中,下列选项中化简后为零向量的是( ) A.AB →+A 1D 1→+C 1A 1→ B.AB →-AC →+BB 1→ C.AB →+AD →+AA 1→ D.AC →+CB 1→解析:选A.在A 选项中,AB →+A 1D 1→+C 1A 1→=(AB →+AD →)+CA →=AC →+CA →=0.5.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D.矩形解析:选A.由于AO →+OB →=AB →,DO →+OC →=DC →, 所以AB →=DC →,从而|AB →|=|DC →|,且AB 与CD 不共线, 所以AB ∥DC ,所以四边形ABCD 是平行四边形.6.式子(AB →-CB →)+CC 1→运算的结果是__________.解析:(AB →-CB →)+CC 1→=(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→. 答案:AC 1→7.已知平行六面体ABCD -A ′B ′C ′D ′,则下列四式中正确的有________. ①AB →-CB →=AC →;②AC ′→=AB →+B ′C ′→+CC ′→; ③AA ′→=CC ′→;④AB →+BB ′→+BC →+C ′C →=AC ′→. 解析:AB →-CB →=AB →+BC →=AC →,①正确; AB →+B ′C ′→+CC ′→=AB →+BC →+CC ′→=AC ′→,②正确;③显然正确;AB →+BB ′→+BC →+C ′C →=AB ′→+B ′C ′→+C ′C →=AC →,④错. 答案:①②③8.给出下列几个命题:①方向相反的两个向量是相反向量; ②若|a |=|b |,则a =b 或a =-b ;③对于任何向量a ,b ,必有|a +b |≤|a |+|b |. 其中正确命题的序号为________.解析:对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,若|a |=|b |,则a 与b 的长度相等,但方向没有任何联系,故不正确;只有③正确.答案:③9.判断下列命题是否正确,若不正确,请简述理由. (1)若A ,B ,C ,D 四点在一条直线上,则AB →与CD →共线; (2)互为相反向量的向量的模相等; (3)任一向量与它的相反向量不相等.解:(1)正确.因为A ,B ,C ,D 四点在一条直线上,所以AB →与CD →一定共线. (2)正确.相反向量的模相等,但方向是相反的.(3)不正确.零向量的相反向量仍是零向量,零向量与零向量是相等的. 10.如图,在正方体ABCD -A 1B 1C 1D 1中,化简向量表达式:(1)AB →+CD →+BC →+DA →; (2)AA 1→+B 1C 1→+D 1D →+CB →. 解:(1)AB →+CD →+BC →+DA →=AB →+BC →+CD →+DA →=0.(2)因为B 1C 1→=BC →=-CB →,D 1D →=-AA 1→, 所以原式=AA 1→-CB →-AA 1→+CB →=0.[B 能力提升]11.已知正方体ABCD -A ′B ′C ′D ′的中心为O ,则在下列各结论中正确的共有( ) ①OA →+OD →与OB ′→+OC ′→是一对相反向量; ②OB →-OC →与OA ′→-OD ′→是一对相反向量;③OA →+OB →+OC →+OD →与OA ′→+OB ′→+OC ′→+OD ′→是一对相反向量; ④OA ′→-OA →与OC →-OC ′→是一对相反向量. A .1个 B .2个 C .3个 D .4个解析:选C.如图所示,①OA →=-OC ′→,OD →=-OB ′→, 所以OA →+OD →=-(OB ′→+OC ′→),是一对相反向量;②OB →-OC →=CB →,OA ′→-OD ′→=D ′A ′→,而CB →=D ′A ′→,故不是相反向量; ③同①也是正确的;④OA ′→-OA →=AA ′→,OC →-OC ′→=C ′C →=-AA ′→,是一对相反向量. 12.下列说法中,错误的个数为( ) ①在正方体ABCD -A 1B 1C 1D 1中,AC →=A 1C 1→;②若两个非零向量AB →与CD →满足AB →=-CD →,则AB →,CD →互为相反向量. ③AB →=CD →的充要条件是A 与C 重合,B 与D 重合. A .1 B .2 C .3D .0解析:选A.①正确.②正确.AB →=-CD →,且AB →,CD →为非零向量,所以AB →,CD →互为相反向量.③错误.由AB →=CD →,知|AB →|=|CD →|,且AB →与CD →同向,但A 与C ,B 与D 不一定重合.13.