趣味数学中七桥问题与一笔画
- 格式:doc
- 大小:140.50 KB
- 文档页数:6
七桥问题与一笔画的通解(论文拟稿)在柯尼斯堡的一个公园里,有七座桥将一条河上的两座岛和两岸相连接。
当时有人提出了这么一个问题:如何一次性不重复不遗漏走完七座桥。
后来,数学家欧拉将它变成了一个一笔画问题(如图)。
从欧拉的简化图来看,似乎我们无论如何,也不能一笔画完图形。
但是,这是为什么呢?在这个图中,有ABCD 4个点,有五条线汇聚到A点,三条线汇聚到B,C,D 点,我们可以把这种有奇数条线(3条及以上)汇聚的点称为奇点,作为对应,把有偶数条线(4条及以上)汇聚的点称为偶点。
那么,我们不难发现,在任意封闭图形中,奇点的个数一定是偶数。
因为一条线定连接两个点(或重合),若存在奇数个奇点,则此图形定不符合封闭图形定义。
从一个奇点来看,若要一笔画成,则此奇点定是起笔点或停笔点。
起笔点,停笔点只有两个,所以说,奇点为两个或没有奇点的封闭图形可以一笔画。
回来看七桥问题,图中有四个奇点,以任意两个作为起笔点和落笔点,则还有两个奇点无法连接。
故七桥问题无解。
从上面总结出以下结论:■⒈凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点为终点。
■⒊其他情况的图都不能一笔画出。
(奇点数除以二便可算出此图需几笔画成。
)我们可以把得到的结论推广到所有一笔画解法存在问题,如汉字“田”,我们观察到,它有四个奇点,故不可以一笔画。
而汉字“日”,只有两个奇点,则可以一笔画。
早在1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,就阐述了这种方法,也为后来的数学新分支--拓扑学的建立奠定了基础。
从这里我们可以看出,伟大的创造一开始可能并不像我们想象的那么高深莫测,仔细观察生活,我们也会有了不起的发现。
小升初数学专项题第七讲一笔画与七桥问题_通用版第七讲一笔画与七桥问题【知识梳理】1.一笔画是指能够一笔画成的图形。
2.把和一条、三条、五条等奇数条线相连的点叫做奇点,把和两条、四条、六条等偶数条线相连的点叫做偶点,这样图形中要么是奇点,要么是偶点。
3.有2个奇点或0个奇点(全部是偶点)连通图能够一笔画成,否则不能一笔画成。
4.七桥问题可以转化成一笔画问题解决。
【典例精讲1】一笔画就是笔不离纸,笔画不重复,一笔画出一个图形.你能用一笔画出下列图形吗?思路分析:能够一笔画成的图形,首先必须要相连,结果不相连就一定不能一笔画成,能否一笔画成,关键在于判别奇点、偶点的个数:只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画。
解答:观察图形可知(1)第一个图形全是偶点,所以能一笔画出;(2)第二个图形是2个奇点,剩下的都是偶点,所以能一笔画出。
小结:解决这类问题首先要看是不是连通图,其次看奇点或偶点的个数,由偶点组成的,或只有两个奇点的连通图才能一笔画成。
【举一反三】1、下面这些图形,哪个能一笔画?哪个不能一笔画?2.“九点连线”是一道著名的数学题,你能用一笔画4条连续的直线段,把图中所有的9个点都连起来吗?请你在下图画出来。
【典例精讲2】在一个城市中有七座桥和四个区域:能不能一次走遍所有的七座桥,而每座桥只准经过一次?思路分析:用“1、2、3、4、5、6、7”表示七座桥,它们连接着A、B、C、D 四个区域(如图所示),这样一来,七座桥的问题,就转变为一个一笔画问题,即能不能一笔从头到尾不重复地画出这个图形.解答:图中有4个奇点和一个偶点,奇点个数不是2个,因为C、D、E都是奇数点。
