统计与概率考点专题
- 格式:docx
- 大小:203.03 KB
- 文档页数:17
统计与概率经典例题(含答案及解析)1.(本题8 分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:⑴表中 a 和 b 所表示的数分别为:a= .,b=.;⑵请在图中补全频数分布直方图;2000 名九年级考生数学⑶如果把成绩在70 分以上(含70 分)定为合格,那么该学区成绩为合格的学生约有多少名?2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇 1﹣ 5 月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:( 1)某镇今年1﹣5 月新注册小型企业一共有家.请将折线统计图补充完整;( 2)该镇今年 3 月新注册的小型企业中,只有 2 家是餐饮企业,现从 3 月新注册的小型企业中随机抽取 2 家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.3.( 12 分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有 10 个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题 10 分)某校为了解2014 年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40 名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)12880m48( 1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角 a 的度数;(2)该校 2014 年八年级有 500 名学生,请你估计该年级学生共借阅教辅类书籍约多少本?5.( 10 分)将如图所示的版面数字分别是1, 2,3, 4 的四张扑克牌背面朝上,洗匀后放在桌面上(“ A”看做是“ 1”)。
【选择题】必考重点08 统计与概率统计与概率主要包括三部分内容:数据的收集与整理、数据分析和概率。
统计与概率是历年江苏省各地市中考的必考点,选择、填空以及解答均有考查。
其中在数据的收集与整理方面,主要考查全面调查与抽样调查的判断,总体、个体、样本、样本容量的概念,各类统计图表的判读,考查难度较低考生只要掌握基本的概念即可;在数据的分析方面,考点主要为平均数、中位数、众数的概念和计算、极差、方差、标准差的计算,以及数据稳定性和波动性的判断,考查难度较低。
概率方面,在选择题的考查一般为基本概念、事件发生的可能性大小、几何概率等。
【2022·江苏徐州·中考母题】我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率—人口死亡率,下列判断错误的是()A.与2012年相比,2021年的人口出生率下降了近一半B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降【考点分析】本题考查了折线统计图,从统计图获取信息是解题的关键.【思路分析】根据折线统计图逐项分析判断即可求解.【2022·江苏徐州·中考母题】将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .14B .13C .12D 【考点分析】本题主要考查几何概率,根据正六边形的性质得到图中每个小三角形的面积都相等是解题的关键.【思路分析】如图,将阴影部分分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【2022·江苏常州·中考母题】某汽车评测机构对市面上多款新能源汽车的0~100/h km 的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100/h km 的加速时间的中位数是s m ,满电续航里程的中位数是nkm ,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在( )A .区域①、②B .区域①、③C .区域①、④D .区域③、④【考点分析】本题考查了中位数的概念,根据中位数的值不变可知新添加的一组数据分别处在中位数的左右两侧或刚好都等于该中位数,理解这一点是解答本题的关键. 【思路分析】根据中位数的性质即可作答.【2022·江苏镇江·中考母题】第1组数据为:0、0、0、1、1、1,第2组数据为:00,0,,0m 个、11,1,,1n 个,其中m 、n 是正整数.下列结论:①当m n =时,两组数据的平均数相等;②当m n >时,第1组数据的平均数小于第2组数据的平均数;③当m n <时,第1组数据的中位数小于第2组数据的中位数;④当m n =时,第2组数据的方差小于第1组数据的方差.其中正确的是( ) A .①②B .①③C .①④D .③④【考点分析】此题考查了平均数、中位数、方差的求法,熟练掌握求解方法是解题的关键. 【思路分析】根据平均数、中位数、方差的求法分别求解后即可进行判断.1.(2022·江苏苏州·二模)如图,若随机向88⨯正方形网格内投针,则针尖落在阴影部分的概率为( )A .12B .58C .9π64D .25642.(2022·江苏·靖江市教师发展中心二模)甲、乙两个学校统计男女生人数,分别绘制了扇形统计图(如图),下列说法正确的是( )A .甲校的男生人数比乙校的男生人数多B .甲、乙两个学校的人数一样多C .乙校的女生人数比甲校的女生人数多D .甲校的男女生人数一样多3.(2022·江苏徐州·模拟预测)抗击新冠肺炎疫情期间,为了避免人员大量聚集,某公司复工后采取分时段上、下班方式,以错开高峰.小刘为了解本公司员工上下班情况,将考勤表中某天的相关数据制成条形统计图,已知该公司员工上下班各时段分别为:(8:0016:30)A -,(8:3017:00)B -,(9:0017:30)C -,(9:3018:00)D -,由图可知,下列说法错误的是( )A .统计图反映了该公司员工上下班各时段内的人数情况B .该公司共有870人C .该公司员工上下班在时段C 内的人数占总人数的30%D .该公司员工上下班在时段B 内的人数比时段A 内的人数多1倍 4.(2022·江苏泰州·一模)下列说法正确的是( ) A .“清明时节雨纷纷”是必然事件B .为了解某灯管的使用寿命,可以采用普查的方式进行C .两组身高数据的方差分别是2S =甲0.01,2S =乙0.02,那么乙组的身高比较整齐 D .一组数据3,5,4,5,6,7的众数、中位数和平均数都是5 5.(2022·江苏盐城·一模)下列说法错误的是( ) A .为了统计实验中学的学生人数,应采用抽样调查B .从一个只装有黄球和白球的不透明的袋子中,“摸出红球”是不可能事件C .想要了解盐城地区2021年第一季度的气温变化趋势,应选择折线统计图D .甲乙两组数据,若20.2S =甲,20.23S =乙,则甲组数据更为稳定6.(2022·江苏徐州·一模)下图是第七次全国人口普查的部分结果.下列判断正确的是( )A.江苏0-14岁人口比重高于全国B.徐州15-59岁人口比重高于江苏C.江苏60岁以上人口比重低于徐州D.徐州15岁以上人口比重低于江苏7.(2022·江苏苏州·模拟预测)有一个摊位游戏,先旋转一个转盘的指针,如果指针箭头停在奇数的位置,玩的人可以从袋子里抽出一个弹珠,当摸到黑色的弹珠就能得到奖品,转盘和弹珠如下图所示,小明玩了一次这个游戏,则小明得奖的可能性为()A.不可能B.不太可能C.非常有可能D.一定可以8.(2022·江苏徐州·模拟预测)九年级一班数学老师对全班学生在模拟考试中A卷成绩进行统计后,制成如下的统计表:则该班学生A卷成绩的众数和中位数分别是()A.82分,82分B.82分,83分C.80分,82分D.82分,84分9.(2022·江苏无锡·一模)下列说法正确的是()A.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是必然事件B.某市天气预报明天的降水概率为90%,则“明天下雨”是确定事件C.小丽买一张体育彩票中“一等奖”是随机事件D.若a是实数,则“|a|≥0”是不可能事件10.(2022·江苏·苏州市振华中学校模拟预测)一组不完全相同的数据a1,a2,a3,…,an的平均数为m,把m加入这组数据,得到一组新的数据a1,a2,a3,…,an,m,把新、旧数据的平均数、中位数,众数、方差这四个统计量分别进行比较,一定发生变化的统计量的个数是()A.1B.2C.3D.411.(2022·江苏徐州·二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是160B.众数是165C.中位数是167.5D.方差是2 12.(2022·江苏连云港·二模)某校九年级学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()A.这组数据的中位数是7.4B.这组数据的众数是7.5C.这组数据的平均数是7.3D.这组数据极差的是0.513.(2022·江苏·兴化市教师发展中心一模)如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是()A.18B.14C.13D.1214.(2022·江苏徐州·一模)五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),下列结论错误的是()A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D .样本中选择公共交通出行的有2400人15.(2022·江苏南京·模拟预测)某餐厅规定等位时间达到30分钟(包括30分钟)可享受优惠.现统计了某时段顾客的等位时间t (分钟),数据分成6组:1015t ≤<,1520t ≤<,2025t ≤<,2530t ≤<,3035t ≤<,如图是根据数据绘制的统计图.下列说法正确的是( )A .此时段有1桌顾客等位时间是40分钟B .此时段平均等位时间小于20分钟C .此时段等位时间的中位数可能是27D .此时段有6桌顾客可享受优惠16.(2022·江苏·江阴市祝塘第二中学一模)一组数据:3,4,4,4,5.若拿掉一个数据4,则发生变化的统计量是( )A.极差B.方差C.中位数D.众数17.(2022·江苏·苏州市第十六中学一模)学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60B.9.60,9.60C.9.60,9.70D.9.65,9.6018.(2022·江苏扬州·一模)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①19.(2022·江苏·扬州中学教育集团树人学校一模)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁20.(2022·江苏泰州·一模)如图是小刚进入中考复习阶段以来参加的10次物理水平测试成绩(满分70分)的统计图,那么关于这10次测试成绩,下列说法错误的是()A.中位数是55B.众数是60C.方差是26D.平均数是5421.(2022·江苏扬州·一模)某学校足球队23人年龄情况如下表:则下列结论正确的是()A.极差为3B.众数为15C.中位数为14D.平均数为1422.(2022·江苏苏州·二模)为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生23.(2022·江苏·靖江外国语学校一模)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月24.(2022·江苏·扬州中学教育集团树人学校一模)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.23B.16C.13D.1225.(2022·江苏·无锡市天一实验学校三模)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15【选择题】必考重点08 统计与概率统计与概率主要包括三部分内容:数据的收集与整理、数据分析和概率。
2021中考考点必杀500题专练10(统计与概率大题)(30道)1.在中考理化实验操作中,初三某班除两名同学因故外全部参加考试,考试结束后,把得到的成绩(均为整数分,满分10分)进行统计并制成如图1所示的条形统计图和如图2所示的扇形统计图(不完整).(1)m ;(2)若从这些同学中,随机抽取一名整理一下实验器材,求恰好抽到成绩不小于8分同学的概率;(3)若两名同学经过补测,把得到的成绩与原来成绩合并后,发现成绩的中位数发生改变,求这两名同学的成绩和.2.阳光中学为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人周的零花钱数额,并绘制了如下两幅不完整的统计图.请根据以上信息,解答下列问题:(1)随机调查的学生人数是__________,并补全条形统计图;(2)求被调查的学生每人一周零花钱数额的中位数及众数;(3)为捐助贫困山区儿童学习,全校800名学生每人自发地捐出一周的零花钱,请估计全校学生共捐款钱数.3.“垃圾分类,从我做起”,为改善群众生活环境,促进资源循环,提升全民文明素养,垃圾分类已经在全国各地开展.垃圾一般可分为可回收物、厨余垃圾、有害垃圾、其它垃圾四类,我们把以上对应类别的垃圾桶分别依次记为A,B,C,D.甲拿了一袋有害垃圾,乙拿了一袋厨余垃圾,随机扔进并排的4个垃圾桶A,B,C,D.(1)直接写出甲扔对垃圾的概率;(2)请用列表法或画树状图的方法,求出甲、乙两人同时扔对垃圾的概率.4.为了解某校九年级学生的理化实验操作情况,随机抽查40名同学实验操作的得分(满分为10分).根据获取的样本数据,制作了如图的条形统计图和扇形统计图,请根据相关信息解答下列问题.(1)①中的描述应为“6分”,其中m的值为________;扇形①的圆心角的大小是________;(2)这40个样本数据平均数是________,众数是________,中位数是________;(3)若该校九年级共有1280名学生,估计该校理化实验操作得满分的学生有多少人.5.为了解学生掌握垃圾分类知识的情况,我学校举行有关垃圾分类的知识测试活动,现从七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为;7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图所示:七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:请你根据以上提供信息,解答下列问题:(1)上表中a=______,b=______,c=_______;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)我校七、八年级共1100名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?6.九(1)班针对“你最向往的研学目标”的问题对全班学生进行了调查(共提供A、B、C、D四个研学目标,每名学生从中分别选一个目标),并根据调查结果列出统计表绘制扇形统计图.男、女生最向往的研学目标人数统计表根据以上信息解决下列问题:(1)m=;n=;(2)扇形统计图中A所对应扇形的圆心角度数为;(3)从最向往的研学目标为C的4名学生中随机选取2名学生参加竞标演说,求所选取的2名学生中恰好有一名男生、一名女生的概率.7.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有人,在线答疑所在扇形的圆心角度数是;(2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.8.劳动教育是新时代对教育的新要求,是中国特色社会主义教育制度的重要内容,是全面发展教育体系的重要内容,是大、中、小学必须开展的教育活动.某中学为落实劳动教育,组织八年级学生进行了劳动知识技能竞赛,现随机抽取了部分同学的成绩(百分制),制成如图所示的不完整的统计图表:表一表二根据以上信息回答下列问题.(1)若抽取的学生成绩处在8090x ≤<这一组的数据如下:88;87;81;80;82;88;84;86,根据以上数据填空:a =__________;b =________.(2)在扇形统计图中,表示问卷成绩在90100x ≤≤这一组的扇形圆心角度数为__________.(3)已知该校八年级共有学生500名,若将成绩不少于80分的学生称为“劳动达人”,请你估计该校八年级一共有多少名学生是“劳动达人”.9.