从经典物理学到量子力学过渡时期的三个重大问题
- 格式:ppt
- 大小:222.50 KB
- 文档页数:14
物理学史量子力学发展史量子力学是20世纪最重要的物理学理论之一、它对我们对于微观世界的认识产生了革命性的影响,揭示了微观领域中的非经典行为和奇特现象。
下面将从早期经典物理学的发展、量子力学的奠基、量子力学的发展以及当代量子力学的新前沿等几个方面来探讨量子力学的发展史。
在经典物理学发展初期,人们对自然界的理解主要是基于牛顿力学和经典电磁学。
然而,19世纪末期的实验观测结果却对这些理论提出了挑战。
比如,黑体辐射的研究结果表明,经典电磁理论无法很好地解释辐射能量的分布,即所谓的紫外灾难。
此外,光和物质之间的相互作用实验证据也无法用经典理论解释。
这些问题催生了新的物理学理论的产生。
1900年,普朗克提出了能量量子化的概念,他认为辐射能量只能取离散值,称之为“能量子”。
这一理论为量子力学的奠基奠定了基础。
随后,爱因斯坦利用普朗克的理论解释了光电效应的奇异现象,即光的粒子特性,为光子的概念提供了支持。
量子力学的发展主要是在20世纪20年代进行的。
1925-1926年,薛定谔、海森堡、狄拉克等人先后提出了量子力学的不同形式。
薛定谔方程是量子力学最重要的数学工具之一,描述了微观粒子的波函数演化规律。
海森堡提出了矩阵力学,它用矩阵代替了传统经典物理学中的物理量。
狄拉克提出了量子力学的相对论形式,狄拉克方程,成功地将量子力学与相对论结合起来。
量子力学的发展也伴随着一系列的实验验证。
1927年,约翰内斯·斯特恩和沃尔夫冈·伦琴的斯特恩-伦琴实验证明了电子具有自旋的性质,违背了经典理论对电子运动的描述。
1929年,保罗·狄拉克提出了反粒子的概念,并预言了反质子的存在。
1932年,卡尔·安德森实验证实了反质子的存在。
到了20世纪30年代,量子力学已经形成了初步的理论框架。
但是相对论的引入使得量子力学面临新的挑战。
狄拉克方程描述了粒子的相对论性质,但无法解释一些重要的物理现象,比如粒子的自旋、量子场论等。
量子力学的发展历程量子力学的发展历程一、前言量子力学是20世纪物理学最重要的发现之一,它是现代物理学的基础。
它已经成为物理学,化学,电子学,材料学,晶体学等领域的核心概念和基础理论之一。
量子力学从20世纪初开始发展,至今已经发展了一个多世纪,取得了丰硕的成果,影响深远,极大地推动了科学技术的发展。
今天,我们聚焦于量子力学的历史发展,看看它是怎样一步步诞生、发展和完善的。
二、量子力学的发展1.经典物理学的基础量子力学的发展,最初要从1900年德国数学家马克斯·普朗克(Max Planck)提出的“计量物理学”开始。
他假设,在微观尺度上,物质是可以分解的,这种粒子受到热能的影响,可以以某种形式储存能量,如热量和热力学系统,这极大地推动了经典物理学的发展。
2.量子说的出现1905年,爱因斯坦提出的“光粒子理论”在物理学史上引起了轰动,他重新定义了光的实质:它不仅是一种电磁波,也是一种传播光子或量子的波动。
由于光子的效应受量子理论的约束,从而推动了量子说的出现。
3.波动力学的发展在爱因斯坦的光粒子理论基础上,1924年,德国物理学家路易斯·普朗特(Louis de Broglie)提出了“粒子波力学”这一概念,他认为,粒子也可以有波力学性质,这是经典物理学中受量子效应影响的一个重大突破,它大大促进了量子力学的发展。
