量子物理之氢原子的角向概率密度和径向概率密度
- 格式:pdf
- 大小:2.20 MB
- 文档页数:19
用基础量子力学解释氢原子四川师范大学本科毕业论文用基本量子力学解释氢原子——量子力学与氢原子的相遇相知相交学生姓名黄兰院系名称物理与电子工程学院专业名称物理学班级2008级 2 班学号2008070219指导教师侯邦品四川师范大学教务处二○一二年五月用基本量子力学解释氢原子本科生:黄兰指导老师:侯邦品内容摘要:主要从以下几个方面来运用基本量子力学解释氢原子。
1、氢原子的能级和能量本征函数。
首先介绍在量子力学中的波函数,再利用薛定谔方程来导出氢原子的能量本征函数,最后再分析它的物理含义。
2、氢原子的四个量子数的物理意义。
解释它们其与氢原子的能级的关系。
3、径向波函数和角度波函数。
主要是得出径向波函数和角度波函数同时给出它的物理意义。
4、简并性破除与量子激光。
氢原子的内部结构中电子在原子中受到的磁场的作用所产生的正常塞曼效应和反常塞曼效应,以及可能引起的电子跃迁。
5、氢原子的Stark效应。
氢原子在外场的作用下表现的Stark 效应,这部分将作简单的介绍。
关键词:量子量子力学氢原子 stark效应Schr?dinger方程Using quantum mechanics to explain the physical phenomena in hydrogen atomsAbstract:we shall use quantum mechanics to explain the physicalphenomena in the hydrogen atoms as follows: 1, the energy eigenfunctions for hydrogen are obtained after introducing the wave function in quantum mechanics . 2 , physical significance of the four quantum numbers in the hydrogen atoms.Here we shall focus on the hydrogen atom electron spin and its physical meaning of the four quantum numbers . 3, the radial wave function and the angle wave function . Coming to the radial wave function and the angle of the wave function at the same time we will get its physical significance. 4, the degeneracy is broken by magnetic fields. The normal and the anomalous Zeeman effect induced by magnetic field are introduced. 5, Finally, the the Stark effect in the hydrogen atomis briefly introduced.Key Words:Quantum Quantum mechanics Hydrogen atoms stark effect Schr?dinger equation目录引言 (4)1氢原子的能级和能量本征函数 (6)1.1波函数与Shr?dinger方程 (6)1.1.1波函数 (6)1.1.2波函数的归一化 (6)1.2 Shr?dinger方程 (7)1.2.1不含时Shr?dinger方程 (7)1.2.2 Shr?dinger方程的一般形式 (7)1.3中心力场中角动量守恒与径向方程 (7)1.4氢原子的能级与本征函数波函数 (8)2氢原子四个量子数 (11)2.1氢原子的定态薛定谔方程 (11)2.2 三个量子数 (12)2.3电子的自旋与第四量子数 (15)2.3.1斯特恩--盖拉赫实验(1921年) (15)3径向波函数和角度波函数 (17)3.1径向几率分布 (17)3.2电子的几率密度随角度的变化 (19)4氢原子四个量子数 ................................................................ 错误!未定义书签。
原子物理学中的波函数:氢原子波函数和角动量波函数是原子物理学中重要的概念之一,它用于描述原子或分子系统的量子状态。
在氢原子中,波函数被广泛应用于分析和理解氢原子的性质和行为。
此外,波函数还与角动量密切相关,它提供了有关原子的角动量信息。
在本文中,我们将详细探讨氢原子的波函数以及与之相关的角动量。
1. 波函数简介波函数是量子力学中描述自旋态和位置的函数。
它通常用希腊字母Ψ(Psi)表示,Ψ(r,t),其中r是位置向量,t是时间。
波函数描述了一个量子系统的全部信息,包括能量、动量、自旋等。
波函数的模的平方,|Ψ(r,t)|²,给出了在给定时刻在某个位置找到该量子系统的概率。
