运筹学-第2章运输问题
- 格式:ppt
- 大小:2.06 MB
- 文档页数:52
运筹学excel运输问题实验报告(一)运筹学Excel运输问题实验报告实验目的通过运用Excel软件解决运输问题,加深对运输问题的理解和应用。
实验内容本实验以四个工厂向四个销售点的运输为例,运用Excel软件求解运输问题,主要步骤如下:1.构建运输问题表格,包括工厂、销售点、单位运输成本、每个工厂的供应量、每个销售点的需求量等内容。
2.使用Excel软件的线性规划求解工具求解该运输问题,确定每条路径上的运输量和总运输成本。
3.对结果进行分析和解释,得出优化方案。
实验步骤1.构建运输问题表格工厂/销售点 A B C D 供应量1 4元/吨8元/吨10元/吨11元/吨35吨2 3元/吨7元/吨9元/吨10元/吨50吨3 5元/吨6元/吨11元/吨8元/吨25吨4 8元/吨7元/吨6元/吨9元/吨30吨需求量45吨35吨25吨40吨2.使用Excel软件的线性规划求解工具求解该运输问题在Excel软件中选择solver,按照下列步骤完成求解:1.添加目标函数:Total Cost=4AB+8AC+10AD+11AE+3BA+7BC+9BD+10BE+5CA+6CB+11CD+8CE+8DA+7DB+6DC+9DE2.添加约束条件:•A供应量: A1+A2+A3+A4=35•B供应量: B1+B2+B3+B4=50•C供应量: C1+C2+C3+C4=25•D供应量: D1+D2+D3+D4=30•A销售量: A1+B1+C1+D1=45•B销售量: A2+B2+C2+D2=35•C销售量: A3+B3+C3+D3=25•D销售量: A4+B4+C4+D4=403.求解结果工厂/销售点 A B C D 供应量1 10吨25吨0吨0吨35吨2 0吨10吨35吨5吨50吨3 0吨0吨15吨10吨25吨4 35吨0吨0吨0吨30吨需求量45吨35吨25吨40吨单位运输成本4元/吨8元/吨10元/吨11元/吨总运输成本2785元1480元875元550元4.结果分析和解释通过求解结果可知,工厂1最终向A销售10吨、向B销售25吨;工厂2最终向B销售10吨、向C销售35吨、向D销售5吨;工厂3最终向C销售15吨、向D销售10吨;工厂4最终向A销售35吨。
4 运输问题1、运输问题表上作业法的基本步骤。
答:表上作业法的基本步骤可参照单纯形法归纳如下:(1)找出初始基可行解:即要在阶产销平衡表上给出“”个数字格(基变量);(2)求各非基变量(空格)的检验数,判断当前的基可行解是否是最优解,如已得到最优解,则停止计算,否则转到下一步;(3确定入基变量,若,那么选取为入基变量;(4确定出基变量,找出入基变量的闭合回路,在闭合回路上最大限度地增加入基变量的值,那么闭合回路上首先减少为“0”的基变量即为出基变量;(5)在表上用闭合回路法调整运输方案;(6)重复2、3、4、5步骤,直到得到最优解。
2、“最小元素法”和“伏格尔”法的基本思想及基本操作。
答:最小元素法的基本思想是就近供应,即从单位运价表中最小的运价开始确定产销关系,依此类推,一直到给出基本方案为止。
伏格尔法把费用增量定义为给定行或列次小元素与最小元素的差(如果存在两个或两个以上的最小元素费用增量定义为零)。
最大差对应的行或列中的最小元素确定了产品的供应关系,即优先避免最大的费用增量发生。
当产地或销地中的一方在数量上供应完毕或得到满足时,划去运价表中对应的行或列,再重复上述步骤,即可得到一个初始的基可行解。
3、闭合回路的构成以及利用闭合回路法求检验数的基本操作。
答:判断基可行解的最优性,需计算空格(非基变量)的检验数。
闭合回路法即通过闭合回路求空格检验数的方法。
从给定的初始方案的任一空格出发寻找闭合回路,闭合回路顶点所在格括号内的数字是相应的单位运价,单位运价前的“+”、“-”号表示运量的调整方向。
空格处单位运量调整所引起的运费增量就是空格的检验数。
仿照此步骤可以计算初始方案中所有空格的检验数。
4、利用位势法求检验数以及利用闭合回路进行方案调整的基本操作。
答:位势法求解非基变量检验数的基本步骤:第一步:把方案表中基变量格填入其相应的运价并令;让每一个基变量都有,可求得所有的位势;第二步:利用计算各非基变量的检验数方案的优化基本步骤:在负检验数中找出最小的检验数,该检验数所对应的变量即为入基变量。
运筹学运输问题案例
以下是一个简单的运筹学运输问题的案例:
假设有一个公司需要将产品从三个工厂运输到四个销售点。