4.量子力学的形成1926年,德国物理学家爱因斯坦、布鲁克、加登和赫兹等人提出了一系列量子力学原理,将量子说的理论和粒子波力学的研究有机结合起来,形成了量子力学这一新的物理学理论,它使科学家们能够以一种全新的视角深入揭示物质的本质,从而构成了现代科学技术的基础。
5.量子力学的发展量子力学的发展,在20世纪30年代的第二次工业革命中取得了重要成果,新的物理学理论和新的物理实验技术推动了数字电子技术的发展,持续发展到今天,它在物理学,化学,电子学,材料学,晶体学等领域都起到了重要作用,使量子力学在现代物理学中发挥着不可替代的重要作用。
人类物理学简史:三次危机、三场革命和三大时代物理学是最古老的科学之一。
在过去的两千年中,物理学与哲学、化学等等经常被混淆在一起,相提并论。
直到十六世纪科学革命之后,才单独成为一门现代科学。
如同人类始终只是自然界的产物和附庸一样,人类物理学也始终只是自然界的产物和附庸。
即是说,它始终只是对自然界的反映。
如同人脑始终只是人类的产物和附庸一样,人类物理学也始终只是人类的产物和附庸。
之所以要将“物理学”称为“人类物理学”,只是因为根据事物来描述事物。
如同思维和意识始终只是人脑的产物和附庸一样,人类物理学也始终只是人脑的产物和附庸。
即是说,它产生于人类的思维,故而始终只是人类思维的产物;它附属于人类的意识,故而始终只是人类意识的附庸。
如同人类历史始终只是不以人的意志为转移的自然历史过程一样,人类物理学史也始终只是不以人的意志为转移的自然历史过程。
我们按照社会经济各时期的特点和物理学本身发展的规律,并兼顾其他各种因素(如物理学的不同时期的不同研究方法),指出物理学发展史上的三次危机和三场挽救了危机并推动物理学的进一步发展的伟大革命,把物理学史大体划分为三个时期。
一、经验时代——古代经验物理学时期17世纪以前,中国和古希腊形成两个东西交相辉映的文化中心。
人类社会生产力的最初的发展,初步造就了物理学这一伟大科学体系。
人类物理学的诞生和古代经验物理学时期的开始,成为人类史上第一次物理学革命——“经验革命”的直接成果。
经验科学已从生产劳动中逐渐分化出来。
这一时期物理学研究的主要方法是直觉观察与哲学的猜测性思辨。
所以,与生产活动及人们自身直接感觉有关的天文、力、热、声、光(几何光学)等知识首先得到较多发展。
除希腊的静力学外,中国在以上几方面在当时都处于领先地位。
在这个时期,物理学尚处在萌芽阶段。
二、经典时代——近代经典物理学时期17世纪初—19世纪末,资本主义生产促进了科学技术的发展,推动形成了第二次人类物理学革命——“经典革命”,开创了人类物理学史的崭新时代。
第四章从经典物理学到量子力学§4 - 1 从经典物理学到前期量子论到19世纪末,经典物理学已经建立了比较完整的理论体系。
力学分析力学,存在海王星的预言及其被证实电磁学麦克氢原子光谱斯韦方程组,预言了电磁波的存在热力学+统计物理学量子力学的研究对象:微观粒子。
量子理论的发展轨迹:能量子:黑体辐射光量子:光电效应固体比热氢原子光谱一黑体辐射普朗克的能量子假说( 1 ) 热辐射的基本概念热辐射:一切物体的分子热运动将导致物体向外不断地发射电磁波。
这种辐射与温度有关。
温度越高,发射的能量越大,发射的电磁波的波长越短。
平衡热辐射或平衡辐射:如果物体辐射出去的能量恰好等于在同一时间内所吸收的能量,则辐射过程达到了平衡。
单色辐射出射度(简称单色辐出度,用)(T M λ表示):在单位时间内从物体表面单位面积上所辐射出来的,单位波长范围内的电磁波能量,即λλd )(d )(T M T M =, (4.1)where d M ( T ):在单位时间内从物体表面单位面积上所辐射出来的,波长在λ 到λ+d λ 范围内的电磁波能量。