2. 氢原子波函数氢原子是原子物理学中最简单的原子,由一个质子和一个电子组成。
氢原子的波函数可以由薛定谔方程得到,它是描述量子力学体系的基本方程。
氢原子波函数相当复杂,主要由径向部分和角向部分构成。
2.1 径向波函数氢原子的径向波函数,记作R(r),描述了电子在原子核周围的运动方式。
径向波函数取决于主量子数n、角量子数l和磁量子数m。
主量子数n决定了能级,角量子数l确定了角动量大小,磁量子数m描述了角动量在空间中的方向。
径向波函数展示了电子和原子核之间的相互作用。
2.2 角向波函数氢原子的角向波函数,记作Y(theta, phi),展示了电子在球坐标系中的分布情况。
角向波函数取决于角量子数l和磁量子数m。
角向波函数是球谐函数的一种特殊形式,它给出了电子在不同方向上的概率分布。
3. 角动量与波函数在原子物理学中,角动量是一个重要的物理量,描述了物体旋转的性质。
角动量分为轨道角动量(L)和自旋角动量(S)两部分。
波函数与角动量之间存在紧密的联系。
3.1 定态波函数与角动量定态波函数是不随时间变化的波函数,描述了量子系统的固有状态。
在氢原子中,定态波函数与角动量之间具有简洁的关系。
根据定态波函数的表达式,能够计算出氢原子的角动量大小和方向。
氢原⼦的量⼦理论作业含答案第26章氢原⼦的量⼦理论习题 (初稿)⼀、填空题1. 氢原⼦的波函数可以写成如下形式(,,)()(,)l l nlm nl lm r R r Y ψθ?θ?=,请给出电⼦出现在~r r dr +球壳内的概率为___________,电⼦出现在(),θ?⽅向⽴体⾓d Ω内的概率为_______________。
2. 泡利不相容原理是指 ______________,原⼦核外电⼦排布除遵循泡利不相容原理外,还应遵循的物理规律是 __________ 。
3. 可以⽤⽤ 4 个量⼦数描述原⼦中电⼦的量⼦态,这 4 个量⼦数各称和取值范围怎样分别是:(1) (2) (3) (4) 。
4. 根据量⼦⼒学原理,如果不考虑电⼦⾃旋,对氢原⼦当n确定后,对应的总量⼦态数⽬为_ _个,当n 和l 确定后,对应的总量⼦态数⽬为__ __个5. 给出以下两种元素的核外电⼦排布规律:钾(Z=19): 铜(Z=29): ___ __6. 设有某原⼦核外的 3d 态电⼦,其可能的量⼦数有个,分别可表⽰为 ____________________________。
7. 电⼦⾃旋与其轨道运动的相互作⽤是何种性质的作⽤。
8. 类氢离⼦是指___________________,⾥德伯原⼦是指________________。
9. 在主量⼦数为n=2,⾃旋磁量⼦数为s=1/2的量⼦态中,能够填充的最⼤电⼦数是________。
10. 1921年斯特恩和格拉赫实验中发现,⼀束处于s 态的原⼦射线在⾮均匀磁场中分裂为两束,对于这种分裂⽤电⼦轨道运动的⾓动量空间取向量⼦化难于解释,只能⽤_________来解释。
⼆、计算题11. 如果⽤13.0 eV 的电⼦轰击处于基态的氢原⼦,则: (1)氢原⼦能够被激发到的最⾼能级是多少?(2)氢原⼦由上⾯的最⾼能级跃迁到基态发出的光⼦可能波长为多少? (3)如果使处于基态的氢原⼦电离,⾄少要多⼤能量的电⼦轰击氢原⼦?12. 写出磷的电⼦排布,并求每个电⼦的轨道⾓动量。
量子力学中的量子力学中的量子力学中的概率幅与概率密度量子力学中的概率幅与概率密度量子力学是一门研究微观世界的科学学科,它提供了一种描述和解释原子、分子以及更小尺度下的微观粒子行为的理论框架。
在量子力学中,我们经常会涉及到概率幅和概率密度这两个概念,它们在描述粒子行为和计算测量结果时非常重要。
一、概率幅在量子力学中,概率幅是描述粒子状态的数学量。
根据量子力学的基本原理,一个粒子的状态可以由一个波函数来描述,而概率幅就是波函数的系数。
具体来说,对于一个处于定态的量子系统,其波函数可以表示为一个无边界的平面波乘以一个相位因子,即Ψ(x, t) =Ae^(i(kx-ωt))。
在这个表达式中,A 是概率幅,表示粒子被观测到的概率振幅。
概率幅的模的平方就是概率密度。
也就是说,|A|^2 = P(x, t),其中P(x, t) 表示在时刻 t 处测量到粒子在位置 x 处的概率。
二、概率密度概率密度是描述粒子存在于不同位置的概率分布。
在量子力学中,我们关注的是粒子被观测到在某一位置上的概率,而不是具体的位置值。
因此,概率密度的概念在这里变得尤为重要。
根据量子力学的基本原理,粒子的概率密度可以通过概率幅的模的平方来计算。
具体来说,对于一个处于定态的量子系统,其概率密度可以表示为|Ψ(x, t)|^2 = |A|^2 = P(x, t)。
这个公式告诉我们,概率密度与概率幅的模的平方成正比。
概率密度在实际计算中起到了至关重要的作用。
它提供了一种将概率幅的数学抽象转化为实际可测量的概率的方式。
我们可以通过测量粒子位置的概率密度来得到粒子出现在不同位置上的概率信息。
三、应用实例概率幅和概率密度在量子力学中有着广泛的应用。
例如,在粒子穿过一个势垒的问题中,我们可以使用概率幅来描述粒子的传播行为,通过计算概率密度来确定粒子被观测到在不同位置上的概率。
另一个例子是电子的波粒二象性。
在电子的双缝实验中,我们可以观察到电子显示出波动和粒子性质。