工厂和销售点的位置以及它们之间的运输成本如下:
工厂A到销售点1:10元
工厂A到销售点2:20元
工厂A到销售点3:30元
工厂A到销售点4:40元
工厂B到销售点1:20元
工厂B到销售点2:30元
工厂B到销售点3:10元
工厂B到销售点4:40元
工厂C到销售点1:30元
工厂C到销售点2:10元
工厂C到销售点3:20元
工厂C到销售点4:20元
公司希望找到一种运输策略,使得总运输成本最低。
可以使用运筹学中的运输模型来解决这个问题。
首先,我们需要确定每个工厂向每个销售点运输的货物数量。
为了最小化总成本,可以使用线性规划来求解这个问题。
在Excel或其他电子表格软件中,可以使用“Solver”插件来找到最优解。
根据最优解,我们可以计算出最低总运输成本。
例如,如果最优解是工厂A 向销售点1运输3个单位,向销售点2运输2个单位,向销售点3运输1
个单位,向销售点4运输0个单位;工厂B向销售点1运输2个单位,向
销售点2运输3个单位,向销售点3运输0个单位,向销售点4运输1个
单位;工厂C向销售点1运输1个单位,向销售点2运输0个单位,向销
售点3运输3个单位,向销售点4运输2个单位,那么最低总运输成本为150元。
在运筹学中,运输问题是一类经典的线性规划问题,涉及将有限数量的货物从多个供应点运输到多个需求点,并且对应的成本最小化或者利润最大化。
以下是一个运输问题的例题:
假设有三个供应点A、B和C,和四个需求点X、Y、Z和W。
每个供应点都有一定数量的货物可供运输,每个需求点需要一定数量的货物。
给定的成本矩阵代表从每个供应点到每个需求点的运输成本。
供应点的供应量和需求点的需求量以及成本矩阵如下:
供应量:
A: 80单位
B: 70单位
C: 60单位
需求量:
X: 50单位
Y: 40单位
Z: 30单位
W: 70单位
成本矩阵:
X Y Z W
A 4 6 8 9
B 5 7 10 12
C 6 8 11 14
问题是如何将货物从供应点运输到需求点,以使总运输成本最小化。
在这个例题中,可以使用线性规划方法来解决运输问题,通过确定每个供应点向每个需求点运输的数量来最小化总成本。
解决该问题的线性规划模型可以表示为:
最小化ΣΣ(cost(i, j) * x(i, j))
i j
满足以下约束条件:
1. 每个供应点的供应量不能超过其可供应的数量:Σx(i, j) ≤供应点i的供应量, for each i
2. 每个需求点的需求量必须得到满足:Σx(i, j) ≥需求点j的需求量, for each j
3. x(i, j) ≥0, for each i, j
其中,x(i, j) 表示从供应点i到需求点j运输的货物数量,cost(i, j) 表示从供应点i到需求点j的运输成本。
通过求解该线性规划模型,我们可以获得最优的货物运输方案,以最小化总运输成本。
管理运筹学讲义运输问题引言在现代社会,运输问题是管理运筹学中的一个重要问题。
无论是物流行业还是供应链管理,运输问题都是必不可少的一环。
运输问题的解决可以帮助企业有效地规划和管理物流流程,降低运输成本,提高运输效率。
本文将介绍管理运筹学中的运输问题,包括问题的定义、数学模型、常用的解决方法以及在实际应用中的案例分析。
运输问题的定义在管理运筹学中,运输问题是指在给定的供应点和需求点之间,如何分配物品的问题。
通常,问题的目标是找到一种分配方案,使得总运输成本最小。
运输问题可以抽象成一个图模型,其中供应点和需求点之间的路径表示运输线路,路径上的边表示运输的数量和成本。
每个供应点和需求点都有一个需求量或供应量。
问题的目标是找到一种分配方案,使得满足所有需求量的同时最小化总运输成本。
数学模型运输问题可以用线性规划来建模。
假设有m个供应点和n个需求点,每个供应点的供应量为si,每个需求点的需求量为dj。
定义xij为从供应点i到需求点j 的运输量,则运输问题的数学模型可以形式化表示为如下线性规划问题:minimize ∑(i=1 to m)∑(j=1 to n) cij * xijsubject to∑(j=1 to n) xij = si, for all i = 1,2,...,m∑(i=1 to m) xij = dj, for all j = 1,2,...,nxij >= 0, for all i = 1,2,...,m and j = 1,2,...,n其中cij表示从供应点i到需求点j的运输成本。
解决方法针对运输问题,常用的解决方法有以下几种:1. 单纯形法单纯形法是一种用于解决线性规划问题的常用方法。
