高速切削刀具优化应用
- 格式:pdf
- 大小:109.33 KB
- 文档页数:1
高速切削刀具在数控加工中的应用摘要:高速切削刀具在数控加工的过程中存在一定的技术优势,但是受技术和操作行为的影响仍然有着许多加工问题,必须要进行全面的可靠性分析,保证数控的模块化控制分析,实现数控加工技术的全面推广。
本文从制造业的发展现状出发,分析了高速切削刀具的优势所在,总结了高速切削刀具在数控加工中容易出现的问题,并提出了高速切削刀具在数控加工中的应用措施,为我国数控机械制造业提供了刀具应用的实效建议。
关键词:高速切削刀具数控应用21世纪机械制造业的竞争,其实质是数控技术的竞争,这种竞争是全方位的,我国的数控加工技术起步虽晚,但是其发展前景广阔。
数控加工不但可以满足模具高精度制造的要求和形状的复杂变化;还能进行高速切削,提高生产效率、提高产品的竞争力。
本文从制造业的发展现状出发,分析了高速切削刀具的优势所在,总结了高速切削刀具在数控加工中容易出现的问题,并提出了高速切削刀具在数控加工中的应用措施,为我国数控机械制造业提供了刀具应用的实效建议。
1 高速切削刀具的优势机械加工发展总趋势高效率、高精度、高柔性强化环境意识。
机械加工领域,切(磨)削加工应用最广泛加工方法。
高速切削切削加工发展方向,已成为切削加工主流。
随着技术的发展,对工程材料提出了愈来愈高的要求,各种高强度、高硬度、耐腐蚀和耐高温的工程材料愈来愈多地被采用。
高速切削除了要求刀具材料具备普通刀具材料的一些基本性能之外,还突出要求刀具材料具备高的耐热性、抗热冲击性、良好的高温力学性能及高的可靠性。
而更为理想的刀具优势则要考虑到不同刀具的不同加工优势1。
例如:硬质合金刀具具有良好的抗拉强度和断裂韧性,但由于较低的硬度和较差的高温稳定性,使其在高速硬切削中的应用受到一定限制。
而如果进行了细晶粒和超细晶粒产品优化后,就可以使得其打磨加工的情况更为理想,获得更好地产品加工应用能力。
2 高速切削刀具在数控加工中容易出现的问题高速的切削刀具在生产上有着极强的优势化表现,但是受数控技术和操作情况的影响,高速切削刀具仍然有着加工操作方面的问题。
高速切削技术研究第一部分高速切削技术的定义与特点 (2)第二部分高速切削刀具材料与磨损机理 (4)第三部分高速切削机床的选型与应用 (7)第四部分高速切削参数优化方法 (10)第五部分高速切削过程的热控制技术 (13)第六部分高速切削加工精度与表面质量 (15)第七部分高速切削在典型零件加工中的应用 (17)第八部分高速切削技术的发展趋势与挑战 (20)第一部分高速切削技术的定义与特点高速切削技术是一种先进的制造工艺,它通过使用高转速的刀具和优化的切削参数来提高材料去除率、加工精度和表面质量。
该技术的核心在于实现高效率、高质量和高精度的加工过程。
在高速切削过程中,刀具以极高的速度旋转(通常超过每分钟数千转),同时进给速度也相应提高。
这种高速旋转产生的离心力有助于减小切削力和切削热,从而延长刀具寿命并减少工件的热变形。
此外,由于切削力的降低,高速切削还可以减少振动,进一步提高加工精度。
高速切削技术的优势主要体现在以下几个方面:1.高效率:与传统切削相比,高速切削可以显著提高材料去除率,缩短加工时间。
研究表明,高速切削可以提高生产效率达 30%至50%。
2.高精度:高速切削过程中的低切削力可以减少工件的振动,从而提高加工精度。
此外,由于切削热的影响较小,工件的热变形也得到了控制。
3.高质量表面:高速切削产生的切削热较低,这有助于减少工件的烧伤和裂纹,从而获得更好的表面质量。