【答案】::(1)不能不重复地走一次穿过每扇门。
(2)当关闭C和D之间的门;或关闭D和E之间的门;或关闭E通向过道的门时,可一次通过.(用A、B、C、D、E五个点表示五个房间,F点表示过道,用线把两个点连起来,于是走的路线就简化成一笔画问题。
一笔画问题
1.瑞士大数学家欧拉在七桥问题的过程中,发现了一笔画原理,这一原理被命名为“欧拉定理”:
(1)能一笔画的图形必须是连通的。
(2)凡是只由偶顶点组成的连通图形,一定可以一笔画出,画时可以由任一偶顶点为起点,最后仍回到这点。
(3)凡是只有两个奇顶点的连通图形一定可以一笔画出,画时必须以一个奇顶点为起点,以另一个奇顶点为终点。
(4)奇顶点个数超过两个的图形不能一笔画出。
2.能一笔画出的图形的奇顶点数目是2或0,如果图形有奇顶点2N(n为正整数)个,那么图形最少要用N笔画出。
七桥问题与一笔画
教学目标:
1、让学生体会用数学知识解决问题的方法。
2、通过其中抽象出点、线的过程,使学生对点、线有进一步的认识。
3、通过“一笔画”问题及其结论的了解,扩大学生知识视野,激发学生学习兴趣。
重点:运用“一笔画”的规律,快速正确地解决问题。
难点:探究“一笔画”的规律。
教学过程:
教学过程
一、展示问题引入新课
18世纪时风景秀丽的小城哥尼斯堡中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥(如图),当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有七座桥,再回到出发点?
这就是数学史上著名的七桥问题,你愿意试一试吗?
二、分析:数学家欧拉知道了七桥问题他用四个点A、B、C、D 分别表示小岛和岸,用七条线段表示七座桥(如图)于是问题就成为如何“一笔画”出图中的图形?
问题的答案如何呢?让我们先来了解三个新概念。
①有奇数条边相连的点叫奇点。
如:
● ●
●
②有偶数条边相连的点叫偶点。
如:
● ●
③一笔画指:1、下笔后笔尖不能离开纸。
2、每条线都只能画一次而不能重复。
三、活动探究
下列图形中。
请找出每个图的奇点个数,偶点个数。
试一试哪些
可以一笔画出,请填表,从中你能发现什么规律?
● 点A 、B 表示岛
点C 。
D 表示岸 ▎线表示桥
A
B
C ⑵ (3)
(1)
规律:①可以一笔画成的图形,与偶点个数无关,与奇点个数有关.其个数是0或2.②其中若奇点个数为0,可选任一个点做起点,且一笔画后可以回到出发点。
若奇点个数为2,可选其中一个奇点做起点,而终点一定是另一个奇点,即一笔画后不可以回到出发点。
用你发现的规律,说一说七桥问题的答案?
四、知识的拓宽与深化
在七桥问题中,如果允许再架一座桥,能否不重复地一次走遍这八座桥?这座桥应架在哪里?请你试一试!
五、课堂练习
1、一辆洒水车要给某城市的街道洒水,街道地图如下:你能否设计一条洒水车洒水的路线,使洒水车不重复地走过所有的街道,再回到出发点?
2、下图是一个公园的平面图,能不能
使游人走遍每一条路不重复?入口和出口
又应设在哪儿?
3、甲乙两个邮递员去送信,两人同时出发以同样的速度走遍所有的街道,甲从A 点出发,乙从B 点出发,最后都回到邮局(C 点)。
如果要选择最短的线路,谁先回到邮局?
六、小结:
师生共同完成,主要围绕以下两方面: ① 在探究七桥问题中,我们运用了哪些数学思想和方法去研究问题?谈谈你活动后的感受。
② 在探究过程中,你遇到了哪些困惑,是如何解决的?还有哪些问题没有解决?
七.课后作业
请你观察生活,设计一个运用“一笔画”的数学知识来解决的实际问题。
并与同伴交流。
C。