某校在第五届全国学生“学宪法 讲宪法”活动中举办了宪法知识竞赛,并从中选取了部分学生的竞赛成绩进行统计(满分100分,成绩均不低于50分),绘制了如下尚不完整的统计图表. 调查结果频数分布表请根据以上信息,回答下列问题:(1)填空:m = ,n = ,本次抽取了 名学生; (2)请补全频数分布直方图;(3)若甲同学的竞赛成绩是所有竞赛成绩的中位数,据此推测他的成绩落在 分数段内;(4)竞赛成绩不低于90分的4名同学中正好有2名男生和2名女生,现准备从中随机选出2名同学参加市里面“学宪法 讲完法”演讲比赛,求正好抽到一男一女的概率.10.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)请你用频数分布直方图.......计算这50个家庭去年的月均用水量的平均数和中位数(各组的实际数据用该组的组中值表示);若该小区有2000个家庭,请你用频数分布直方图.......得到的数据估计该小区月均用水总量;(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量标准应该定为多少?为什么?11.某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育缀炼,每位同学从长跑.签球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为__________;(2)选择长跑训练的人数占全班人数的百分比是__________,该班共有同学___________人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数.12.某校为了激发青少年锻炼身体的意识,举办了1分钟跳绳比赛.下列是七年级参赛学生的成绩,绘制成如下的频数分布表与频数分布直方图:请你根据图表提供的信息,解答下列问题(1)直接写出m,n,a,b的值,并补全频数分布直方图;(2)如果130分(含130分)以上为优秀等级,那么这次七年级参赛学生的优秀率是多少?(3)比赛成绩前四名是1名男生和3名女生,若从他们中任选2人参加联校跳绳比赛,试求恰好选中性别不同的概率.13.为了掌握我市中考模拟数学考试卷的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为150分)分为5组(从左到右的顺序).统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级______名学生,并将频数分布直方图补充完整;(2)该年级1500名考生中,考试成绩120分以上(含120分)学生有______名;(3)如果第一组(75~90)中只有一名是女生,第五组(135~150)中只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想.请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.14.为了了解学生掌握垃圾分类知识的情况,增强学生环保意识.某校举行了“垃圾分类,人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为及格)进行整理、描述和分析,下面给出了部分信息:七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:根据以上信息,解答下列问题:(1)在上述表格中:a=,b=,c=;(2)根据上述数据,你认为该校七、八年级中哪个年级的学生掌握垃圾分类知识的情况较好?请说明理由(写出一条理由即可);(3)该校德育处从八年级测试成绩前四名甲、乙、丙、丁学生中,随机抽取2名学生参加全市现场垃圾分类知识竞赛,请用列表法或画树状图法求出必有甲同学参加比赛的概率.15.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A,B,C,D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=_______,n=______;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.16.2020年3月,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称中央《意见》),就加强大中小学劳动教育进行了系统设计和全面部署.2020年11月,中共云南省委、云南省人民政府全面对照落实中央《意见》精神,结合云南实际,印发了《关于全面加强新时代大中小学劳动教育的实施意见》(以下简称《实施意见》),《实施意见》要求各地各校组织学生广泛开展劳动教育实践活动.昆明甲、乙两校想从下面四个劳动实践基地中任选一个,地点如下:A:澄江抚仙湖仙湖农场劳动实践教育基地;B:富民半山耕云劳动实践教育基地;C:石林杏林大观园中医药文化研学实践教育基地;D:石林锦苑花卉鲜花种植劳动实践教育基地.(1)求甲校选择到澄江抚仙湖仙湖农场劳动实践教育基地的概率;(2)甲、乙两校决定通过抽签的方式确定本次开展劳动教育实践活动的目的地,请你用树状图或列表的方法求出两所学校到同一地点开展劳动教育实践活动的概率.17.《生物多样性公约》第十五次缔约方大会(COP15)重新确定于2021年5月17日至30日在云南省昆明市举办.“生物多样性”的目标、方法和全球通力合作,将成为国际范围的热点关注内容.为广泛宣传云南生物多样性,某校组织七、八年级各200名学生对《云南的生物多样性》白皮书相关知识进行学习并组织定时测试.现分别在七、八两个年级中各随机抽取了10名学生,统计这部分学生的竞赛成绩,相关数据统计、整理如下:(收集数据)七年级10名同学测试成绩统计如下:72,84,72,91,79,69,78,85,75,95八年级10名同学测试成绩统计如下:85,72,92,84,80,74,75,80,76,82(整理数据)两组数据各分数段,如下表所示:(分析数据)两组数据的平均数、中位数、众数、方差如下表:(问题解决)根据以上信息,解答下列问题:(1)填空:a =________,b =________,c =________; (2)计算八年级同学测试成绩的方差是:()()()()()()()()(2222222221=80858072809280848080807480758080810S ⎡⨯-+-+-+-+-+-+-+-+⎣八年级请你求出七年级同学成绩的方差,试估计哪个年级的竞赛成绩更整齐?(3)按照比赛规定90分及其以上算优秀,请估计这两个年级竞赛成绩达到优秀学生的人数共有多少人? (4)根据以上数据,你认为该校七、八年级中哪个年级学生知识竞赛成绩更好?请说明理由(写出一条理由即可).18.从2020年安徽省体育中考方案了解到男生1500米是必测项目,为了解某校九年级男生1500米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a = ,b = ;(2)扇形统计图中表示C 等次的扇形所对的圆心角的度数为 度;(3)学校决定从A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1500米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.19.某校设有体育选修课,每位同学必须从羽毛球、篮球、乒乓球、排球、足球五项球类运动中选择一项且只能选择一项球类运动,在该校学生中随机抽取10%的学生进行调查,根据调查结果绘制成如图所示的尚不完整的频数分布表和扇形统计图.请根据以上图、表信息解答下列问题:(1)频数分布表中的a=,b=;(2)补全扇形统计图;(3)排球所在的扇形的圆心角为度;(4)全校有多少名学生选择参加乒乓球运动?20.某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与“2020年新冠病毒防护知识”在线问答.社区管理员随机从甲、乙两个小区各抽取20名居民的答卷成绩,并对他们的成绩(单位:分)进行统计、分析如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90整理数据:分析数据:应用数据:(1)填空:a = ,b = ,c = ,d = ; (2)求扇形统计图中圆心角α的度数;(3)若甲小区共有1200人参与答卷,请估计甲小区成绩在90分以上的人数.21.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为1A 级、2A 级、3A 级,其中1A 级最好,3A 级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级. 两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱. (1)三箱油桃出现的先后顺序共有哪几种不同的可能? (2)孙明与王军,谁买到1A 级的可能性大?为什么?22.某校为了解学生安全意识强弱,在全校范围内随机抽取了部分学生进行问卷调查.将调查结果汇总分析,并绘制成如下两幅尚不完整的统计图. 根据以上信息,解答下列问题:(1)这次调查一共抽取了______名学生,将条形统计图补充完整;(2)求扇形统计图中,“较强”层次所占扇形的圆心角度数;(3)若该校有1900名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要接受强化安全教育的学生人数.23.目前微信、支付宝、共享单车、和网购给我们的生活带来很多便利,初二数学小组在校内对你最认可的四大新生事物进行调查,随机调查了m人,(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图(1)根据图中信息求出m=__________;n=_______________;(2)请把图中的条形统计图补充完整;(3)根据抽样调查结果,请估算全1800名学生中,大约有多少人最认可微信和支付宝这两样新生事物?24.以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题: (1)m = ,n= ; (2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应圆心角的度数是 ;(4)若该公司新聘600名毕业生,请你估计“总线”专业的毕业生有 名.25.病毒虽无情,人间有大爱.2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(不完整)和扇形统计图如下:(数据分成6组:100500x ≤<,500900x ≤<,9001300x ≤<,13001700x ≤<,17002100x ≤<,21002500x ≤<.)根据以上信息回答问题: (1)补全频数分布直方图.(2)求扇形统计图中派出人数大于等于100小于500所占圆心角度数.据新华网报道在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:C 市派出的1614名医护人员中有404人是“90后”;H市派出的338名医护人员中有103人是“90后”;B市某医院派出的148名医护人员中有83人是“90后”.(3)请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1万人)26.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)补全条形统计图,补全扇形统计图中乐器所占的百分比;(2)本次调查学生选修课程的“众数”是__________;(3)若该校有1200名学生,请估计选修绘画的学生大约有多少名?27.重庆,别称“山城”、“雾都”,旅游资源丰富,自然人文旅游景点独具特点.近年来,重庆以其独特“3D魔幻”般的城市魅力吸引了众多海内外游客,成为名副其实的旅游打卡网红城市.某中学想了解该校九年级1200名学生对重庆自然人文旅游景点的了解情况,从九(1)、九(2)班分别抽取了30名同学进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:a.测试成绩分成5组,其中A组:50<x≤60,B组:60<x≤70,C组:70<x≤80,D组:80<x≤90,E 组:90<x≤100.测试成绩统计图如下:b.九(2)班D组的测试成绩分别是:81、82、82、83、84、85、86、87、88、89、89、90、90、90.c.九(1)(2)班测试成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)根据题意,直接写出m,n的值:m=,n=;九(2)班测试成绩扇形统计图中A 组的圆心角α=°;(2)在此次测试中,你认为班的学生对重庆自然人文景点更了解(填“九(1)”或“九(2)”),请说明理由(一条理由即可):;(3)假设该校九年级学生都参加此次测试,测试成绩大于90分为优秀,请估计该校九年级对重庆自然人文景点的了解达到优秀的人数.28.为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取_________名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为__________(2)将条形统计图补充完整(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?各类学生人数条形统计图各类学生人数扇形统计图29.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.30.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.。
《近五年中考考点概率统计》专题班级 姓名只要站起来的次数比倒下去的次数多,那就是成功。
【类型五:统计】(2014•鸡西第14题3分)14.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表。
关于这10户家庭的月用电量说法正确的是 (A. 中位数是40B. 众数是4C. 平均数是20.5D. 极差是3A 4.9,4.6B 4.9,4.7C 4.9,4.65D 5.0,4.65(2012•鸡西第5题3分)5. 2012年5月份,鸡西地区一周空气质量报告中某项污染指数的数据是:31,35,30,31,34,32,31,这组数据的中位数、众数分别是 ( ) A.32,31 B.31,31 C.31,32 D.32,35(2011•鸡西第6题3分)某工厂为了选拔1名车工参加直径为5㎜精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 甲x 、乙x ,方差依次为2甲s 、2乙s ,则下列关系中完全正确的是 ( )A 甲x <乙x , 2甲s <2乙sB 甲x =乙x , 2甲s <2乙s C 甲x =乙x , 2甲s >2乙s D 甲x >乙x , 2甲s >2乙s(2010•鸡西第5题3分)5.一组数据3,4,9,x,它的平均数比它唯一的众数大1,则x= .(2009•鸡西第4题3分)4.已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为 .考点须知:平均数的作用:加权平均数众数:中位数:极差:方差:(2012黑龙江龙东,15,3分)某校初三5名学生中考体育测试成绩如下(单位:分):12、13、14、15、14,这组数据的众数和平均数分别为( )A. 14,13B. 13,14C. 14,13.5D. 14,13.6(2011黑龙江龙东,13,3分)某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛。
小兰已经知道了自已的成绩,她想知道自已能否进入决赛,还需要知道这11名同学成绩的 ( ) A 、中位数 B、众数 C、平均数 D、不能确定(2010黑龙江龙东,5,3分)“一方有难,八方支援”,当青海玉树发生地震后,全国人民A.15B.30C.50D.20。
1 概率统计知识考点 考点一、(期望、方差) 改革开放以来,人们的支付方式发生了巨大转变。近年来,移动支付已成为主要支付方式之一。为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本仅使用A和仅使用B的学生的支付金额分布情况如下: 支付金额 支付方式 0,1000 1000,2000 大于2000