辐射出射度(简称辐出度,在单位时间内从物体表面单位面积上辐射出来的各种波长电磁波能量的总和)⎰⎰∞==0d )()(d )(λλT M T M T M . (4.2)单色吸收比),(T λα和单色反射比),(T λρ:在温度为T 时,物体吸收和反射波长在λ 到λ + d λ 范围内的电磁波能量,与相应波长的入射电磁波能量之比,分别称为该物体的单色吸收比),(T λα和单色反射比),(T λρ。
对于不透明的物体,有1),(),(=+T T λρλα. (4. 3)( 2 ) 基尔霍夫定律和黑体基尔霍夫辐射定律: 对每一个物体来说,单色辐出度与单色吸收比的比值),(/)(T T M λαλ,是一个与物体性质无关(而只与温度和辐射波长有关)的普适函数。
即 ),(),()(),()(2211T I T T M T T M λλαλαλλ===Λ, (4. 4)(,)?I T λ= 引出黑体的概念推论:如果一个物体是良好的吸收体,必定也是一个良好的辐射体。
第十六章 从经典物理到量子物理一、基本要求1. 了解描述热辐射的几个物理量及绝对黑体辐射的两条实验规律。
2. 理解普朗克的“能量子”假设的内容,了解普朗克公式。
3. 理解光电效应和康普顿效应的实验规律,以及爱因斯坦的光子理论对这两个效应的解释。
4. 理解爱因斯坦光电效应方程;红限概念和康普顿散射公式。
5. 理解光的波粒二象性以及光子的能量,质量和动量的计算。
6. 掌握氢原子光谱的实验规律,理解玻尔氢原子理论的三条基本假设的内容;并由三条假设出发,推导出氢原子的光谱规律。
二、基本内容1. 黑体辐射(1)绝对黑体在任何温度下都能全部吸收照射在其上的任何波长的电磁波的物体,称为绝对黑体。
绝对黑体是一种理想模型,其在任何温度下对任何波长入射辐射能的吸收比均为1。
(2)黑体辐射的实验规律斯特藩-玻尔兹曼定律40)(T T M σ=式中)(0T M 为绝对黑体在一定温度下的辐射出射度,σ=5.67×10-8W ·m -2·K -1为斯特藩常量。
维恩位移定律b T m =λ式中m λ为相应于)(0T M λ曲线极大值的波长,31089.2-⨯=b m ·K(3)普朗克的能量子假说辐射黑体是由原子分子组成的。
这些原子和分子的振动可看作线性谐振子,这些谐振子的能量只能是某一最小能量ε的整数倍,即ε,2ε,3ε...,n ε,物体发射或吸收的能量必须是这个最小单元的整数倍。
ε称为能量子,n 为正整数,叫量子数。
在黑体辐射理论中,能量子ε=hv ,其中h 是普朗克常量,v 是特定波长的辐射所对应的频率。
(4)普朗克黑体辐射公式)(0T M λ=11252-⋅T k hce hc λλπ 式中h 为普朗克常量,k 为玻尔兹曼常量,c 为真空中光速。
由此公式可推导出斯特藩-玻尔兹曼定律和维恩位移定律,而且在低频和高频情况下可分别化为瑞利-金斯公式和维恩公式。
2. 光电效应金属及其化合物在电磁辐射下发射电子的现象称为光电效应。
从经典物理到量子物理的转变在过去的几个世纪里,物理学一直在不断发展和演变。
从牛顿的经典物理学到爱因斯坦的相对论,再到今天的量子物理学,每一次的转变都为人们揭示了自然界更深层次的奥秘。
其中最引人注目的转变之一就是从经典物理到量子物理的转变。
经典物理学是在17世纪末由牛顿建立起来的。
牛顿的三大运动定律是经典物理学的基础。
这一理论被广泛应用于描述宏观世界中物体的运动和相互作用。
从行星的运动到地球上的物体下落,经典物理学都能给出准确的解释。