4.刀具寿命延长:高速切削可以降低切削力,减少刀具磨损,从而延长刀具的使用寿命。
5.节能减排:高速切削技术可以实现更高的材料去除率,从而减少能源消耗和碳排放。
然而,高速切削技术也存在一些挑战,如刀具成本较高、对机床性能要求较高等。
因此,在实际应用中,需要根据具体加工需求和技术条件,合理选择切削参数和刀具,以确保高速切削技术的有效性和经济性。
总之,高速切削技术作为一种先进的制造工艺,具有高效率、高精度、高质量表面等优势,但在实际应用中需充分考虑其成本和设备要求。
高速切削刀具在数控加工中的应用[摘要]:随着科学技术水平的不断提高,作为先进制造技术的重要组成部分高速切削技术在模具加工制造中已得到越来越广泛的应用。
本文结合高速切削技术的发展现状,阐述了高速切削技术的应用及其未来趋势。
[关键词]:高速切削刀具数控加工应用中图分类号:tg659文献标识码:tg文章编号:1009-914x(2013)01- 0239-01一、高速切削技术和高速切削刀具目前,切削加工仍是机械制造行业应用广泛的一种加工方法。
其中,集高效、高精度和低成本于一身的高速切削加工技术已经成为机械制造领域的新秀和主要加工手段。
“高速切削”的概念首先是由德国的c.s~omom博士提出的,并于1931年4月发表了著名的切削速度与切削温度的理论。
该理论的核心是:在常规的切削速度范围内,切削温度随着切削速度的增大而提高,当到达某一速度极限后,切削温度随着切削速度的提高反而降低。
此后,高速切削技术的发展经历了以下4个阶段:高速切削的设想与理论探索阶段(193l—l971年),高速切削的应用探索阶段(1972-1978年),高速切削实用阶段(1979--1984年),高速切削成熟阶段(20世纪90年代至今)。
高速切削加工与常规的切削加工相比具有以下优点:第一,生产效率提高3~1o倍。
第二,切削力降低30%以上,尤其是径向切削分力大幅度减少,特别有利于提高薄壁件、细长件等刚性差的零件的加工精度。
第三,切削热95%被切屑带走,特别适合加工容易热变形的零件。
第四,高速切削时,机床的激振频率远离工艺系统的固有频率,工作平稳,振动较小,适合加工精密零件。
高速切削刀具是实现高速加工技术的关键。
刀具技术是实现高速切削加工的关键技术之一,不合适的刀具会使复杂、昂贵的机床或加工系统形同虚设,完全不起作用。
由于高速切削的切削速度快,而高速加工线速度主要受刀具限制,因为在目前机床所能达到的高速范围内,速度越高,刀具的磨损越快。
高速切削的基本原理
高速切削是一种高效率、高精度的切削加工方法,其基本原理包括以下几点:
1. 切削速度:高速切削的切削速度远高于传统切削速度。
通过提高切削速度,可以减少切削时间,提高加工效率。
同时,高速切削还可以降低切削力和切削温度,减少刀具磨损和工件变形的风险。
2. 刀具材料和涂层:高速切削所使用的刀具材料和涂层也有所不同。
常见的高速切削刀具材料包括硬质合金、陶瓷和超硬材料等,这些材料具有高硬度、高韧性和高热稳定性,可以承受高温和高压的切削环境。
涂层技术可以进一步提高刀具的耐磨性和耐热性。
3. 切削参数优化:高速切削需要对切削参数进行精确的优化。
切削速度、进给速度、切削深度和切削角度等参数需要根据工件材料、刀具材料和切削机床的性能进行调整。
合理的切削参数设计可以提高切削效率和刀具寿命。
4. 切削冷却和润滑:高速切削对切削冷却和润滑要求较高。
采用高效的切削冷却系统可以迅速排除切削过程中产生的热量,降低刀具和工件的温度,减少刀具磨损和工件变形的风险。