仅使用A 18人 9人 3人 仅使用B 10人 14人 1人 (Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两个支付方式都使用的概率; (Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望; (Ⅲ)已知上个月样本学生的支付方式在本月没有变化,现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额大于2000元。根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由. 2
考点二、(回归方程) (2014新课标2)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9
(Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:
121niiiniittyybtt
,ˆˆaybt
【解析】(I) 由所给数据计算得17t(1+2+3+4+5+6+7)=4 17y(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3
最新九年级数学锁定核心考点 针对性冲刺概率与统计专题考点1:频率与概率 一、考点讲解:1.频数、频率、概率:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率人总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小. 2.概率的性质:P (必然事件)= 1,P (不可能事件)= 0,0<P (不确定事件)<1. 3.频率、概率的区别与联系:频率与概率是两个不同的概念,概率是伴随着随机事件客观存在着的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;而频率是通过实验得到的,它随着实验次数的变化而变化,但当试验的重复次数充分大后,频率在概率附近摆动,为了求出一随机事件的概率,我们可以通过多次实验,用所得的频率来估计事件的概率. 二、经典考题剖析:【考题1-1】(成都郸县,3分)某校九年级三班在体育毕业考试中,全班所有学生得分的情况如下表,那么该班共有_______人,随机地抽取l 人,恰好是获得30分的学生的概率是_______,从表中你还能获取的信息是__________________________ ___________ (写出一条即可)解:65;如:随机抽了1人恰好获得24~26分的学生的概率为16【考题1-2】(贵阳,6分)质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等.(1)请采用计算器模拟实验的方法,帮质检员抽取被检产品; (2)如果没有计算器,你能用什么方法抽取被检产品.解:(1)利用计算器模拟产生随机数与这批产品编 号相对应,产生10个号码即可;(3)利用摸球游戏或抽签等.【考题1-3】(鹿泉,2分)如图l -6-l 是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个人球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射人那么该球最后将落人的球袋是()A.1号球袋B.2号球袋C.3号球袋D.4号球袋解:B 点拨:球走的路径如图l-6-l虚线所示.三、针对性训练:1、在对某次实验次数整理过程中,某个事件出现的频率随实验次数变化折线图如图l-6-2,这个图中折线变化的特点是_______,估计该事件发生的概率为__________________.2.(南山,3分) 如图l-6-5的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()3.(南山,3分)掷2枚1元钱的硬币和3枚1角钱的硬币,1枚1元钱的硬币和至少1枚1角钱的硬币的正面朝上的概率是()4.(汉中,3分)小红、小明、小芳在一起做游戏时需要确定做游戏的先后顺序,他们约定用“剪子、包袱、锤子”的方式确定,问在一个回合中三个人都出包袱的概率是_________________5.(贵阳,3分)口袋中有3只红球和11只黄球,这两种球除颜色外没有任何区别,从口袋中任取一只球,取到黄球的概率是___________.6.(南山,5分)周聪同学有红、黄、蓝三件T恤和黑、白、灰三条长裤,请你帮他搭配一下,看看有几种穿法.考点2:概率的应用与探究一、考点讲解:1.计算简单事件发生的概率:列举法:⎧⎨⎩列表画树状图2.针对实际问题从多角度研究事件发生的概率,从而获给理的猜测 二、经典考题剖析:【考题2-1】(南宁,3分)中央电视台的“幸运5 2”栏目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖.参与这个游戏的观众有3次翻牌的机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( ) 1113A . . ..255620B C D 解:C 点拨:由于20个商标中共有5个商标注明奖金,翻2次均获奖金后,只剩下3个注明奖金的商标,又由于翻过的牌不能再翻,所以剩余的商标总数为18个.因此第三次翻牌获奖的概率为16.【考题2-2】(四省区,6分)一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用列举法(列表或画树状图)分析并求出小亮两次都能摸到白球的概率.解:列表如下:答:小亮两次都能摸到白球的概率为19三、针对性训练:1.在100张奖券中,有4张中奖,某人从中任抽1张,则他中奖的概率是( ) A 、125 B 、14 C 、1100 D 、1202.在一所有1000名学生的学校中随机调查了100人,其中有85人上学之前吃早餐,在这所学校里随便问1人,上学之前吃过早餐的概率是( ) A .0.8 5 B .0.085 C .0.1 D .8503.有两只口袋,第一只口袋中装有红、黄、蓝三个球,第二只口袋中装有红、黄、蓝、白四个球,试利用树状图和列表法,求分别从两只口袋中各取一个球,两个球都是黄球的概率.4.为了估计鱼塘中有多少条鱼,先从塘中捞出100条做上标记,再放回塘中,待有标记的鱼完全混人鱼群后,再捞出200条鱼,其中有标记的有20条,问你能否估计出鱼塘中鱼50010001500200025003000舟山嘉兴宁波湖州绍兴杭州台州亿元5101520舟山嘉兴宁波湖州绍兴杭州台州%图1 (第3题) 图2的数量?若能,鱼塘中有多少条鱼?若不能,请说明理由. 5.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上. ⑴ 随机地抽取一张,求P (奇数)⑵ 随机地抽取一张作为十位上的数字(不放回人再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率为多少? 考点3: 统计初步(一)二、⎡⎢⎢⎢⎣平均数反映集中趋势中 数 中位数一、选择题1.【内江】某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是( )A 、19,20B 、19,19C 、19,20.5D 、20,19 2.【资阳】某服装销售商在进行市场占有率的调查时,他最应该关注的是A. 服装型号的平均数B. 服装型号的众数C. 服装型号的中位数D. 最小的服装型号3.【嘉兴】“长三角”16个城市中浙江省有7个城市。
中考数学第一轮基础知识复习第四专题《统计与概率》、(共5课时)第一课时统计知识1.平均数的计算公式___________________________.2. 加权平均数公式_____________________________.3. 中位数是___________________________,众数是__________________________.4.极差是__________________,方差的计算公式_____________________________.标准差的计算公式:_________________________.【典例精析】例1 我市部分学生参加了2004年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?(2) 经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3) 决赛成绩分数的中位数落在哪个分数段内?(4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.例2 我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下:(单位:只)65,70,85,75,85,79,74,91,81,95.(1)计算这10名学生所在家庭平均月使用塑料袋多少只?(2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只?【中考演练】1.班长对全班学生爱吃哪几种水果作了民意调查.那么最终决定买什么水果,最值得关注的应该是统计调查数据的 .(中位数,平均数,众数)2.在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,•其中甲同学考了89分,则除甲以外的5名同学的平均分为______分. 3.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 .4.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,•在相同条件下对他们的电脑知识进行了10次测验,成绩如下,(单位:分):请填写下表:5. 衡量一组数据波动大小的统计量是( )A .平均数B .众数C .中位数D .方差 6.某人今年1至5月的电话费数据如下(单位:元):60,68,78,66,80,这组数据的中位数是( )A .66B .67C .68D .787.甲乙两人在相同的条件下各射靶10次,他们的环数的方差是S 甲2=2.4,•S 乙2=3.2,则射击稳定性是( ) A .甲高 B .乙高 C .两人一样多 D .不能确定8. 李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价是每千克15元,用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃的总收入分别是( ) A .200kg ,3000元 B .1900kg ,28 500元C .2000kg ,30 000元D .1850kg ,27 750元9.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:⑴ 问这个班级捐款总数是多少元? ⑵ 求这30名同学捐款的平均数.10.为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.第二课时【考点精析】1. 总体是指_________________________,个体是指_____________________, 样本是指________________________,样本的个数叫做___________.2. 样本方差与标准差是衡量______________的量,其值越大,______越大.3. 频数是指________________________;频率是___________________________.4. 得到频数分布直方图的步骤_________________________________________.5. 数据的统计方法有____________________________________________. 【典例精析】例1:某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A B C D ,,,四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)求出D 级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C 级所在的扇形圆心角的度数;乒乓球 足球其他兴趣爱好图1图2(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?例 2 :从某市近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图,请结合图中的信息,解答下列问题:(1)卖出面积为110~130㎡的商品房有套,并在右图中补全统计图;(2)从图中可知,卖出最多的商品房约占全部卖出的商品房的%;(3)假如你是房地产开发商,根据以上提供的信息,你会多建住房面积在什么范围内的住房?为什么?【中考演练】1.小明将2008年北京奥运会中国男子篮球队队员的年龄情况绘制成了如图(1)所示的条形统计图,则中国男子篮球队共有_____队员.(第1题) (第2题) (第3题)2.光明中学对图书室的书分成三类:A表示科学类,B表示科技类,C表示艺术类.•它们所占总数的百分比如图(2),该校有8 500册图书,则艺术类的书有____册.3.菱湖是全国著名的淡水鱼产地,•某养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里养的是同一种鱼),先捕上100条做标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼______条.4. 红星村今年对农田秋季播种作如图(3)的规划,且只种植这三种农作物,•则该村种植油菜占种植所有农作物的______%.5.如图,是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7 天中,日温差最大的一天是()A.5月1日 B.5月2日C.5月3日 D.5月5日6.在一个扇形统计图中,有一扇形的圆心角为90°,则此扇形占整个圆的()A.30% B.25% C.15% D.10%7.如图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多 B.乙户比甲户多C.甲、乙两户一样多 D.无法确定哪一户多8.某市教育部门对今年参加中考学生的视力进行了一次抽样调查,得到如图所示的频数分布直方图.(每组数据含最小值,不含最大值)(1)抽查的样本容量是多少?(2)若视力在4.9以上(含4.9)均属正常,求视力正常的学生占被统计人数的百分比是多少?(3)根据图中提供的信息,谈谈你的感想.第三课时概率知识【知识要点】1.__________________叫确定事件,________________叫不确定事件(或随机事件),__________________叫做必然事件,______________________叫做不可能事件. 2._________________________叫频率,_________________________叫概率.3.求概率的方法:(1)利用概率的定义直接求概率;(2)用树形图和________________求概率;(3)用_________________的方法估计一些随机事件发生的概率.【典例精析】例1 小明、小华用4张扑克牌(方块2,黑桃4,黑桃5,•梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,•抽出的牌不放回.(1)若小明恰好抽到了黑桃4.①请在下边框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,•则小明负,你认为这个游戏是否公平?说明你的理由.例2:张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.(1)计算张红获得入场券的概率,并说明张红的方案是否公平?(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?图(1)图(2)【中考演练】1.小明周末到外婆家,走到十字路口处(如图),•记不清前面哪条路通往外婆家,那么他能一次选对路的概率是________.2.在中考体育达标跳绳项目测试中,1min 跳160次为达标,•小敏记录了他预测时,1min 跳的次数分别为145,155,140,162,164,•则他在该次预测中达标的概率是_________.3.有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是________.4.在一所4000人的学校随机调查了100人,其中有76人上学之前吃早饭,•在这所学校里随便问一个人,上学之前吃过早餐的概率是________.5. 