如图,已知长方体ABCD -A 1B 1C 1D 1,试在图中画出下列向量表达式所表示的向量.(1)AB 1→-AD 1→,AB 1→+AD 1→.(2)AB →+AD →-AD 1→,AB →+AD →+AD 1→.解:(1)如图所示,AB 1→-AD 1→=D 1B 1→,AB 1→+AD 1→=AB 1→+B 1C 2→=AC 2→.(2)如图所示,AB →+AD →-AD 1→=AC →-AD 1→=D 1C →,AB →+AD →+AD 1→=AC →+CC 3→=AC 3→.14.(选做题)如图所示,在六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1中.(1)化简A 1F 1→-EF →-BA →+FF 1→+CD →+F 1A 1→,并在图中标出化简结果的向量;(2)化简DE →+E 1F 1→+FD →+BB 1→+A 1E 1→,并在图中标出化简结果的向量.解:(1)A 1F 1→-EF →-BA →+FF 1→+CD →+F 1A 1→=AF →+FE →+AB →+BB 1→+CD →+DC →=AE →+AB 1→+0=AE →+ED 1→=AD 1→.AD 1→在图中所示如下:(2)DE →+E 1F 1→+FD →+BB 1→+A 1E 1→=DE →+EF →+FD →+BB 1→+B 1D 1→=DF →+FD →+BD 1→=0+BD 1→=BD 1→.BD 1→在图中所示如下:。
空间向量及其运算3.1.1 空间向量及其加减运算预习课本P84~85,思考并完成以下问题1.空间向量、零向量、单位向量、相反向量及相等向量的定义分别是什么?2.空间向量的加法和减法是怎样定义的?满足交换律及结合律吗?[新知初探] 1.空间向量的有关概念(1)定义:在空间,把具有大小和方向的量叫做空间向量. (2)长度:向量的大小叫做向量的长度或模.(3)表示法:⎩⎪⎨⎪⎧①几何表示法:空间向量用有向线段表示.②字母表示法:用字母表示,若向量a的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为|a |或|AB |.2.几类特殊向量 特殊向量 定义 表示法 零向量 长度为0的向量 0单位向量 模为1的向量|a |=1或|AB |=1相反向量与a 长度相等而方向相反的向量称为a 的相反向量-a相等向量方向相同且模相等的向量a=b或AB=CD3.空间向量的加法和减法运算空间向量的运算加法OB=OA+AB=a+b加法Z CA=OA-OC=a-b运算律(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若表示两个相等空间向量的有向线段的起点相同,则终点也相同()(2)零向量没有方向()(3)空间两个向量的加减法运算与平面内两向量的加减法运算完全一致()答案:(1)√(2)×(3)√2.化简PM-PN+MN所得的结果是()A.PM B.NPC.0 D.MN答案:C3.在四边形ABCD中,若AC=AB+AD,则四边形ABCD的形状一定是() A.平行四边形B.菱形C.矩形D.正方形答案:A4.在空间中,把所有单位向量的起点移到一点,则这些向量的终点组成的图形是________.答案:球面空间向量的概念辨析[典例]A.若|a|=|b|,则a,b的长度相同,方向相同或相反B.若向量a是向量b的相反向量,则|a|=|b|C.空间向量的减法满足结合律D.在四边形ABCD中,一定有AB+AD=AC[解析]|a|=|b|,说明a与b模相等,但方向不确定;对于a的相反向量b=-a,故|a|=|b|,从而B正确;只定义加法具有结合律,减法不具有结合律;一般的四边形不具有AB +AD=AC,只有在平行四边形中才能成立.故选B.[答案] B(1)两个向量的模相等,则它们的长度相等,但方向不确定,即两个向量(非零向量)的模相等是两个向量相等的必要不充分条件.(2)熟练掌握空间向量的有关概念、向量的加减法的运算法则及向量加法的运算律是解决好这类问题的关键.[活学活用]给出下列命题:①零向量没有确定的方向;②在正方体ABCD-A1B1C1D1中,AC=A C11;③两个空间向量相等,则它们的起点相同,终点也相同;④空间中任意两个单位向量必相等.其中正确命题的序号是________.解析:①正确;②正确,因为AC与A C11的大小和方向均相同;③错误,当两向量起点相同,终点相同时两向量相等,但两向量相等不一定起点相同,终点相同;④错误,单位向量只是它们的模相等,方向不一定相同.综上可知,正确命题为①②.