同时,润滑剂的使用可以减少切削摩擦,提高表面质量和加工精度。
总之,高速切削通过提高切削速度、优化切削参数、使用高性能刀具材料和涂层,
以及有效的冷却和润滑措施,可以实现高效率、高精度的切削加工效果。
高速加工技术及应用高速加工技术是一种在短时间内迅速、高效地完成工件加工的技术。
它是现代制造业发展的重要一环,广泛应用于航空航天、汽车、船舶、电子、模具等领域。
高速加工技术的特点有以下几点:1.高速切削:高速加工技术采用高速旋转的切削工具,使得切削速度大大提高,一般可以达到切削速度的数倍甚至十数倍,从而大大缩短了加工时间。
2.小切削量:高速加工技术多采用微小切削量的方式进行切削,这样可以降低加工对机床、刀具和工件的热影响,提高加工精度。
3.高精度和高表面质量:高速加工技术能够实现很高的加工精度和表面质量,通常可以达到几个微米的加工精度和很低的表面粗糙度。
4.刀具寿命长:高速加工技术采用高硬度和高耐磨性的刀具材料,使得刀具使用寿命大大延长,降低了换刀频率和加工成本。
高速加工技术在以下方面有广泛的应用:1.航空航天领域:在航空航天领域,高速加工技术能够加工各种复杂曲面和薄壁结构件,如发动机叶片、航空航天零件等,提高了零件的精度和表面质量。
2.汽车领域:高速加工技术在汽车制造中主要用于零部件的加工,如发动机缸体、座椅滑块等,能够提高加工效率和产品质量。
3.船舶领域:高速加工技术在船舶制造中主要用于船体结构和轴承加工,如船体钢板切割、轴承的外圈和内圈加工等,提高了加工速度和质量。
4.电子领域:高速加工技术在电子领域主要用于半导体器件的切割和加工,如芯片切割、光纤连接器加工等,提高了加工精度和产品性能。
5.模具领域:高速加工技术在模具制造中主要用于模具的精细加工,如模具的深孔加工、细小结构的加工等,提高了模具的加工精度和寿命。
高速加工技术的发展对于提高制造业的竞争力和产品质量具有重要意义。
随着材料科学和机械加工技术的不断发展,高速加工技术将在更多领域得到应用,并不断推动制造业的发展。
高速切削技术在汽车制造中的应用高速切削技术因其加工效率、精度和质量高而广泛应用于汽车模具加工。
本文基于高速加工技术的特点和优势,以高速加工时切削速度与切削温度的变化为研究对象,分析了高速加工技术在汽车零件、覆盖件、缸体和汽车轮毂等模具制造中的应用。
标签:模具制造;高速加工;制造效率0 引言在现代工业制造中,模具制造已经成为汽车生产的一个重要方式,但由于模具内表面精度要求高,且制造周期较长,从而影响产品的开发,导致企业利润下降。
高速加工技术的出现,使汽车模具制造的工艺简化,生产周期缩短使企业能够快速适应多变的竞争环境,从而提升企业活力。
相对于传统机械加工方式高速加工技术是切削加工得到巨大提升,相同时间内金属的切削量比传统加工提升40%~50%,并且由于高速加工时主轴转速快使切屑带着大量热,能够使工件的热变形变小,提高产品质量[1]。
因此,高速加工技术是汽车模具制造中十分重要的生产方式。
1 高速加工技术的现状1.1 国外现状在二十世纪三十年代由德国科学家首先提出高速加工概念并进行实验研究,1970年,美国Lockheeed Missiles and Space公司将高速加工技术用于实际生产。
随后,各工业大国都加强对高速加工技术的研发,使得高速主轴、快速进给系统、超硬超耐磨材料和数控系统方面取得较大进展。
国外各大汽车公司现在普遍使用高速加工技术来制造汽车,以德国大众汽车为例,大众汽车的缸体,内饰模具以及中控台模具等大平面加工都使用到了高速加工技术,极大的提升了大众汽车的生产率和合格率,降低了成本,节约了能耗。