书架上有数学书3本,英语书2本,语文书5本,从中任意抽取一本是数学书的概率是( ) A .110B .35C .310D .156.下列事件你认为是必然事件的是( )A .中秋节的晚上总能看到圆圆的月亮;B .明天是晴天C .打开电视机,正在播广告;D .太阳总是从东方升起 7.下列说法正确的是( )A .“明天的降水概率为30%”是指明天下雨的可能性是30%B .连续抛一枚硬币50次,出现正面朝上的次数一定是25次C .连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D .某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖 8.图(2)是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图(1)中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?9.某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E•两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.电脑单价A 型:6000元;A 型:6000元;B 型:4000元;C 型:2500元;D 型:4000元;E 型:2000元;(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台,•恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.【课外练习】1.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是.2.四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_______.3.小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是.4.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.5.甲、乙两名同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A. 从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率B. 掷一枚正六面体的骰子,出现1点的概率C. 抛一枚硬币,出现正面的概率D. 任意写一个整数,它能被2整除的概率6.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.157.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A.12B.13C.16D.18第四课时第五课时解题答题规范训练2011年中考复习统计与概率测试题一、选择题(每小题2分,共60分)1.(2010湖南郴州)要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.方差 B.中位数C.平均数D.众数2.(2010湖南郴州)某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计, 4月份与3月份相比,节电情况如下表:则4月份这.100...户节电量....的平均数、中位数、众数分别是()A. 35、35、30B. 25、30、20C. 36、35、30D. 36、30、30 3.(2010湖南怀化)某同学五天内每天完成家庭作业的时间(单位:小时)分别为2、2、3、2、1,则这组数据的众数和中位数分别为()A.2、2 B.2、3 C.2、1 D.3、14.(是()A.平均数B.众数C.中位数D.方差5.(2010湖北恩施自治州)某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是()A. 82,76B. 76,82C. 82,79D. 82,826.(2010北京)10名同学分成甲、乙两队进行篮球比赛,他们身高(单位:cm)如下表所示:设两队队员身高的平均数依次为x甲,x乙,身高的方差依次为22,s s乙甲,则下列关系中完全正确的是()A.x甲=x乙,22s s>乙甲B.x甲=x乙,22s s<乙甲C.x甲>x乙,22s s>乙甲D.x甲<x乙,22s s<乙甲7.(2010江西省南昌)某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确...的是()A.该学生捐赠款为a6.0元 B.捐赠款所对应的圆心角为︒240C.捐赠款是购书款的2倍D.其他支出占10%8.(2010江苏常州)某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
中考数学压轴题强化训练:统计与概率1、在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ). (1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y=﹣2x的图象上的概率.2、某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B.C.D.E).3、在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果。
(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M的横坐标,把第二次取出的小球的数字作为点M的纵坐标,试求出点M(x,y)落在直线y=x上的概率是多少?4、《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?5、某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).图(1)项目人数/人108246C图(2)6、如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4。
考点1 . 统计的方法普查与抽样调查:1)普查:为一特定目的而对所有考察对象做的全面调查叫普查;2)抽样调查:为一特定目的而对部分考察对象做的调查叫抽样调查。
说明:( 1)下列的情形常采用抽样调查:①当受客观条件限制,无法对所有个体进行普查时;②当调查具有破坏性,不允许普查时。
( 2)抽样调查的要求:①抽查的样本要有代表性;②抽查的样本不能太少。
考点2 与统计有关的概念:1)总体:所要考查的对象的全体叫总体;2)样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本中个体的数目叫做样本容量。
使总体的每一个个体有同等的机会被选中,这样的样本称为简单随机样本;3)个体:总体中每一个考查的对象叫做个体;4)频数:统计时,每个对象出现的次数叫频数,频数之和等于总数;5)频率:每个对象出现的次数与总次数的比值叫频率,频率之和等于1。
注意:考查对象不是笼统的某人某物,而是某人某物的某项数量指标。
考点3 统计图表:1)扇形统计图是用圆代表总体,圆中各个扇形分别代表总体中不同部分的统计图,它可以直观地反映部分占总体的百分比大小,一般不表示具体的数量;2)条形统计图能清楚地表示每个项目的具体数目及反映事物某一阶段属性的大小变化,复合条形图的描述对象是多组数据;3)折形统计图可以反映数据的变化趋势;4)频数分布表和频数分布直方图,能直观、清楚地反映数据在各个小范围内的分布情况。
说明:绘制频数分布直方图的一般步骤:①计算最大值与最小值的差;②决定组距与组数(当数据在100个以内时,一般取5~12组);③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点;④列频数分布表;⑤用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直观图;考点4 数据的代表:反映数据集中趋势的特征数1)平均数:一组数据中所有数据之和再除以数据的个数称为这组数据的平均数; ①算术平均数:一般地,如果n 个数,,,,21n x x x 那么)(121n x x x nx +++= 叫做这n 个数的平均数; ②加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
2022中考考点必杀500题 专练10(统计与概率大题)(30道)1.(2022·浙江绍兴·一模)健康的体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现.某初中学校为了提高学生体质健康,制定合理的校园阳光体育锻炼方案,随机抽查了部分学生最近两周参加体育锻炼活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)抽查的学生中锻炼8天的有______人.(2)本次抽样调查的众数为______,中位数为_______.(3)如果该校约有2000名学生,请你估计全校约有多少名学生参加体育锻炼的天数不少于7天? 【答案】(1)60人 (2)5天,6天(3)估计全校约有800名学生参加体育锻炼的天数不少于7天 【解析】 (1)解:12020600÷=%(人)600254051060⨯---⨯=(1-20%%%%)=600%(人)故抽查的学生中锻炼8天的有60人. (2)解:参加体育锻炼活动5天的人最多,故众数是5; 一共600人,最中间是第300个和301个, 从小到大排序后第300个和301个数都是6天, ∴中位数是6;(3)解:参加体育锻炼的天数不少于7天的人所占百分比是:%%%%,2510540++=⨯%=(人)200040800答:估计全校约有800名学生参加体育锻炼的天数不少于7天.【点睛】本题主要考查了概率统计的知识,包括扇形统计图和条形统计图的联系、众数和中位数的概念和用样本估计总体,牢固掌握以上知识点是做出本题的关键.2.(2022·浙江宁波·二模)第24届冬奥会于2022年2月在北京举行,为推广冰雪运动,发挥冰雪项目的育人功能,教育部近年启动了全国冰雪运动特色学校的䢯选工作.某中学通过将冰雪运动 “早地化” 的方式积极开展了基础滑冰、早地滑雪、早地冰球、早地冰显四个运动项目,要求每一位学生都自主选择一个运动项目,为了了解学生选择冰雪运动项目的情况,随机抽取了部分学生进行调查, 并根据调查结果绘制成如下不完整的条形统计图和扇形统计图.(1)这次随机抽取了_______名学生进行调查,并将条形统计图补充完整.(2)求扇形统计图中 “旱地冰壶” 部分的圆心角度数.(3)如果该校共有2400名学生,请你估计全校学生中喜欢基础滑冰项目有多少人?【答案】(1)50;条形统计图补充完整见解析(2)扇形统计图中 “旱地冰壶” 部分的圆心角度数为108︒(3)估计全校学生中喜欢基础滑冰项目有960人【解析】(1)解:在这次调查中,总人数为10÷20%=50(人),∴喜欢旱地滑雪项目的同学有50﹣20﹣10﹣15=5(人),补全图形如下:(2)旱地冰壶有15人,总人数50人,15÷50×360︒=108︒,∴“旱地冰壶” 部分的圆心角度数为108︒;(3)基础滑冰有20人,总人数50人,202400960⨯=(人),50∴估计全校学生中喜欢基础滑冰项目有960人.【点睛】本题考查条形统计图和扇形统计图的应用,数量掌握统计图的相关数据的关系与应用是解题的关键.3.(2022·湖北十堰·一模)为了解中考体育科目训练情况,从城区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______;(2)图1中α∠的度数是______,并把图2条形统计图补充完整;(3)若城区九年级学生有18000人,如果全部参加这次中考体育科目测试,请估计不及格的人数为______; (4)测试老师想从4位同学(分别记为甲、乙、丙、丁)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中甲的概率. 【答案】(1)40人 (2)54°;作图见详解 (3)3600人 (4)12 【解析】 (1)12÷30%=40(人)∴本次抽样测试的学生人数是40人, 故答案为:40; (2) 63605440α∠=⨯︒=︒. 故答案为:54°;C 级的人数为4035%14⨯=(人), 故补全条形统计图如下:(3)818000360040⨯=(人)∴估计不及格的人数为3600人,故答案为:3600人;(4)根据题意列表如下:由表可知,共有12种等可能的结果,其中选中甲的有6种,∴P(选中甲) =612=12.【点睛】本题考查条形统计图与扇形统计图相关联,用样本估计总体,列表法或画树状图法求概率.根据条形统计图和扇形统计图得到必要的信息和数据是解题关键.4.(2021·陕西渭南·二模)中华人民共和国第十四届全运会将于2021年9月份在陕西举行,“全民全运同心同行”是本届全运会主题口号.某中学为加深对全运会的了解,组织学生玩抽卡片的游戏,游戏规则如下:a.如图,A、B、C、D四张卡片(形状、大小和质地都相同),正面分别写有“全民全运”“同心同行”“相约西安”“筑梦全运”;b.将这四张卡片背面朝上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张;c.若抽取的两张卡片能组成本届全运会主题口号“全民全运同心同行”,则获得一次成为“文明倡导者”的机会.(1)第一次抽取的卡片上写的是“全民全运”的概率为________;(2)请用列表法或画树状图法求乐乐抽取完两张卡片后,能获得成为“文明倡导者”机会的概率.【答案】(1)1 4(2)1 6【解析】(1)第一次抽取的卡片上写的是“全民全运”的概率为14;故答案为:14;(2)列表如下:由表知,共有12种等可能结果,其中抽取完两张卡片后,能获得成为“文明倡导者”机会的有2种结果,所以抽取完两张卡片后,能获得成为“文明倡导者”机会的概率是21 126.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.(2021·陕西渭南·二模)现代交通的发达虽然给人们带来了无尽的便利,但同时也增加了许多安全隐患.为了提高学生的安全意识,珍爱生命,某学校制作了8条安全出行警句,倡导全校1200名学生进行安全警句背诵系列活动,并在活动之后举办安全知识大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查他们安全警句的背诵情况,根据调查结果绘制成的统计图(部分)如图所示.大赛结束一个月后,再次抽查这部分学生安全警句的背诵情况,并根据调查结果绘制成统计表:请根据调查的信息,完成下列问题:(1)补全条形统计图,表格中m的值为_______;(2)求活动启动之初学生安全警句的背诵条数的平均数及中位数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校安全警句背诵系列活动的效果.【答案】(1)10;补图见解析(2)平均数为5,中位数为4.5(3)见解析【解析】(1)解:调查人数为6020120360÷=(人),背诵“4条”的人数为13512045360⨯=(人),补全条形统计图如图所示:大赛结束一个月后,背诵“4条”的人数为120101540252010m=-----=(人),故答案为:10;(2)解:将这120名学生活动启动之初的背诵情况从小到大排列处在中间位置的两个数的平均数为454.52+=,因此中位数是4.5,这120名学生活动启动之初的背诵情况的平均数为:1(153454205166137118)5 120⨯⨯+⨯+⨯+⨯+⨯+⨯=(条),答:活动启动之初学生安全警句的背诵条数的平均数为5,中位数为4.5;(3)解:从中位数上看,活动开展前的中位数是4.5条,活动开展后的中位数是6条,从背诵“6条及以上”人数的变化情况看,活动前是40人,活动后为85人,人数翻了一倍,从而得出活动的开展促进学生背诵能力的提高,活动开展的效果较好.【点睛】本题考查条形统计图、扇形统计图,理解两个统计图中数量之间的关系是正确解答的关键.6.(2021·山东滨州·二模)为了进一步提高中学生的交通安全意识、文明意识,为“创建文明城市”工作的开展营造浓厚的宣传氛围,某区创新宣传方式,组织学生利用“参观体验+知识竞赛”新模式开展安全宣传活动,并取得了良好的效果.赛后区团委随机抽取了部分参赛学生的成绩,整理后按分数分组如下:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100,并绘制出不完整的统计图.