答案:①②空间向量的加法、减法运算[典例]在六棱柱ABCDEF-A1B1C1D1E1F1中,化简A F11-EF+DF+AB+CC1,并在图中标出化简结果的向量.[解]在六棱柱ABCDEF-A1B1C1D1E1F1中,四边形AA1F1F是平行四边形,所以A F11=AF.同理AB=ED,CC1=DD1,DF=D F11,所以A F11-EF+AB+CC1+DF=AF+FE+ED+DD1+D F11=AF1,如图.[一题多变]1.[变设问]若本例条件不变,化简AB+CC1+DE+B D11,并在图中标出化简结果的向量.解:根据六棱柱的性质知四边形BB1C1C,DD1E1E都是平行四边形,所以BB1=CC1,DE=D E11,所以AB+CC1+DE+B D11=AB+BB1+D E11+B D11=AB+BB1+B D11+D E11=AE1.2.[变条件、变设问]若本例中的六棱柱是底面为正六边形的棱柱,化简AF 1-AB +BC,并在图中标出化简结果的向量.解:因为六边形ABCDEF是正六边形,所以BC∥EF,BC=EF,又因为E1F1∥EF,E1F1=EF,所以BC∥E1F1,BC=E1F1,所以BCE1F1是平行四边形,所以AF1-AB+BC=BF1+BC=BE1.在进行减法运算时,可将减去一个向量转化为加上这个向量的相反向量,而在进行加法运算时,首先考虑这两个向量在哪个平面内,然后与平面向量求和一样,运用向量运算的平行四边形法则、三角形法则及多边形法则来求即可.层级一学业水平达标1.空间四边形ABCD中,M,G分别是BC,CD的中点,则MG-AB+AD=() A.2DB B.3MGC.3GM D.2MG解析:选B MG-AB+AD=MG+BD=MG+2MG=3MG.2.设有四边形ABCD,O为空间任意一点,且AO+OB=DO+OC,则四边形ABCD 是()A.平行四边形B.空间四边形C.等腰梯形D.矩形解析:选A∵AO+OB=DO+OC,∴AB=DC.∴AB∥DC且|AB|=|DC|.∴四边形ABCD为平行四边形.3.在正方体ABCD-A1B1C1D1中,下列各式的运算结果为向量AC1的共有()①(AB+BC)+CC1;②(AA1+A D11)+D C11;③(AB+BB1)+B C11;④(AA1+A B11)+B C11.A.1个B.2个C.3个D.4个解析:选D根据空间向量的加法法则及正方体的性质,逐一判断可知①②③④都是符合题意的.4.空间四边形ABCD中,若E,F,G,H分别为AB,BC,CD,DA边上的中点,则下列各式中成立的是()A.EB+BF+EH+GH=0B.EB+FC+EH+GE=0C.EF+FG+EH+GH=0D.EF-FB+CG+GH=0解析:选B由于E,F,G,H分别是AB,BC,CD,DA边上的中点,所以四边形EFGH为平行四边形,其中EH=FG,且FC=BF,而E,B,F,G四点构成一个封闭图形,首尾相接的向量的和为零向量,即有EB+FC+EH+GE=0.5.已知正方体ABCD-A1B1C1D1的中心为O,则在下列各结论中正确的结论共有()①OA+OD与OB1+OC1是一对相反向量;②OB-OC与OA1-OD1是一对相反向量;③OA+OB+OC+OD与OA1+OB1+OC1+OD1是一对相反向量;④OA1-OA与OC-OC1是一对相反向量.A.1个B.2个C.3个D.4个解析:选C利用图形及向量的运算可知②是相等向量,①③④是相反向量.6.如图所示,在三棱柱ABC-A′B′C′中,AC与A C''是________向量,AB与B A''是________向量(用“相等”“相反”填空).答案:相等相反7.在直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,则A B1=________.解析:如图,A B 1=B B1-B A11=B B1-BA=-CC1-(CA-CB)=-c-(a-b)=-c-a+b.答案:-c-a+b8.给出下列四个命题:①方向相反的两个向量是相反向量;②若a,b满足|a|>|b|且a,b同向,则a>b;③不相等的两个空间向量的模必不相等;④对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为________.解析:对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.答案:④9.如图,在长、宽、高分别为AB=4,AD=2,AA1=1的长方体ABCD-A1B1C1D1中,以八个顶点中的两点分别为起点和终点的向量中.(1)单位向量共有多少个?(2)写出模为5的所有向量;(3)试写出AA1的相反向量.