人们借助这一理论解释了地球的自转、牛顿猜想了万有引力定律,使用经典力学成功地制造了各种机械和发明。
然而,随着科学的进一步发展,人们逐渐发现经典物理学存在一些无法解释的问题。
其中之一就是黑体辐射问题。
经典物理学预测的辐射强度与实验观测的结果相差太大,不符合实际情况。
这一发现促使科学家们重新审视和探索自然界中的规律。
于是,量子物理学应运而生。
量子物理学,是20世纪初发展起来的一门全新的科学。
它研究微观世界的粒子和微观现象的规律。
量子物理学的创立被认为是对经典物理学最重要的补充。
经典物理学中的连续性和可测性的概念在量子物理学中被打破,取而代之的是微观粒子的不确定性和波粒二象性。
量子物理学的起源可以追溯到普朗克提出的能量量子化假设。
根据这一假设,能量并不是连续的,而是以“量子”的形式存在,即能量的最小单位。
进一步的研究和实验证实了这一假设,为量子物理学的发展奠定了基础。
量子物理学的一个重要特征是波粒二象性。
在经典物理学中,光被视为一种波动,而电子和其他粒子则被视为具有确定的位置和动量的粒子。
然而,量子物理学表明,光和微观粒子既可以表现出波动性,也可以表现出粒子性。
这就是著名的“双缝实验”。
实验显示,光或电子经过双缝后穿过的分布模式同时表现出波动特性和粒子特性。
量子物理学的另一个重要概念是量子纠缠。
纠缠是指两个或更多粒子之间存在一种特殊的联系,无论它们之间的距离有多远,它们的状态都是相关的。
3、现代量子力学的几个疑难问题核子的结构也不清楚。
为什么氦核如此稳定?为什么铀238非常稳定,而铀235却是裂变的?为什么中子的寿命只有十几分钟,可是和质子结合在一起形成原子核以后就可以稳定了?为什么粒子的寿命相差几十个数量级?为什么物质的导电率相差几十个数量级?射电类星体到底是什么东西?1、高压物理实验:发现许多物质(包括单质、化合物)在超高压力作用下电阻要随之减小。
例如,中国科学院物理研究所鲍忠兴等人所做的非晶碳电阻的压力效应实验,在高压物理实验中对非晶碳样品进行了多次电阻随压力变化的实验测量,非晶碳样品在2GPa内电阻发生较大变化,在2GPa时,其电阻值减小72%;在2~4GPa以内,电阻值随压力增加继续减小,在4GPa时,电阻值减小83%;而在4GPa以后,电阻随压力增加变化很小。
旧量子论和旧量子力学是不能解释的。
【3】2.阿佛加德罗常数的测定:即阿佛加德罗常数定律:在相同的温度与压强下,相等容积所含任何气体的分子数(摩尔数)相等。
并且多次物理实验证明是正确的。
即在理想气体状下,任何气体的一摩尔体积内所含的分子数都等于6.022045×1023mol1 。
理想气体是对实际气体的简化,它要求分子间除碰撞外没有能量耦合,这使得系统的内能严格地等于各分子动能的总和。
当实际气体密度足够小时,它的行为接近理想气体,可以把压强趋于零的实际气体当作理想气体来处理。
【4】为什么不同元素气体分子的体积在压强趋于零时其体积趋于一个相等的常数?即为什么任何理想气体分子体积膨胀量相等,并且是一个常数?如何从本质上解释,需要理论突破。
4、物质的热膨胀、冷收缩的实质问题:传统理论认为,物体的状态方程,在压强不变条件下气体的体积随温度升高而增加;对于液体和固体,在平衡位置附近作热振动的粒子间的平均距离随温度而改变,温度越高,距离越大。
以上解释,只算得上是一种维象理论,尚未涉及热胀冷缩的本质。
这种理论无法回答,当物体(分子)热膨胀的时候,其原子的体积是收缩或是膨胀;当物体(分子)冷收缩的时候,也不能回答其原子的体积是膨胀或是收缩。