请你根据提供的信息,解决下列问题:(1)补全频数分布直方图和扇形统计图;(2)这次竞赛成绩的中位数落在组(填写字母);(3)某区共有2万名中学生,若竞赛成绩在80分以上(包括80分)为“优”,请你估计该区竞赛成绩为“优”的学生有多少人?(4)D组中成绩为100分的同学有三人(两男一女),现准备从他们中随机选出两位同学参加市竞赛,请用画树状图或列表法求刚好抽到两位男生的概率.【答案】(1)见解析(2)C(3)12000人(4)1 3【解析】(1)解:由C组人数和百分比可得本次调查的学生有:360÷40%=900(人),A组学生有:900﹣270﹣360﹣180=90(人),B组所占的百分比为:270÷900×100%=30%,补全的补全频数分布直方图和扇形统计图如图所示:(2)解:一共900名学生,则中位数是第450和第451名学生的平均数,∴A、B组共有90+180=270人,A、B、C组共有90+180+270=540人,∴第450和第451名学生在C组,∴这次竞赛成绩的中位数落在C组;(3)解:20000×(40%+20%)=12000(人),即估计该区竞赛成绩为“优”的学生有12000人.(4)解:将男生分别标记为A1,A2,女生标记为B1由表可知,共有6种等可能结果,其中刚好抽到两位男生的有2种结果,所以刚好抽到两位男生的概率为21 63 .【点睛】本题考查了频数分布直方图和扇形图的关联求值,中位数的概念,由样本估计总体,列表法求概率等知识;掌握图表所表达的数据意义是解题关键.7.(2022·陕西·武功县教育局教育教学研究室二模)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9小时,在备战中考的重要阶段,更要注重睡眠,提高学习效率.某校为了了解该校九年级学生每天的睡眠时间,随机调查了该校九年级部分学生,并将调查结果绘制成如下的统计图和统计表,根据图表中的信息,解答下列问题:(1)本次调查数据的中位数落在______组,表中m的值为______,扇形统计图中C组所在扇形的圆心角为______°;(2)求本次调查数据的平均数;(3)若该校共有600名九年级学生,请估计该校每天睡眠时间不少于9h的九年级学生有多少名?【答案】(1)B;10;90(2)8.5h(3)210名【解析】(1)÷=(人)解:被调查的学生人数为:1845%40故本次调查数据的中位数是这组数据从小到大排列后,第20个和第21个数的平均数故本次调查数据的中位数落在B组m=40-18-8-4=10扇形统计图中C 组所在扇形的圆心角为:10360=9040︒⨯︒ 故答案为:B ;10;90;(2) 解:()7.5188.589.3101148.5h 188104⨯+⨯+⨯+⨯=+++, ∴本次调查数据的平均数为8.5h .(3) 解:104600210188104+⨯=+++(名), ∴估计该校每天睡眠时间不少于9h 的九年级学生有210名.【点睛】本题考查了统计图表,中位数,扇形的圆心角,平均数的求法,用样本估计总体,解题的关键是仔细地审题,从图表中获取相关信息.8.(2022·陕西·武功县教育局教育教学研究室二模)此前,网络上出现了“东航失事原因锁定副驾驶”“黑匣子数据已经出来”等传言,严重误导社会公众认知,干扰事故调查工作,民航局表示:将依法追究造谣者法律责任,为了引导广大民众做“不信谣、不传谣、不造谣”的守法公民,某志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区做《抵制网络谣言·共建网络文明》的宜传活动,已知莹莹和晓晓都是该志愿者团队中的队员.(1)莹莹被分配到B 社区的概率为______;(2)请用列表法或画树状图的方法求莹莹和晓晓被分配到同一个社区的概率.【答案】(1)14(2)14【解析】(1)∴志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区,∴莹莹被分配到B 社区的概率为14. (2)根据题意列表如下:由表格可知,共有16种等可能的结果,其中莹莹和晓晓被分配到同一个社区的情况有4种,∴P(莹莹和晓晓被分配到同一个社区)41 164==.【点睛】此题考查了根据概率公式求解概率以及树状图或列表法求解概率,解题的关键是掌握概率公式以及树状图或列表法求解概率.9.(2022·江苏·徐州市新城实验学校一模)随着奥密克戎病毒的传播,部分地区采用了在线授课学习方式.某校计划为学生提供以下四类在线学习方式:在线讲授、观看微课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)本次调查学生共________人,补全条形统计图:(2)扇形统计图中“观看微课”对应的扇形圆心角等于__________°;(3)该校共有学生2600人,请你估计该校对“在线授课”最感兴趣的学生人数.【答案】(1)120;见解析;(2)72(3)对“在线讲授”最感兴趣的学生人数是780人【解析】(1)总人数:4840%120÷=(人),“在线答题”人数:12036244812---=(人),补全条形统计图如图所示:(2)“观看微课”所占圆心角3607224120︒=︒=⨯, 故答案为:72;(3)本校对“在线授课”最感兴趣的人数260078036120⨯==(人), 答:该校对“在线授课”最感兴趣的学生人数为780人.【点睛】此题主要考查关联扇形统计图与条形统计图、用样本估计总体,利用数形结合的思想解答.解题关键是正确读懂统计图的信息以及明确题意.10.(2022·陕西·一模)一个不透明的袋子中装有1个黄球和若干个蓝球,这些球除颜色外重量、大小、表面光滑度等都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回;搅匀后再摸一个球,记下颜色后放回;不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到黄球的频率在一个常数附近摆动,这个常数是___________(精确到0.01),由此估出蓝球有___________个;(2)现从该袋中一次摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个黄球,1个蓝球的概率.【答案】(1)0.25;3(2)12【解析】(1)解:(1)随着摸球次数的越来越多,频率越来越靠近0.25,因此接近的常数就是0.25;设蓝球由x 个,由题意得:10.251x =+,解得:3x =, 经检验:3x =是分式方程的解;故答案为:0.25,3;(2)(2)画树状图得:∴共有12种等可能的结果,其中恰好摸到一个黄球,一个蓝球有6种情况,∴摸到一个黄球一个蓝球的概率为:61122=; 故答案为:12.【点睛】本题考查了利用频率估计概率、运用树状图法求概率以及概率公式的应用,估算出摸到黄球的概率成为解答本题的关键.11.(2022·辽宁锦州·一模)某校对九年级学生进行“综合素质”评价,评价结果分优秀,良好,合格,不合格四个等级(分别用A,B,C,D表示),现从中随机抽取若干名学生的“综合素质”的等级作为样本进行数据分析,并绘制下列两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)本次随机抽取的学生有_______名,等级为优秀(A)的学生人数所占的百分比是______;(2)在扇形统计图中,等级为合格(C)的学生所在扇形的圆心角度数是______;(3)将条形统计图补充完整;(4)若该校九年级学生共1200名,请根据以上调查结果估算,等级为良好及良好以上的学生共有多少名?【答案】(1)50,40%(2)57.6︒(3)见解析(4)912名【解析】(1)本次随机抽取的学生有18÷36%=50(名).等级为优秀(A)的学生人数为50188420---=(名),∴其所占的百分比是20100%40% 50⨯=,故答案为:50,40%;(2)等级为合格(C)的学生所在扇形的圆心角度数是836057.650⨯︒=︒,故答案为:57.6︒;(3)由(1)可知等级为优秀(A )的学生人数为20名,即可补全统计图如下:(4)2018120091250+⨯=(名), 答:评价结果为良好及良好等级以上的学生大约共有912名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,由样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.12.(2022·浙江湖州·一模)为了解某学校疫情期向学生在家体有锻炼情况,从全体学生中机抽取若干名学生进行调查.以下是根据调查数据绘刺的统计图丧的一部分,根据信息回答下列问题.(1)本次调查共抽取__________名学生.(2)抽查结果中,B组有__________人.(3)在抽查得到的数据中,中位数位于__________组(填组别).(4)若这所学校共有学生800人,则估计平均每日锻炼超过25分钟有多少人?【答案】(1)60(2)18(3)C(4)440(1)解:本次调查共12÷20%=60(人),故答案是:60;(2)解:抽查结果中,B组有60-(9+21+12)=18(人),故答案是:18;(3)解∴共有60个数据,其中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,∴在抽查得到的数据中,中位数位于C组,故答案是:C;(4)解:800211260+⨯=440(人),答:平均每日锻炼超过25分钟有440人.【点睛】本题考查频数(率)分布表、扇形统计图、样本估计总体等知识,解题的关键是根据频数分步图和扇形统计图的关联信息求出被调查学生的总数.13.(2022·湖南岳阳·一模)为落实中小学生五项管理中的手机管理,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A 表示“一等奖”,B 表示“二等奖”,C 表示“三等奖”,D 表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m =______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.【答案】(1)40;30;(2)见解析 (3)12【解析】(1)解:)获奖总人数为820%40÷=(人). 404816%100%30%40m ---=⨯=,即30m =;故答案为40;30; (2) 解:“三等奖”人数为40481612---=(人),条形统计图补充为:(3)解:画树状图为:共有12种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为6,所以抽取同学中恰有一名男生和一名女生的概率61 122==.【点睛】本题考查了条形统计图和扇形统计图、及用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率一所求情况数与总情况数之比.牢固掌握画树状图列出所以可能结果是解题的关键.14.(2022·福建三明·二模)某商场举行促销活动,消费满一定金额的顾客可以通过参与摸球活动获得奖励.具体方法如下:从一个装有2个红球、3个黄球(仅颜色不同)的袋中摸出2个球,根据摸到的红球数确定奖励金额,具体金额设置如下表:现有两种摸球方案:方案一:随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球;方案二:随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.(1)求方案一中,两次都摸到红球的的概率;(2)请你从平均收益的角度帮助顾客分析,选择哪种摸球方案更有利?【答案】(1)1 10(2)从平均收益的角度看,顾客选择方案二更有利【解析】(1)解:对于方案一,列表如下.由上表可知,共有20种等可能的结果,两次都摸到红球的结果数是2.故采用方案一摸球,两次都摸到红球的概率为21 2010=.(2)解:由(1)中表可知,采用方案一,两次都摸到红球的概率为110,摸到一次红球的概率为123205=,没有摸到红球的概率为63 2010=.平均收益为331510209.5 10510⨯+⨯+⨯=元.对于方案二,列表如下.由上表可知,共有25种等可能的结果,两次摸到红球的结果数是4,摸到一次红球的结果数是12,没有摸到红球的结果数是9.所以两次都摸到红球的概率为425,摸到一次红球的概率为1225,没有摸到红球的概率为925.平均收益为9124510209.8 252525⨯+⨯+⨯=元.∴9.89.5>,∴从平均收益的角度看,顾客选择方案二更有利.【点睛】本题考查列表法求概率,概率的实际应用,熟练掌握这些知识点是解题关键.15.(2022·重庆渝中·二模)某校党委为提高党员教师使用“学习强国”的积极性,4月份开展了一分钟答题挑战赛.规定:答对一道记1分.下列数据是分别从初中组和高中组随机抽取的10名党员教师的成绩(单位:分).初中组:6,13,7,9,8,11,9,13,9,6;高中组:6,9,5,12,8,11,8,9,14,8.通过以上数据得到如下不完整的统计表:根据以上信息,回答下列问题: (1)=a ______,b =______,c =______;(2)该校初中组和高中组党员教师人数分别为50人和60人,若答对9道题以上(包括9道)为优秀等级,请估计该校共有多少名党员教师获得优秀等级;(3)已知25.89s =初中组,求2s 高中组,并说明哪个组党员教师的成绩波动性较小. 【答案】(1)9.1,8.5,8; (2)60名;(3)26.6s =高中组,初中组. 【解析】 (1)解:初中组的平均数61379811913969.110a +++++++++==(分);将高中组的数据按照从小到大排列后,处于中间位置的两个数是8和9, ∴898.52+=(分), ∴8.5b =;∴高中组的数据中出现次数最多的数是8, ∴8c =. (2)解:∴初中组和高中组党员教师答对9道题以上(包括9道)的分别有6人和5人, ∴655060601010⨯+⨯=(名) ∴该校共有60名党员教师获得优秀等级. (3) 解:()()()()()()()222222226999259129893119149 6.610s ⎡⎤-+-⨯+-+-+-⨯+-+-⎣⎦==高中组∴25.89s =初中组,∴22s s 初中组高中组<,∴初中组党员教师的成绩波动性较小.【点睛】本题主要考查了平均数、中位数、众数、方差以及用样本估计总体,熟练掌握平均数、中位数、众数、方差的计算方法是解题的关键.16.(2022·安徽合肥·二模)某校为了解疫情期间学生自习课落实“停课不停学、学习不延期”在线学习的效果,校长通过网络学习平台,随机抽查了该校部分学生在一节自习课中的学习情况,发现共有四种学习方式(每人只参与其中一种):A.阅读电子教材,B.听教师录播课程,C.完成在线作业,D.线上讨论交流.并根据调查结果绘制成如下两幅不完整的统计图,根据图中信息解答下列问题:(1)填空:校长本次调查的学生总人数为______,并补全条形统计图;(2)求扇形统计图中“D.线上讨论交流”对应的圆心角的度数;(3)若该校在线学习学生共有4000人,请你估计“B.听教师录播课程”有多少人?【答案】(1)90,见解析(2)48°(3)1600人【解析】(1)解:校长本次调查的学生总人数为=18÷20%=90(人),∴B.听教师录播课程的人数=90-24-18-12=36(人),补全条形统计图如图所示:(2)解:“D.线上讨论交流”对应的扇形圆心角的度数是123604890⨯=︒︒,∴扇形统计图中“D.线上讨论交流”对应的圆心角是48°;(3) 解:364000160090⨯=(人), ∴估计“B .听教师录播课程”约有1600人. 【点睛】本题考查了条形统计图和扇形统计图,利用样本估计总体的方法,解题的关键是从两个统计图中读取信息解题.17.(2022·天津河东·一模)疫情防控,人人有责,一方有难,八方支援,作为一名中华学子,我们虽不能像医护人员一样在一线战斗,但我们仍以自己的方式奉献一份爱心,因此学校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图∴和图∴.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数________和m 的值________; (2)求统计的捐款金额的平均数、众数和中位数. 【答案】(1)50,28(2)平均数是13.1,众数为10,中位数为12.5 【解析】 (1)95018%=,14100%28%50⨯= 故答案为:50,28 (2)观察条形统计图, ∴ 591016151420725413.150x ⨯+⨯+⨯+⨯+⨯==,∴ 这组数据的平均数是13.1. ∴ 在这组数据中,10出现了16次,出现的次数最多, ∴ 这组数据的众数为10.∴ 将这组数据按从小到大的顺序排列,其中处于中间的两个数分别是10,15, 有101512.52+=, ∴ 这组数据的中位数为12.5. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,求平均数、众数和中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(2022·河南濮阳·一模)某学校在学生中开展读书活动,学校为了解九年级学生每周平均课外阅读时间的情况,随机抽查了九年级部分同学,对其每周平均课外阅读时间进行统计,绘制了如下的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中的m 值为______;(2)求统计的这组数据的众数、中位数.(3)根据统计的样本数据,估计该校九年级400名学生中,每周平均课外阅读时间大于2h 的学生人数. 【答案】(1)25(2)众数:3h ,中位数:3h。