瑞士Miccoli公司研发的五轴联动高速加工中心,采用了重量高的大理石材料作为高速加工中心的机身,可以很大程度上降低生产时产生的振动,提高所加工零件的质量。
德国Siemens公司也研发出整体结构呈O型的5轴高速加工中心,使高速加工出的零件的质量进一步得到提升。
高速加工技术的应用,极大地促进了高速加工技术的发展,其中以美国Cincinnati Milacron所制造的Hyper Mach五轴加工中心为突出,其高速加工的主轴转速已经可以达到60000r/min,最大进给速度能达到100m/min,主轴的功率高达80kW。
降低刀具成本的改善案例降低刀具成本的改善案例:案例一:优化刀具材料和加工参数某机械加工企业发现,在加工过程中,刀具磨损速度快,更换频繁,导致成本增加。
为了降低成本,他们采取了以下措施:1. 选用更耐磨的刀具材料,如硬质合金或陶瓷材料,以提高刀具的使用寿命。
2. 通过实验,优化加工参数,如切削速度、进给速度和切削深度等,以减少刀具的磨损。
3. 采用切削液,以降低切削温度,延长刀具寿命。
通过这些措施,该企业成功地降低了刀具的更换频率,减少了成本。
案例二:标准化刀具和刀具管理系统某汽车制造企业发现,不同车间和生产线使用的刀具种类繁多,管理混乱,导致成本增加。
为了降低成本,他们采取了以下措施:1. 推行标准化刀具,减少刀具种类,提高刀具的互换性。
2. 建立刀具管理系统,对刀具的采购、库存、发放和使用进行全面管理。
3. 制定刀具保养和维修计划,及时处理损坏和磨损的刀具。
通过这些措施,该企业提高了刀具的管理效率,减少了浪费和成本。
案例三:采用智能刀具和传感器技术某航空制造企业发现,在加工高精度零件时,传统刀具难以满足精度要求,导致成本增加。
为了降低成本,他们采取了以下措施:1. 采用智能刀具,集成传感器和执行器,实时监测切削过程中的振动、温度和切削力等参数。
2. 通过传感器技术,实时监测刀具的磨损状态和破损情况,及时预警和更换。
3. 利用智能刀具和传感器技术,优化切削参数和加工过程,提高加工精度和效率。
通过这些措施,该企业提高了加工精度和效率,减少了报废和返工,降低了成本。
以上是三个降低刀具成本的改善案例。
通过优化刀具材料和加工参数、标准化刀具和刀具管理系统、采用智能刀具和传感器技术等措施,企业可以提高刀具的使用寿命、管理效率和加工精度,从而降低成本。
智能化加工中高速切削技术的研究随着智能化加工技术的不断发展,高速切削技术的研究和应用也成为了当前制造业领域的热点之一。
高速切削技术,是指在高转速和高进给率的条件下进行切削加工的技术。
这种方法不仅可以提高生产效率,降低生产成本,还可以大大提高加工质量和工件精度。
下面将分别从高速切削技术的优势、研究现状和发展趋势三个方面来谈一下高速切削技术在智能化加工中的应用。
一、高速切削技术的优势1. 提高生产效率高速切削技术可以大大提高生产效率。
由于高速切削的进给率更高,每分钟加工量也随之提高,因此可以在保证加工质量的情况下大幅缩短加工时间。
另外,由于高速切削能够更好地控制温度,这种方法也可以有效地避免加工过程中因温度过高而导致的加工时间延长。
2. 提高加工精度高速切削技术在保证生产效率的同时还可以提高加工精度。
由于高速切削技术具有更高的进给率和更快的切削速度,因此可以使加工后的工件表面更加光滑,同时还可以提高切削刀具的寿命和稳定性。
这也是为什么在半导体、电子、航空航天等行业中普遍采用高速切削技术的原因。
3. 降低生产成本高速切削技术可以降低生产成本。