对于运输问题,可以通过将其转化为标准的线性规划问题,然后使用单纯形法来求解最优解。
2. 匈牙利算法匈牙利算法是一种经典的图论算法,可以用于解决运输问题。
算法的核心思想是通过不断寻找增广路径来寻找最大匹配。
运筹学中的运输问题例题运筹学中的运输问题例题在运筹学领域中,运输问题一直是研究的焦点之一。
它是一种经典的线性规划问题,旨在寻找最佳的物流运输方案,以最小化运输成本或最大化利润。
下面将给出几个运输问题的例题,以便更好地理解运筹学中的运输问题。
例题一:某物流公司需要将货物从A、B、C三个仓库分别运输到D、E、F 三个地点。
已知各仓库的存货数和各地点的需求量如下:仓库存货数地点需求量A 50 D 30B 70 E 40C 80 F 20已知运输成本矩阵如下:D E FA 5 7 9B 6 8 10C 4 6 8要求给出最佳的物流运输方案,并计算出最小的运输成本。
例题二:某公司有两个工厂,分别位于城市X和城市Y,需要向三个销售点分别运输产品。
已知两个工厂的产能和三个销售点的需求量如下:工厂产能销售点需求量X 60 P 18Y 80 Q 30R 22已知运输成本矩阵如下:P Q RX 6 5 9Y 8 7 6要求确定最佳的运输方案,并计算出最小的运输成本。
例题三:某电子产品制造商面临着将产品从几个工厂运输到多个供应商的问题。
已知各工厂的产能和各供应商的需求量如下:工厂产能供应商需求量F1 80 S1 30F2 60 S2 50F3 70 S3 20已知运输成本矩阵如下:S1 S2 S3F1 4 7 6F2 6 3 8F3 5 7 9寻找最优的运输方案,以满足供应商的需求,并计算出最小的运输成本。
以上是几个常见的运输问题例题,这些例题涵盖了不同规模和不同约束条件的情况,帮助我们了解运筹学中的运输问题的解决方法。
通过运用线性规划等方法,可以得出最佳的运输方案,实现物流运输的优化,减少成本,并提高效率。
运输问题不仅在物流行业中有广泛应用,也可在其他领域中找到类似的应用场景,例如生产调度、供应链管理等。
因此,掌握运输问题的解决方法对于提高运营效率和降低成本是非常重要的。
综上所述,通过解决运输问题例题,我们可以更深入地理解运筹学中的运输问题,并通过适当的模型和算法,找到最佳的运输方案,实现资源的合理配置和优化。
MATLAB编程(运筹学之运输问题)运筹学与最优化MATLAB编程使⽤MATLAB求解:1、某公司经销甲产品。
它下设三个加⼯⼚。
每⽇的产量分别是:A1位7吨,A2为4吨,A3为9吨。
该公司把这些产品分别运往4个销售点。
各销售点的每⽇销量分别为:B1为3吨,B2为6吨,B3为5吨,B4为6吨,已知运价如下表所⽰,问该公司如何调⽤产品,在满⾜各销地需求量的前提下,使总运费最少。
运价表加⼯⼚销地B1B2B3B4A1311310A21928A374105解:设x ij为第i加⼯⼚运往第j销地的产品则min Z=3x11+11x12+3x13+10x14+x21+9x22+2x23+8x24+7x31+4x32+10x33+5x34根据合同要求,需满⾜x11+x12+x13+x14=7x21+x22+x23+x24=4x31+x32+x33+x34=9x11+x21+x31=3x12+x22+x32=6x13+x23+x33=5x14+x24+x34=6M⽂件如下:c=[3,11,3,10,1,9,2,8,7,4,10,5];Aeq=[1,1,1,1,0,0,0,0,0,0,0,0;0,0,0,0,1,1,1,1,0,0,0,0;0,0,0,0,0,0,0,0,1,1,1,1;1,0,0,0,1,0,0,0,1,0,0,0;0,1,0,0,0,1,0,0,0,1,0,0;0,0,1,0,0,0,1,0,0,0,1,0;0,0,0,1,0,0,0,1,0,0,0,1];beq=[7;4;9;3;6;5;6];lb=[0;0;0;0;0;0;0;0;0;0;0;0];ub=[Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf;Inf];[x,fval]=linprog(c,[],[],Aeq,beq,lb,ub)2、某⼚按合同规定须于当年每个季度末分别提供10,15,25,20台同⼀格的柴油机。
第一章: 建模合理下料问题例1-2:假定现有一批某种型号的圆钢长8m ,需要截取长的毛坯100根、长的毛坯200根,问应怎样选择下料方式,才能既满足需要,又使总的用料最少根据经验,可先将各种可能的搭配方案列出来,如表1-3所示。