统计与概率易错点梳理易错点01 调查方式的选择错误全面调查是对考查对象的全体调查.要求对考查范围内所有个体进行一个不漏的逐个准确统计.而抽样调查则只是对总体中的部分个体进行调查.以样本来估计总体的情况。
易错点02 对各种统计图的意义理解错误条形图能显示每组中的具体数据.注意各个小组不相连.扇形图能显示部分在总体中所占的百分比.注意不能直接判断具体数据的大小.折线图能显示数据的变化趋势.也能得到具体数据的大小.直方图能显示数据的分布情况.能得到每组数据的多少.注意各个小组无间隔。
易错点03 求中位数忘记排序求一组数据的中位数必须将数据按照由小到大(或由大到小)的顺序排列.然后再取中间一个数或中间两个数的平均数就是这组数据的中位数。
易错点04 不能正确计算方差方差是一组数据中各数据与它们的平均数的差的平方的平均数.即:ns 12=[21)(x x -+22)(x x -+……+2)(x x n -]。
易错点05 混淆确定性事件和随机事件的概念在一定条件下.有些事件必然会发生.这样的事件称为必然事件.有些事件必然不会发生.这样的事件称为不可能事件.必然事件与不可能事件统称确定事件.在一定条件下.可能发生也可能不发生的事件称为随机事件。
易错点06 混淆频率与概率频率和概率是两个不同的概念.事件的概率是一个确定的常数.而频率是不确定的.当试验次数较少时.频率的大小摇摆不定.当试验次数增大时.频率的大小波动变小.并逐渐稳定在概率附近。
易错点梳理考向01 数据的收集与整理例题1:(2021·辽宁凌海·九年级期中)如图①所示.一张纸片上有一个不规则的图案(图中画图部分).小雅想了解该图案的面积是多少.她采取了以下的办法:用一个长为5m.宽为3m 的长方形.将不规则图案围起来.然后在适当位置随机地向长方形区域扔小球.并记录小球在不规则图案上的次数(球扔在界线上或长方形区域外不计入试验结果).她将若干次有效试验的结果绘制成了图②所示的折线统计图.由此她估计此不规则图案的面积大约为( )A .6m 2B .5m 2C .4m 2D .3m 2【答案】A【思路分析】首先假设不规则图案面积为x .根据几何概率知识求解不规则图案占长方形的面积大小.继而根据折线图用频率估计概率.综合以上列方程求解. 【解析】解:假设不规则图案面积为x m 2. 由已知得:长方形面积为53⨯=15m 2.根据几何概率公式小球落在不规则图案的概率为:15x. 当事件A 试验次数足够多.即样本足够大时.其频率可作为事件A 发生的概率估计值.故由折线图可知.小球落在不规则图案的概率大约为0.4. 综上有:15x=0.4. 解得x =6. 故选:A .例题分析【点拨】本题考查几何概率以及用频率估计概率.并在此基础上进行了题目创新.解题关键在于清晰理解题意.能从复杂的题目背景当中找到考点化繁为简.创新题目对基础知识要求极高.例题2:(2021·内蒙古呼伦贝尔·中考真题)下列说法正确的是()A.在小明.小红.小月三人中抽2人参加比赛.小刚被轴中是随机事件B.要了解学校2000学生的体质健康情况.随机抽取100名学生进行调查.在该调查中样本容量是100名学生C.预防“新冠病毒”期间.有关部门对某商店在售口罩的合格情况进行抽检.抽检了20包口罩.其中18包合格.该商店共进货100包.估计合格的口罩约有90包D.了解某班学生的身高情况适宜抽样调查【答案】C【思路分析】根据随机事件的定义、样本容量的定义、用样本的率计算总体中该项的数量、全面调查的特点依次判断即可得到答案.【解析】解:在小明.小红.小月三人中抽2人参加比赛.小刚被轴中是不可能事件.故A选项不正确.要了解学校2000学生的体质健康情况.随机抽取100名学生进行调查.在该调查中样本容量是100.故B选项错误.预防“新冠病毒”期间.有关部门对某商店在售口罩的合格情况进行抽检.抽检了20包口罩.其中18包合格.故该口罩的合格率为90%.该商店共进货100包.估计合格的口罩约有90包.故C选项正确.了解某班学生的身高情况适宜全面调查.故D选项错误.故选:C.【点拨】此题考查语句判断.正确理解随机事件的定义、样本容量的定义、用样本的率计算总体中该项的数量、全面调查的特点是解题的关键.考向02 数据分析例题3:(2021·云南·昆明市第三中学模拟预测)垃圾分类是对垃圾进行有效处置的一种科学管理方式.是对垃圾收集处置传统方式的改革.甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异.两个班成绩的平均数、中位数、方差如表所示.则下列说法正确的是()参加人数平均数中位数方差甲40 95 93 5.1乙40 95 95 4.6AB.甲班成绩优异的人数比乙班多C.甲.乙两班竞褰成绩的众数相同D.小明得94分将排在甲班的前20名【答案】D【思路分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【解析】A.乙班成绩的方差小于甲班成绩的方差.所以乙班成绩稳定.此选项错误.不符合题意.B.乙班成绩的中位数大于甲班.所以乙班成绩不低于95分的人数多于甲班.此选项错误.不符合题意.C.根据表中数据无法判断甲、乙两班成绩的众数.此选项错误.不符合题意.D.因为甲班共有40名同学.甲班的中位数是93分.所以小明得94分将排在甲班的前20名.此选项正确.符合题意.故选:D.【点拨】本题考查了平均数、中位数、方差及众数的概念.平均数、中位数及众数反映的是一组数据的平均趋势及水平.平均数与每个数据有关.方差反映的是一组数据的波动程度.在平均数相同的情况下.方差越小.说明数据的波动程度越小.也就是说这组数据更稳定.例题4:(2021·江苏洪泽·二模)实验中学选择10名青少年志愿者参加读书日活动.年龄如表所示:这10名志愿者年龄的众数和中位数分别是()年龄12 13 14 15人数 2 3 4 1【答案】C【思路分析】根据众数和中位数的意义求解.【解析】解:这10名志愿者年龄出现次数最多的是14.因此众数是14.将这10名志愿者年龄从小到大排列处在中间位置的两个数的平均数为13142=13.5.因此中位数是13.5.故选:C【点拨】本题考查众数和中位数的应用.熟练掌握众数和中位数的意义和计算方法是解题关键.考向03 概率例题5:(2021·云南省楚雄天人中学九年级期中)在一个不透明的纸箱中.共有15个蓝色、红色的玻璃球.它们除颜色外其他完全相同.小柯每次摸出一个球后放回.通过多次摸球试验后发现摸到蓝色球的频率稳定在20%.则纸箱中红色球很可能有()A.3个B.6个C.9个D.12个【答案】D【思路分析】根据利用频率估计概率得到摸到蓝色球的概率为20%.由此得到摸到红色球的概率=1-20%=80%.然后用80%乘以总球数即可得到红色球的个数.【解析】解:∵摸到蓝色球的频率稳定在20%.∴摸到红色球的概率=1-20%=80%.∵不透明的布袋中.有黄色、白色的玻璃球共有15个.∴纸箱中红球的个数有15×80%=12(个).故选:D.【点拨】本题考查了利用频率估计概率:大量重复实验时.事件发生的频率在某个固定位置左右摆动.并且摆动的幅度越来越小.根据这个频率稳定性定理.可以用频率的集中趋势来估计概率.这个固定的近似值就是这个事件的概率.例题6:(2021·福建省漳州第一中学九年级期中)我国古代有着辉煌的数学研究成果.其中《算经十书》是指汉、唐一千多年间的十部著名的数学著作.这些数学著作曾经是隋唐时代国子监算学科的教科书.十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》、《算经十书》标志着中国古代数学的高峰.《算经十书》这10部专著.有着十分丰富多彩的内容.是了解我国古代数学的重要文献.这10部专著中据说有6部成书于魏晋南北朝时期.其中《张丘建算经》、《夏侯阳算经》就成书于魏晋南北朝时期.某中学拟从《算经十书》专著中的魏晋南北朝时期的6部算经中任选2部作为“数学文化”进行推广学习.则所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为()A.13B.15C.115D.118【答案】C【思路分析】设六部成书于魏晋南北朝的算经分别用A、B、C、D、E、F表示.其中《张丘建算经》、《夏侯阳算经》分别用A、B表示,列树形图表示所有等可能性.根据概率公式即可求解.【解析】解:设六部成书于魏晋南北朝的算经分别用A、B、C、D、E、F表示.其中《张丘建算经》、《夏侯阳算经》分别用A、B表示.根据题意列树形图得由树形图得共有30种等可能性.其中两部专著恰好是A 、B 即《张丘建算经》、《夏侯阳算经》的有两种等可能性.∴所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为213015P ==. 故选:C【点拨】本题考查了列树形图求概率.根据题意分别用字母表示六种算经并正确列出树形图是解题关键.一、单选题1.在一个不透明的口袋中装有4个红球和若干个白球.他们除颜色外其他完全相同.通过多次摸球实验后发现.摸到红球的频率稳定在25%附近.则口袋中白球可能有( ) A .12个 B .14个 C .15个 D .16个【答案】A【解析】设白球有x 个.根据题意列出方程.4254100x =+. 解得x =12.经检验得x =12是原方程的解. 故选A .2.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)下列调查中.适合于采用普查方式的是( ) A .调查央视“五一晚会”的收视率 B .了解外地游客对兴城旅游景点的印象 C .了解一批新型节能灯的使用寿命 D .了解某航班上的乘客是否都持有“绿色健康码” 【答案】D【解析】A.调查央视“五一晚会”的收视率.适合抽样调查. B.了解外地游客对兴城旅游景点的印象.适合抽样调查. C.了解一批新型节能灯的使用寿命.适合抽样调查.微练习D.了解某航班上的乘客是否都持有“绿色健康码”.适合普查. 故选:D .3.(2021·江苏·连云港市新海实验中学二模)我校开展了“好书伴我成长”读书活动.为了解5月份九年级学生的读书情况.随机调查了九年级50名学生读书的册数.统计数据如下表所示.下列说法正确的是( )册数 0 1 2 3 4 人数 41216171A 【答案】B【解析】这组样本数据中.3出现了17次.出现的次数最多.∴这组数据的众数是3.将这组样本数据按从小到大的顺序排列.其中处于中间的两个数都是2.∴这组数据的中位数为2.观察表格.可知这组样本数据的平均数为: (0 × 4 + 1 × 12 + 2 × 16 + 3 × 17 + 4 ×1)÷50=9950. 这组数据的方差为:()()()()()22222140-1.98+121-1.98+162-1.98+173-1.98+4-1.9850⎡⎤⨯⨯⨯⨯⎣⎦ 2≠.故选:B .4.(2021·江苏新吴·二模)已知一组数据x 、y 、的平均数为3.方差为4.那么数据2x -.2y -.2z -的平均数和方差分别( )A .1.2B .1.4C .3.2D .3.4【答案】B【解析】由于数据x 、y 、z 的平均数为3.所以有x +y +z =9 则[]111(2)(2)(2)(6)31333x y z x y z -+-+-=++-=⨯= 由于数据x 、y 、z 的方差为4.即2221(3)(3)(3)43x y z ⎡⎤-+-+-=⎣⎦所以22222211(21)(21)(21)(3)(3)(3)433x y z x y z ⎡⎤⎡⎤--+--+--=-+-+-=⎣⎦⎣⎦即数据2x -.2y -.2z -的方差仍为4故数据2x -.2y -.2z -的平均数和方差分别为1和4 故选:B .5.(2021·黑龙江绥化·中考真题)近些年来.移动支付已成为人们的主要支付方式之一.某企业为了解员工某月,A B 两种移动支付方式的使用情况.从企业2000名员工中随机抽取了200人.发现样本中AB 、两种支付方式都不使用的有10人.样本中仅使用A 种支付方式和仅使用B 种支付方式的员工支付金额a (元)分布情况如下表: 支付金额a (元)01000a <≤ 10002000a <≤ 2000a >仅使用A 36人 18人 6人 仅使用B 20人28人2人①根据样本数据估计.企业2000名员工中.同时使用,A B 两种支付方式的为800人. ②本次调查抽取的样本容量为200人.③样本中仅使用A 种支付方式的员工.该月支付金额的中位数一定不超过1000元. ④样本中仅使用B 种支付方式的员工.该月支付金额的众数一定为1500元. 其中正确的是( ) A .①③ B .③④ C .①② D .②④【答案】A【解析】解:根据题目中的条件知:①从企业2000名员工中随机抽取了200人.同时使用,A B 两种支付方式的人为:20010(362018+28+6+2)=80--++(人).∴样本中同时使用,A B 两种支付方式的比例为:8022005=. ∴企业2000名员工中.同时使用,A B 两种支付方式的为:220008005⨯=(人).故①正确. ②本次调查抽取的样本容量为200.故②错误.③样本中仅使用A 种支付方式的员工共有:60人.其中支付金额在01000a <≤之间的有.36人.超过了仅使用A 种支付方式的员工数的一半.由中位数的定义知:中位数一定不超过1000元.故③是正确.④样本中仅使用B 种支付方式的员工.从表中知月支付金额在10002000a <≤之间的最多.但不能判断众数一定为1500元.故④错误.综上:①③正确.故选:A .6.为考察两名实习工人的工作情况.质检部将他们工作第一周每天生产合格产品的个数整理成甲.乙两组数据.如下表:甲 2 6 7 7 8 乙23488关于以上数据.下列说法正确的有()个.①甲、乙的众数相同.②甲、乙的中位数相同.③甲的平均数小于乙的平均数.④甲的方差小于乙的方差.A.1个B.2个C.3个D.4个【答案】A【解析】甲的众数为7.乙的众数为8.故①错误.甲的中位数为7.乙的中位数为4.故②错误.甲的平均数为15×(2+6+7+7+8)=6.乙的平均数为15×(2+3+4+8+8)=5.故③错误.甲的方差为15×[(2﹣6)2+(6﹣6)2+(7﹣6)2+(7﹣6)2+(8﹣6)2]=4.4.乙的方差为15×[(2﹣5)2+(3﹣5)2+(4﹣5)2+(8﹣5)2+(8﹣5)2]=6.4.甲的方差小于乙的方差.故④正确.故选:A.7.(2021·黑龙江松北·二模)两个不透明盒子里分别装有3个标有数字3.4.5的小球.它们除数字不同外其他均相同.甲、乙二人分别从两个盒子里摸球1次.二人摸到球上的数字之和为奇数的概率是()A.13B.23C.49D.59【答案】C【解析】解:画树状图如图:共有9种等可能的结果.甲、乙二人摸到球上的数字之和为奇数的结果有4种.∴甲、乙二人摸到球上的数字之和为奇数的概率为49.故选:C.8.有两把不同的锁和三把不同的钥匙.其中两把钥匙分别能打开这两把锁.第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁.一次打开锁的概率是()A.12B.13C.14D.23【答案】B【解析】解:列表得:锁1 锁2钥匙1 (锁1.钥匙1)(锁2.钥匙1)钥匙2 (锁1.钥匙2)(锁2.钥匙2)钥匙3 (锁1.钥匙3)(锁2.钥匙3)由表可知.所有等可能的情况有6种.其中随机取出一把钥匙开任意一把锁.一次打开锁的2种.则P(一次打开锁)=21=63.故选:B.9.(2021·山东南区·二模)一个口袋中有3个黑球和若干个白球.在不允许将球倒出来数的前提下.小明为估计其中的白球数.采用了如下的方法:从口袋中随机摸出一球.记下颜色.然后把它放回口袋中.摇匀后再随机摸出一球.记下颜色.再放回.不断重复上述过程.小明共摸了100次.其中80次摸到白球.根据上述数据.小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个【答案】C【解析】解:由题可得:31008080-÷=12(个).