由于高速切削技术可以更快地完成加工过程,因此可以大幅缩短加工时间,从而降低加工成本。
另外,由于高速切削技术可以提高加工精度,因此可以减少加工中因误差造成的废品率,进一步降低生产成本。
二、高速切削技术的研究现状在高速切削技术的研究方面,国内外学者们进行了大量的工作。
目前主要研究方向包括切削力、加工表面质量、切削温度、刀具磨损等多个方面。
其中,切削力与加工表面质量是当前主要研究方向。
1. 切削力切削力是高速切削过程中的重要参数之一。
国内外学者们通过理论计算、仿真模拟、实验验证等多种方法来研究高速切削过程中的切削力变化规律和影响因素,为高速切削过程的稳定性和加工效果的提升提供了有力的支持。
2. 加工表面质量加工表面质量是衡量高速切削技术优劣的关键指标之一。
国内外学者们通过改进刀具结构、刀具材料和切削参数等多种措施来提高高速切削加工表面质量,研究表明在高速切削过程中使用更硬的刀具材料和更合理的切削参数可以有效地提升加工表面质量。
超高速切削的发展现状超高速切削是一种先进的切削加工技术,采用高速转速和小切削深度进行切削,能够有效提高切削效率和加工精度。
本文将对超高速切削的发展现状进行详细介绍。
超高速切削技术的发展可以追溯到20世纪60年代,当时由于切削过程容易产生几何形状的误差和表面质量问题,因此一直未能得到广泛应用。
随着计算机数控技术和精密制造技术的快速发展,超高速切削技术在上世纪80年代出现了突破性的进展。
发展初期,超高速切削主要用于加工金属材料,如铝合金、镁合金等,通过提高切削速度和减小切削深度,大大提高了切削效率和表面质量。
随着材料科学和刀具制造技术的进步,超高速切削技术逐渐应用到切削硬度较高的材料,如钢、铁等。
近年来,随着新材料和复杂工件的出现,超高速切削技术迎来了新的发展机遇。
首先是新材料的应用,如高性能陶瓷、纳米材料等,这些材料具有高硬度和高韧性,传统切削技术难以满足对其加工精度和表面质量的要求,而超高速切削技术能够有效解决这一问题。
其次是复杂工件的加工,如汽车发动机缸体、飞机发动机叶片等,这些工件形状复杂,表面精度要求高,传统加工方法效率低、成本高,而超高速切削技术具有快速、高效的优势。
随着超高速切削技术的不断发展,相关设备和工具也在不断更新迭代。
首先是刀具材料的优化,采用纳米材料、复合材料等先进材料制造刀具,能够提高切削效率和切削质量。
其次是机床的改进,采用高刚性、高速度的数控机床,能够满足高速切削的要求。
同时,先进的控制系统和传感器技术的应用,能够实时监测切削过程中的温度、压力等参数,保证整个加工过程的稳定性和安全性。
超高速切削技术的发展带来了巨大的经济效益和社会效益。
首先是加工效率的提高,相比传统切削技术,超高速切削能够大幅度提高切削速度和加工效率,节约了生产时间和成本。
其次是加工精度和表面质量的提升,超高速切削能够实现微米级的精度和纳米级的表面粗糙度,满足了高精度工件的需求。
此外,超高速切削技术还可以减少切削力和切削温度,降低刀具磨损和能量消耗,从而延长刀具寿命,减少了对自然资源的消耗,对环境保护具有积极意义。
高速高效切削加工技术的现状及发展趋势一、前言目前,我国已成为世界飞机零部件的重要转包生产国,波音、麦道、空客等世界著名飞机制造公司都在我国转包生产从尾翼、机身、舱门到发动机等各种零部件,这些飞机零部件的加工生产必须采用先进的加工装备和加工工艺。
为此,国内各飞机制造公司均进行了大规模的技术改造,引进了大量国外先进的加工装备,使我国的飞机制造业设备的数控化率越来越高。
与此同时,大量高速、高效、柔性、复合、环保的国外切削加工新技术不断涌现,使切削加工技术发生了根本的变化。