例1-2′某一机床需要用甲、乙、丙三种规格的轴各一根,这些轴的规格分别是,,(m ),这些轴需要用同一种圆钢来做,圆钢长度为。
现在要制造100台机床,最少要用多少圆钢来生产这些轴 方案规格12345678需求量y 1 2 1 1 1 0 0 0 0 100 y 2 0 2 1 0 3 2 1 0 100 y 31 0 1 3 0234 100方案件数 毛坯I Ⅱ Ⅲ Ⅳ需要根数3 2 1 01000 2 4 6200目标函数 minf =C1x1+C2x2+…+Cnxn. a11x1+ a12x2+…+a1nxn ≥ b1 a21x1+ a22x2+…+a2nxn ≥ b2 ┇ ┇ ┇ ┇ am1x1+ am2x2+…+amnxn ≥ bmxj ≥0 (j =1,2,…,n)运输问题(物资调运问题)例1-3:设某种物资(例如煤炭)共有m 个产地A1、A2 、…、Am ,其产量分别为a1、a2、…、am ;另有n 个销地B1、B2、…、Bn 其销量分别为b1、b2、…、bn 。
已知由产地Ai(i =1,2,…,m)运往销地Bj(j =1,2,…,n)的单位运价为Cij ,如表1—6所示。
当产销平衡 m n(即∑ai=∑bj 时,问如何调运,才能使总运费最省方式 个 数毛 坯B 1 B 2 … B n需要毛坯数A1A2┇Ama 11 a 12 a 1n a 21 a 22 a 2n ┇ ┇ ┇ a m1 a m2 a mnb 1 b 2 ┇ b mi=1 j=1目标函数 min f=∑∑CijXij 最小i=1 j=1n∑Xij=ai (i=1,2,…,m)j=1满足 m∑Xij=bj ( j=1,2,…,n)i=1xij≥0 i=1,2,…,m;j=1,2,…,n)第二章:图解法整数规划步骤:写出模型,假设X1,X2…Xn是…1)作可行线2)作等值线3)平移等值线与可行线相交或相切于一点或直线4)例1:见笔记例2例1 某工厂在计划期内要安排工、Ⅱ两种产品的生产,已知生产单位产品所需的设备台时及A,B两种原材料的消耗,以及资源的限制,如下表所示。
运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。
运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。
本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。
同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。
运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。
在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。
这种情况下,上述数学模型可以直接应用。
产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。
这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。
这样就可以把问题转化为一个产销平衡的问题。
产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。
这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。
这样也可以把问题转化为一个产销平衡的问题。
弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。
实验报告填写说明
(实验项目名称、实验项目类型必须与实验教学大纲保持一致)
1.实验环境:
实验用的硬件、软件环境。
2.实验目的:
根据实验教学大纲,写出实验的要求和目的。
3.实验原理:
简要说明本实验项目所涉及的理论知识。
4.实验步骤:
这是实验报告极其重要的容。
对于验证性验,要写清楚操作方法,需要经过哪几个步骤来实现其操作。
对于设计性和综合性实验,还应写出设计思路和设计方法。
对于创新性实验,还应注明其创新点。
5.实验结论:
根据实验过程中得到的结果,做出结论。
6.实验总结:
本次实验的收获、体会和建议。
7.指导教师评语及成绩:
指导教师依据学生的实际报告内容,给出本次实验报告的评价和成绩。
附录1:源程序。