故答案为:12.10.广东省2021年的高考采用“312++”模式:“3”是指语文、数学、外语3科为必选科目.“1”是指在物理、历史2科中任选1科.“2”是指在化学、生物、思想政治、地理4科中任选2科.若小红在“1”中选择了历史.则她在“2”中选地理、生物的概率是()A.16B.13C.14D.12【答案】A【解析】解:用树状图表示所有可能出现的结果如下:共有12种等可能的结果数.其中选中“地理”“生物”的有2种.则P(地理、生物)=2÷12=16.故选A.二、填空题11.(2021·北京丰台·二模)某单位有10000名职工.想通过验血的方式筛查出某种病毒的携带者.如果对每个人的血样逐一化验.需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组.然后将各组5个人的血样混合再化验.如果混合血样呈阴性.说明这5个人全部阴性.如果混合血样呈阳性.说明其中至少有一个人呈阳性.就需要对这组的每个人再分别化验一次.假设携带该病毒的人数占0.05%.回答下列问题:(1)按照这种化验方法是否能减少化验次数________(填“是”或“否”).(2)按照这种化验方法至多需要________次化验.就能筛查出这10000名职工中该种病毒的携带者.【答案】是2025【解析】解:(1)第一轮化验10000名÷5=2000次<10000次故按照这种化验方法是能减少化验次数故答案为:是(2)按照这种方法需要两轮化验.第一轮化验2000次携带该病毒的人数=10000×0.05%=5人最多有5组需要进行第二轮化验一一化验需要5×5=25次化验一共进行2000+25=2025次化验.按照这种化验方法至多需要2025次化验.就能筛查出这10000名职工中该种病毒的携带者.故答案为:2025.12.某校组织了一次初三科技小制作比赛.有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%.其它几个班的参赛作品情况及获奖情况绘制在图1和图2两幅尚不完整的统计图中.则获奖率最高的班级是________.【答案】C班【解析】解:由统计图可得.A 班的获奖率为:1410035%100%()40%÷⨯⨯=.B 班的获奖率为:()11100135%20[]%20%100%44%÷⨯---⨯=.C 班的获奖率为50%.D 班的获奖率为:()810020%100%40%÷⨯⨯=.由上可得.获奖率最高的班级是C 班.故答案为:C 班. 13.(2021·内蒙古赛罕·二模)下列命题错误的序号是_________.①若1∠和2∠是同位角.则12∠=∠.②如果一个三角形的两条边和一个角与另一个三角形的两条边和一个角相等.那么这两个三角形全等.1x -.④某班投票选班长.小丽15票.小伟20票.小刚18票.这组数据的众数是20.⑤为排查肺炎疑似病人同机乘客的健康情况.应采用全面调查的方式进行. 【答案】①②③④【解析】解:①两直线平行时.同位角相等.不是所有互为同位角的两个角都相等.故此命题错误.②根据三角形全等的判定定理可知.当一个三角形的两个边和其夹角与另一个三角形的对应边角相等时.两个三角形才会全等.故此命题错误.③一般地.(0)a a ≥的式子叫作二次根式.需要10x -≥这个条件存在.题中没有.故此命题错误.④一组数据中出现次数最多的那个数据叫作这组数据的众数.故此命题错误.⑤排查所有同机乘客需要进行全面调查.故此命题正确.14.(2021·贵州铜仁·中考真题)若甲、乙两人射击比赛的成绩(单位:环)如下: 甲:6.7.8.9.10. 乙:7.8.8.8.9.则甲、乙两人射击成绩比较稳定的是______________(填甲或乙). 【答案】乙【解析】解:甲乙二人的平均成绩分别为:678910==85x ++++甲.78889==85x ++++乙.∴二人的方差分别为:()()()()()22222268788898108==25S -+-+-+-+-甲()()()()()22222278888888982==55S -+-+-+-+-乙. ∵22S S 乙甲>.乙的成绩比较稳定.故答案为:乙15.(2021·四川·成都绵实外国语学校九年级期中)小明为研究函数y =2x的图象.在﹣2、﹣1、1中任取一个数为横坐标.在﹣2、﹣1、2中任取一个数为纵坐标组成点P 的坐标.点P 在函数y =2x的图象上的概率是___.【答案】13【解析】解:列表如下:2-1-22- ()2,2--()2,1-- ()2,2-1-()1,2--()1,1--1,21()1,2-()1,1-1,2其中点P 在函数2y x=上的有()2,1--.()1,2--.1,2共3种. 所有点P 在函数y =2x 的图象上的概率是31=.93故答案为:1316.(2021·四川·成都嘉祥外国语学校九年级期中)有四张正面分别标有数字﹣4.﹣3.﹣2.1.的不透明卡片.它们除数字不同外其他全部相同.现将它们背面朝上.洗匀后从中抽取一张.将该卡片上的数字记为a .放回后洗匀.再从中抽取一张.将该卡片上的数字记为b .则a .b 使得二次函数y =x 2﹣(a +5)x +3当x ≤1时y 随x 的增大而减小.且一元二次方程(a +2)x 2+bx +1=0有解的概率为 ___. 【答案】516【解析】解:∵二次函数y =x 2﹣(a +5)x +3.二次项系数为1.大于0. ∴抛物线开口向上.对称轴为直线52a x +=. ∵要使得当x ≤1时.y 随x 的增大而减小. ∴应满足512a +≥. 解得:3a ≥-.∵一元二次方程(a +2)x 2+bx +1=0有解.∴20a +≠且()2420b a ∆=-+≥. ∴2a ≠-且()2420b a ∆=-+≥.∴由题意可知.a 仅能取-3或1.当3a =-时.()224324b b ∆=-⨯-+=+.∴b 取﹣4.﹣3.﹣2.1时.均满足0∆≥.当1a =时.()2241212b b ∆=-⨯+=-.∴仅有b 取﹣4时.满足0∆≥.综上分析.当3a =-时.b 取﹣4.﹣3.﹣2.1.满足题意.当1a =时.b 取﹣4满足题意.共有5种情况满足题意.∵由题意可得.两次抽取共有16种情况发生. ∴两次抽取后满足题意的概率为516P =. 故答案为:516. 三、解答题17.某校为了解本校初中学生体能情况.随机抽取部分学生进行了一次测试.并根据标准按测试成绩分成A .B .C .D 四个等级.绘制出以下两幅不完整的统计图.请根据图中信㿝解答下列问题:(1)本次抽取㐱加则试的学生为 人.扇形统计图中A 等级所对的圆心角是 度. (2)请补全条形统计图.(3)若该校初中学生有1200人.请估计该校学生体能情况成绩为C 等级的有多少人数? 【答案】(1)50.108.(2)画图见解析.(3)240人 【解析】解:(1)由B 类22人.占比44%.可得: 总人数为:2244%=50人.扇形统计图中A 等级所对的圆心角是30%360=108, 故答案为:50.108(2)C 类的人数有:501522310---=人. 补全图形如下:(3)该校初中学生有1200人.则该校学生体能情况成绩为C 等级的有:10120024050⨯=人. 答:该校初中学生有1200人.则该校学生体能情况成绩为C 等级的有240人. 18.甲、乙两名队员参加射击训练.每人射击10次.成绩分别如下:平均成绩 中位数 众数 方差甲 a 7 7 1.2 乙 7b8c根据以上信息.(1)填空:a = .b = .c = .(2)从平均数和中位数的角度来比较.成绩较好的是 .(填“甲”或“乙”) (3)若需从甲、乙两名队员中选择一人参加比赛.你认为选谁更加合适?请说明理由. 【答案】(1)7.7.5.4.2.(2)乙.(3)选择乙参加比赛.理由见解析 【解析】解:(1)甲的平均成绩为()()1115264728195122816971010a =⨯+⨯+⨯+⨯+⨯=++++= 乙的成绩从低到高排列为:3.4.6.7.7.8.8.8.9.10. 所以中位数()1787.52b =+= ()()()()()()()222222213747672773879710710c ⎡⎤=-+-+-+-+-+-+-⎣⎦=[]11691034910++++++ =4.2故答案为:7.7.5.4.2.(2)由表中数据可知.甲、乙平均成绩相等.乙的中位数7.5大于甲的中位数7.说明乙的成绩好于甲. 故答案为:乙.(3)选择乙参加比赛.理由:从平均数上看.甲、乙平均成绩相等.总分相等.从中位数上看乙的中位数和众数都大于甲.说明乙的成绩好于甲. 从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定. 从众数看乙的众数是8.甲的众数是7.说明乙成绩要好些. 从折线图看.乙开始时发挥不好.后来乙的成绩呈上升趋势. 故应选乙队员参赛.19.(2021·四川达州·九年级期中)达州市红色旅游景点众多.例如罗江镇张爱萍故居.宣汉县红军公园、王维舟纪念馆.万源战史陈列馆等等.为了解初三学生对达州历史文化的了解程度.随机抽取了男、女各m 名学生进行问卷测试.问卷共30道选择题.现将得分情况统计.并绘制了如图不完整的统计图(数据分组为A 组:18x <.B 组:1822x ≤<.C 组:2226x ≤<.D 组:2630x ≤≤.x 表示问卷测试的分数).其中男生得分处于C 组的有14人.男生C 组得分情况分别为:22.22.22.22.22.23.23.23.24.24.24.25.25.25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别 平均数 中位数 众数 男 20 n22 女202320(1)求m .n 的值.(2)已知初三年级总人数为1800人.请估计参加问卷测试.成绩处于C 组的人数. (3)据了解男生中有两名同学得满分.女生中分数最高的两名同学分别是30分和29分.现从这四名同学中随机抽取两名参加全校总决赛.用树状图或列表的方法求恰好抽到两名男生的概率是多少?【答案】(1)50m =.25n =.见解析.(2)522人.(3)见解析.16【解析】解:(1)由题意得:1428%50m =÷=(人).男生成绩处在A 组的百分比=1-24%-46%-28%=2%.∴男生的中位数成绩为第25名与第26名成绩的平均成绩 ∵()502%24%12⨯+=(人). ∴男生中位数()2525225n =+÷=. 女生C 组人数502132015=---=(人). 条形图如图所示:(2)14151800522100+⨯=(人). 答:估计成绩处于C 组的人数约为522人. (3)如图所以恰好抽到两名男生的概率为:21126=. 20.现有两根长度分别为3cm 和4cm 的线段.同时.在一旁另有8根长度不等的线段.这些线段的长度分别与相应的卡片正面上标注的线段长一致.这8张卡片的背面完全相同.卡片正面上分别标注了2cm 3cm 3cm 4cm 4cm 5cm 6cm 6cm 、、、、、、、.把这8张卡片背面朝上.从中随机抽取一张卡片.以卡片上标注的数据对应的线段作为第三条线段的长度.回答以下问题:(1)“从中抽取的长度能够与3cm 和4cm 组成直角三角形”的概率为________. (2)求抽出的卡片上标注的数据对应的线段能够与3cm 和4cm 的线段组成等腰三角形的概率.(3)小红和小艺打算以取出一张卡片上标注的数据对应的线段能够与3cm 和4cm 组成三角形的周长的奇偶性作为游戏规则.若三角形周长为奇数.则小红胜.若三角形周长为偶数.则小艺胜.请问游戏公平吗?若公平.请说明理由.若不公平.请重新设计一个公平的游戏规则.【答案】(1)18.(2)12.(3)不公平.游戏规则改为:等腰三角形的周长为偶数.则小艺胜.等腰三角形周长为奇数.则小红胜【解析】解:(1)∵该三条线段组成的是直角三角形. ∴2234=5+22437-. ∴符合的卡片有标注5cm 的一张.∴“从中抽取的长度能够与3cm 和4cm 组成直角三角形”的概率为18.故答案为:18.(2)能构成等腰三角形的线段有3cm .3 cm .4 cm .4 cm 共四条.∴抽出的卡片上标注的数据对应的线段能够与3cm 和4cm 的线段组成等腰三角形的概率为4182=. (3)∵3+4=7.∴当抽到的线段为奇数即抽到3cm 、3cm 或5cm 时.三角形的周长为偶数.此时小艺胜的概率为38.当抽到的线段为偶数即抽到2cm 、4cm 、4cm 、6cm 或6cm 时.三角形的周长为奇数.此时小红胜的概率为58. ∴游戏不公平.游戏规则改为:等腰三角形的周长为偶数.则小艺胜.等腰三角形周长为奇数.则小红胜. 21.(2021·浙江·宁波市镇海蛟川书院九年级期中)A 、B 两人去九龙湖风景区游玩.已知每天某一时段开往风景区有三辆舒适程度不同的车.开过来的顺序也不确定.两人采取了。
概率(2)一、考点分析内容要求1、数据的收集、整理、描述与分析等统计的意义Ⅰ2、总体、个体、样本,全面调查及抽样抽查,频数、频率等概念Ⅰ3、利用扇形图、条形图、直方图及折线图进行数据整理Ⅱ4、理解概率的意义,会用列举法及频率求概率Ⅱ5、能利用统计与概率知识解决实际生活中的有关问题Ⅱ二、命题预测概率是新课程标准下新增的一部分内容,从中考试题来看,概率在试题中占有一定的比例,一般在10—15分左右,因此概率已成为近两年及今后中考命题的亮点和热点.在中考命题时,关于概率的考题,多设置为现实生活中的情境问题,要求学生能分清现实生活中的随机事件,并能利用画树状图及列表的方法计算一些简单事件发生的概率.因此学生在复习时要多接触现实生活,多作实验,留心身边的每一件事,把实际问题与理论知识结合到一块来考虑问题.预测2011年将进一步考查在具体情况中求简单事件发生的概率以及运用概率的知识对一些现象作出合理的解释.一选择1、以下说法合理的是()A、小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B、抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖.D、在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51.2、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大.例8用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则应设个白球,个红球,个黄球.【考点要求】本题考查概率实验中小球数目的确定.【思路点拔】因为一共有6个球,需满足条件:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则白球有6×12=3个,红球有6×13=2个,黄球有6×16=1个.【答案】填3,2,1.【错解剖析】部分学生容易忽视总共是6个球,而只考虑三种颜色球之比为3:2:1. 例9在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小华记录了她预测时1分钟跳的次数分别为145,156,143,163,166,则他在该次预测中达标的概率是【考点要求】本题主要考查计算简单事件发生的概率.【思路点拔】这个事件的所有可能出现的结果有5种,其中达标的结果有2种,所以他达标的概率是25. 【答案】25【方法点拔】由预测的达标概率来估计中考达标原概率. 例10我市部分学生参加了2005年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下: 分数段 0-19 20-39 40-59 60-79 80-99 100-119 120-140人 数0 37 68 95 56 32 12 请根据以上信息解答下列问题:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围? (2) 经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3) 决赛成绩分数的中位数落在哪个分数段内? (4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.【考点要求】本题考查利用统计知识对所给数据进行分析,并解决相关问题. 【思路点拔】(1)全市共有300名学生参加本次竞赛决赛,最低分在20-39之间,最高分在120-140之间(2) 本次决赛共有195人获奖,获奖率为65% . (3) 决赛成绩的中位数落在60—79分数段内.(4) 如“120分以上有12人;60至79分数段的人数最多;……”等. 【答案】(1)最低分在20-39之间,最高分在120-140之间; (2)获奖率为65%; (3)60至79分;(4)120分以上有12人;60至79分数段的人数最多.【方法点拔】从问题出发,对表格中的数据进行分析,找出对解题有用的信息.