刀具在航空航天加工领域的应用技术进入了以发展高速切削、开发新的切削工艺和加工方法、提供成套技术为特征的新阶段。
与此形成鲜明对比的是,我国的装备制造业和以制造业为主要服务对象的传统的工具工业却无法满足航空航天工业对现代制造装备和先进加工工艺的要求。
下面结合我国航空航天工业加工技术的现状及发展趋势,着重介绍我国高效、高速切削刀具的生产应用情况,对我国工具工业的发展现状和存在的问题提出自己的看法。
二、航空航天工业加工技术的现状及发展趋势1.航空结构件材料的发展趋势及其特点①以整体件为代表的铝合金结构件为了提高零件的可靠性、降低成本和减轻重量,传统的铆接结构逐步被整体薄壁的机加工结构件所代替。
这类零件由于大部分是用整体实心铝合金材料制成的薄壁、细筋结构件,70%~95%的材料要在加工中去除掉,而高速切削产生的热量少、切削力小、零件变形小,因此提高生产效率的唯一途径是采用四轴或五轴联动机床进行高速铣削加工。
②以钛基和镍基合金零件为代表的难切削材料零件由于钛(镍)合金具有比强度高、热强度好、化学活性大等特点,目前飞机发动机重要部件采用钛基和镍基合金材料的逐渐增多。
采用高速切削后,其切削速度可提高到100m/min以上,为常规切削速度的10倍。
这类材料的加工特点是:切削力大、切削温度高、加工硬化和粘刀现象严重、刀具易磨损。
③以碳纤维复合材料零件为代表的复合材料结构件复合材料现已成为新一代飞机机体结构主要材料之一,如飞机上的大型整体成形的翼面壁板、带纵墙的整体下翼面等。
数控机床刀具的高速切削原理数控机床刀具的高速切削技术是现代制造业中一种重要的加工方法,其应用广泛,能够大幅度提高生产效率和加工质量。
高速切削技术的核心就是对刀具的设计和切削原理进行优化,使得切削过程更加高效和精确。
本文将介绍数控机床刀具的高速切削原理,并分析其在现代制造业中的应用。
一、刀具的结构与选择在数控机床的高速切削加工过程中,刀具的结构和选择起到至关重要的作用。
首先,刀具的材料要具备一定的硬度和耐磨性,以保证在高速切削中不会产生较大的磨损和变形。
常见的高速切削刀具材料包括硬质合金、陶瓷和涂层刀具等。
其次,刀具的结构设计要合理,包括刀柄、刀片和刀具的固定方式等。
合理的刀具结构可以提高切削刚度和切削稳定性,降低切削振动和刀具损伤的风险。
二、切削速度的选择高速切削的关键在于选择合适的切削速度。
切削速度是指切削工具与被切削材料之间的相对运动速度。
在选择切削速度时,需要综合考虑被切削材料的性质、刀具材料的耐磨性以及机床主轴的转速等因素。
通常情况下,高切削速度可以提高生产效率,但也会增加刀具磨损和发热的风险。
因此,切削速度的选择需要根据具体情况进行权衡。
三、切削力的控制高速切削过程中,切削力的控制是一个重要的问题。
过大的切削力会加剧刀具磨损和变形的风险,同时也会增加机床的负荷。
为了控制切削力,可以采取以下措施:优化刀具的几何形状,使其具备较大的切削刚度;合理选择切削进给量和切削深度;采用合适的冷却液,降低切削温度等。
通过综合运用这些方法,可以有效地控制切削力,提高切削过程的稳定性和可靠性。
四、切削润滑与冷却在高速切削加工中,切削润滑和冷却也是至关重要的。
适当的切削润滑可以减少切削热量,提高切削表面质量,并延长刀具的使用寿命。
常用的切削润滑方式包括干切和湿切两种,选择合适的润滑方式需要根据具体加工材料的情况进行判断。
此外,切削冷却也可以有效地降低切削温度,减少刀具的热变形和热裂纹的风险。
切削冷却可以通过在切削过程中喷洒冷却液或者使用高速切削专用冷却器等方式来实现。