解:(1)因为长方体的高为1,所以长方体4条高所对应的向量AA1,A A1,BB1,B B1,DD 1,D D 1,CC 1,C C 1共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)因为长方体的左、右两侧的对角线长均为5,故模为5的向量有AD 1,D A 1,C B 1,BC 1,B C 1,CB 1,A D 1,DA 1.(3)向量AA 1的相反向量为A A 1,B B 1,C C 1,D D 1,共4个. 10.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1=a ,AB =b ,AD =c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1) AP ;(2) A N 1;(3) MP . 解:(1)∵P 是C 1D 1的中点,∴AP =AA 1+A D 11+D P 1=a +AD +12D C 11=a +c +12AB =a +c +12b .(2)∵N 是BC 的中点,∴A N 1=A A 1+AB +BN =-a +b +12BC=-a +b +12AD =-a +b +12c .(3)∵M 是AA 1的中点,∴MP =MA +AP =12A A 1+AP=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c . 层级二 应试能力达标1.下列命题中,正确的个数为( ) ①若a =b ,b =c ,则a =c ;②|a |=|b |是向量a =b 的必要不充分条件;③AB =CD 的充要条件是A 与C 重合,B 与D 重合. A .0 B .1 C .2D .3解析:选C ①正确,∵a =b ,∴a ,b 的模相等且方向相同.∵b =c ,∴b ,c 的模相等且方向相同,∴a =c .②正确,a =b ⇒|a |=|b |,|a |=|b |⇒/ a =b .③不正确,由AB =CD ,知|AB |=|CD |,且AB 与CD 同向.故选C.2.已知空间中任意四个点A ,B ,C ,D ,则DA +CD -CB 等于( )A .DB B .ABC .ACD .BA解析:选D 法一:DA +CD -CB =(CD +DA )-CB =CA -CB =BA . 法二:DA +CD -CB =DA +(CD -CB )=DA +BD =BA . 3.如果向量AB ,AC ,BC 满足|AB |=|AC |+|BC |,则( ) A .AB =AC +BC B .AB =-AC -BC C .AC 与BC 同向 D .AC 与CB 同向解析:选D ∵|AB |=|AC |+|BC |, ∴A ,B ,C 共线且点C 在AB 之间, 即AC 与CB 同向.4.已知空间四边形ABCD 中,AB =a ,CB =b ,AD =c ,则CD 等于( ) A .a +b -c B .-a -b +c C .-a +b +cD .-a +b -c解析:选C CD =CB +BA +AD =CB -AB +AD =b -a +c =-a +b +c . 5.在三棱柱ABC -A 1B 1C 1中,若CA =a ,CB =b ,CC 1=c ,E 是A 1B 的中点,则CE =________.(用a ,b ,c 表示)解析:CE =12(CA 1+CB )=12(CA +CC 1+CB ) =12(a +b +c ). 答案:12(a +b +c )6.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A B 11=a ,A D 11=b ,A A 1=c ,用a ,b ,c 表示D M 1,则D M 1=________.解析:D M 1=D D 1+DM =A A 1+12(DA +DC )=c +12(-A D 11+A B 11)=12a-12b+c.答案:12a-12b+c7.已知正方体ABCD-A1B1C1D1中,化简下列向量表达式,并在图中标出化简结果的向量.(1)AB+BC-C C1;(2)AB-DA-A A1.解:(1)AB+BC-C C1=AB+BC+CC1=AC+CC1=AC1(如图).(2)AB-DA-A A 1=AA1+(AB+AD)=AA1+(A B11+A D11)=AA1+A C11=AC1(如图).8.如图所示,已知空间四边形ABCD,连接AC,BD,E,F,G分别是BC,CD,DB的中点,请化简以下式子,并在图中标出化简结果.(1)AB+BC-DC;(2)AB-DG-CE.解:(1)AB+BC-DC=AB+BC+CD=AC+CD=AD,如图中向量AD.(2)AB-DG-CE=AB+GD+EC=AB+BG+EC=AG+GF=AF,如图中向量AF.。