例11市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m )如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67 乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75 (1)甲、乙两名运动员的跳高平均成绩分别是多少? (2)哪位运动员的成绩更为稳定?(3)若预测,跳过1.65m 就很可能获得冠军,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m 才能得冠军呢?【考点要求】本题考查平均数、方差等知识,并能利用方差判断成绩的稳定性,从而帮助作出决策的实际应用问题.【思路点拔】(1) 1.69 1.68x x ==乙甲(2)20.0006s =甲 20.0035s =乙 22s s <乙甲故甲稳定(3)可能选甲参加,因为甲8次成绩都跳过1.65m 而乙有3次低于1.65m ; 也可能选乙参加,因为甲仅3次超过1.70m .(答案不唯一,言之有据即可) 【答案】(1) 1.69 1.68x x ==乙甲;(2)甲稳定;(3)答案不唯一,言之有据即可【方法点拔】回答第(3)问时,并无固定答案,从不同角度可做出不同回答.例12如图所示,A 、B 两个旅游点从2002年至2006年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A 、B 两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100xy =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?【考点要求】本题考查从折线图中获取信息,并结合信息加以评价,解决相关问题. (1)B 旅游点的旅游人数相对上一年增长最快的是2005年. (2)A X =554321++++=3(万元),B X =534233++++=3(万元)2AS =51[(-2)2+(-1)2+02+12+22]=2,2B S =51[02+02+(-1)2+12+02]=52从2002至2006年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.(3)由题意,得 5-100x≤4 解得x ≥100 100-80=20 【答案】(1)2005年;(2)从2002至2006年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游2002 2003 2004 2005 2006 年6 54 3 2 1万人A B图4-4点较B 旅游点的旅游人数波动大;(3)至少要提高20元.【方法点拔】完成第(3)问时要先确定票价与游客人数的函数关系,然后根据题目要求列出不等式,求出相应的票价,再计算出票价提高多少.例13小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图4-5),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么? (2)游戏结束后,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”.请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)【考点要求】本题考查设计用频率估计概率的方法,来估算非规则图形的面积的方案,即用概率知识进行方案设计.【思路点拔】(1)不公平∵P(阴)=95949=ππ-π,即小红胜率为95,小明胜率为94∴游戏对双方不公平(2)能利用频率估计概率的实验方法估算非规则图形的面积.设计方案:① 设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S ).如图4-6所示;② 往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不作记录). ③ 当掷点数充分大(如1万次),记录并统计结果,设掷入正方形内m 次,其中n 次掷图形内.④ 设非规则图形的面积为S ',用频率估计概率,即频率P '(掷入非规则图形内)=≈m n概率P(掷入非规则图形内)=SS 1, 故≈m n mSn S S S ≈⇒11 【答案】(1)不公平;(2)能利用频率估计概率的实验方法估算非规则图形的面积.【方法点拔】本题第(2)问的解决是在第(1)问的逆向思维基础上进行,只有正确解决了第(1)问并能正逆理解才能有第(2)问的方案设计思路. ● 难点突破方法总结统计与概率问题中,中考考查以基础题主为,难题一般为实际运用,解题时应注意以下几点.1.提高运算技能,平均数、中位数、极差、方差、频率等数值都要定的数学运算得到,而运算的结果将会影响到统计的预测.2.提高阅读理解和识别图表的能力,统计问题的试题中,许多问题都是以社会热点为背景,形式灵活多样,综合性较强,强调课内知识和课外活动相结合,调查分析和收集整理相结合;3.注重在具体情境中体会概率的意义,理解概率对生活指导的现实作用;4.加强统计与概率之间的关系,同时要避免将概率内容的学习变成数字运算的练习;图4-5 图4-65.加强训练,能用规范的语言表述自己的观点.●拓展演练一、填空题1.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是__ __.2. 一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.3.2006年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数是__________.4.为了缓解旱情,我市发射增雨火箭,实施增雨作业. 在一场降雨中,某县测得10个面积相等区域的降雨量如下表:区域 1 2 3 4 5 6 7 8 9 10 降雨量(mm)10121313201514151414则该县这10个区域降雨量的众数为_______(mm);平均降雨量为___________(mm ).5.一个骰子,六个面上的数字分别为1、2、3、3、4、5,投掷一次,向上的面出现数字3的概率是_____.6.某校学生会在“暑假社会实践”活动中组织学生进行社会调查,并组织评委会对学生写出的调查报告进行了评比.学生会随机抽取了部分评比后的调查报告进行统计,绘制了统计图如下,请根据该图回答下列问题:(1)学生会共抽取了______份调查报告;(2)若等第A 为优秀,则优秀率为_____________ ;(3)学生会共收到调查报告1000 份,请估计该校有多少份调查报告的等第为E ?7.有100张已编号的卡片(从1号到100号)从中任取1张,计算卡片是奇数的概率是_______,卡片号是7的倍数的概率是________.8.掷一枚正六面体的骰子,掷出的点数不大于3的概率是_________.二、选择题9.在样本方差的计算式S 2=101(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( )A .容量、方差B .平均数、容量C .容量、平均数D .标准差、平均数 10.宾馆客房的标价影响住宿百分率.下表是某一宾馆在近几年旅游周统计的平均数据:客房价(元) 160140120100 住宿百分率 63.8% 74.3% 84.1%95%在旅游周,要使宾馆客房收入最大,客房标价应选( ).A .160元B .140元C .120元D .100元 11.数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( )A .平均数或中位数B .方差或极差C .众数或频率D .频数或众数 12.国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)情年人均收入 3500 3700 3800 3900 4500 村庄个数 0 1 3 3 1 第6题图况如右表,该乡去年年人均收入的中位数是( )A .3700元B .3800元C .3850元D .3900元13.在一所有1000名学生的学校中随机调查了100人,其中有85人上学之前吃早餐,在这所学校里随便问1人,上学之前吃过早餐的概率是( )A .0.85B .0.085C .0.1D .85014.一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )A .825B .15C .1225D .132515.某商店举办有奖销售活动,购物满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个,若某人购物满100元,那么他中一等奖的概率是( )A .1100B .11000C .110000D .1111000016.如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A .25B .310C .320D .1517.军军的文具盒中有两支蜡笔,一支红色的、一支绿色的;三支水彩笔,分别是黄色、黑色、红色,任意拿出一支蜡笔和一支水彩笔,正好都是红色的概率为( )A .56B .13C .15D .1618.甲、乙两位学生一起在玩抛掷两枚硬币的游戏,游戏规定:甲学生抛出两个正面得1分;乙学生抛出一正一反得1分.那么各抛掷100次后他们的得分情况大约应为( )A .甲→25分,乙→25分B .甲→25分,乙→50分C .甲→50分,乙→25分D .甲→50分,乙→50分 三、解答题19.某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:年龄组 13岁 14岁 15岁 16岁 参赛人数5191214(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%. 你认为小明是哪个年龄组的选手?请说明理由.20.小谢家买了一辆小轿车,小谢连续记录了七天每天行驶的路程.第一天 第二天 第三天 第四天第五天 第六天 第七天 路程(千米)46393650549134请你用统计初步的知识,解答下列问题:(1)小谢家小轿车每月(每月按30天计算)要行A B驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升3.45元.请你求出小谢家一年(一年按12个月计算)的汽油费是多少元?21.(连云港市2005)今年“五一黄金周”期间,花果山风景区共接待游客约22.5万人.为了了解该景区的服务水平,有关部门从这些游客中随机抽取450人进行调查,请他们对景区的服务质量进行评分,评分结果的统计数据如下表:档次第一档第二档第三档第四档第五档分值a(分)a≥9080≤a<9070≤a<8060≤a<70a<60人数73 147 122 86 22 根据表中提供的信息,回答下列问题:(1)所有评分数据的中位数应在第几档内?(2)若评分不低于70分为“满意”,试估计今年“五一黄金周”期间对花果山景区服务“满意”的游客人数.22.在青岛市政府举办的“迎奥运登山活动”中,参加崂山景区登山活动的市民约有12000人,为统计参加活动人员的年龄情况,我们从中随机抽取了100人的年龄作为样本,进行数据处理,制成扇形统计图和条形统计图(部分)如下:(1)根据图①提供的信息补全图②;(2)参加崂山景区登山活动的 12000 余名市民中,哪个年龄段的人数最多?(3)根据统计图提供的信息,谈谈自己的感想.(不超过30字)23.袋中装有编号为1、2、3的三个形状大小相同的小球,从袋中随意摸出1球.并且随意抛掷一个面上标有1,2,3,4,5,6各一数字的正方体均匀骰子.(1)如果摸出1号球和骰子朝上的数字为1则甲胜;如果摸出2号球和骰子朝上的数字为2,则乙胜.这个游戏对双方公平吗?(2)如果摸出的球编号为奇数和骰子朝上的数字为奇数则甲胜;如果摸出的球编号为偶数和木块朝上的数字为偶数,则乙胜.这个游戏对双方公平吗?说明理由.24.小明拿着一个罐子来找小华做游戏,罐子里有四个一样大小的玻璃球,两个黑色,两个白色.小明说:“使劲摇晃罐子,使罐子中的小球位置打乱,等小球落定后,如果是黑白相间地排列(如图所示),就算甲方赢,否则就算乙方赢.”他问小华要当甲方还是乙方,请你帮小华出主意,并说明理由.专题四《统计与概率》●习题答案一、填空题1.1114 (提示:实验中,我们关注的结果的次数是11,所有等可能出现的结果的次数是14,故取到黄球的概率1114)2.13 (提示:P (白球)=441417123==++) 3.31(提示:将这组数据按从小到大排列为30、31、31、31、32、34、35,则位于中间位置的一个数为31,即这组数据的中位数是31)4.14,14(提示:14出现次数最多,平均降雨量是把各区域降雨量相加再除以10)5.13(提示:P (向上数字为3)=2163=) 6.50,0.16,40(提示:共抽查8+20+15+5+2=50;优秀率为8÷50=0.16;等第为E 的报告有210004050⨯=) 7.12,750(提示:1到100中奇数有50个,P (卡片是奇数)=5011002=;7的倍数有100÷7≈14,所以P (卡片号是7的倍数)=14710050=) 8.12(提示:点数不大于3的数字有1、2、3,所以P (点数不大于3)=3162=)二、选择题9.C (提示:要熟悉样本方差计算公式的意义)10.B (提示:应综合考虑客房价与住宿百分率两方面因素,要使两者乘积最大) 11.B (提示:反映数据稳定性的量是数据的方差或极差)12.C (提示:表中共有8个数据,位于中间位置的两个的数分别为3800、3900,故本组数据的中位数为(3800+3900)÷2=3850)13.A (提示:100人中吃早餐的概率85÷100=0.85,可以代表1000名学生吃早餐的概率)14.D (提示:P (摸出的是黑球)=1212851225=++,所以P (摸出的不是黑球)=1-1225=1325) 15.C (提示:共有10000张奖券,其中一等奖10个,购物100元,可得一张奖券,故P (中一等奖)=11000016.B (提示:P (A 指奇数)=35,P (B 指奇数)=2142=,所以P (A 、B 同时指奇数)=35×12=310) 17.D (提示:P (两支红色水笔)111236=⨯=) 18.B (提示:抛掷两枚硬币的所有可能是正正、正反、反正、反反.所以P (甲抛出两个正面)=14,P (乙抛出一正一反)=12,各抛100次后,甲得分100×14=25(分),乙得分100×12=50(分))三、解答题 19.解:(1)众数是14岁,中位数是15岁; (2)(5+19+12+14)×28%=14(人) 所以小明是16岁年龄组的选手.20.解:(1)由图知这七天中平均每天行驶的路程为50(千米). ∴每月行驶的路程为30×50=l 500(千米). 答:小谢家小轿车每月要行驶1500千米. (2)小谢一家一年的汽油费用是4 968元.21.解:(1)所有评分数据的中位数应在第三档内.(2)根据题意,样本中不小于70的数据个数为73+147+122=342, 所以,22.5万游客中对花果山景区服务“满意”的游客人数约为1.175.22450342=⨯(万). 22.解:(1)略 (2)60-69岁(3)根据统计图提供的信息,谈谈自己的感想合理即可. 23.解:①公平 因为获胜概率相同都等于118; ②不公平;因为甲获胜概率为31,乙获胜概率为61. 24.解:小华当乙方.理由:设A 1表示第一个黑球,A 2表示第二个黑球,B 1表示第一个白球,B 2表示第二个白球.有24种可能结果(可以利用树状图或表格解释),黑白相间排列的有8种.因此,甲方赢的概率为824=13 ,乙方赢的概率为23,故小华当乙方.。
[统计与概率-第1讲:统计x]高中统计与概率知识点第一节统计【知识梳理】【知识梳理】【方法技巧】【方法技巧】一、解题关键:①耐心解题、反复读题②读懂统计图表:经常需要两种图表结合起来作答。
计算中位数:①先排序,可以从大小到,也可从小到大;②定奇偶,下结论条形(柱状)统计图能清楚的表示出每个项目的具体数据易于比较数据之间的差别易直观找出数据的最大值和最小值扇形统计图圆心角的度数=百分比×360°能清楚表示出各个部分在总体中的百分比易于显示各组数据相对于总体的大小各扇形部分所占整体的百分比之和等于1折线统计图用折线的上升或者下降表示数量的多少及增减变化情况的统计图反映同一事物不同时间的变化发展情况,也可以表示出数量的多少统计图中常见的计算方法:条形统计图:一般涉及补图,也就是求未知组的频数:方法如下:①未知组的频数=样本容量-已知组频数之和②未知组的频数=样本容量×该组所占样本的百分比2、扇形统计图:一般涉及求未知组的百分比或其对应扇形圆心角的度数,方法如下:①未知组百分比=1—已知组百分比之和、②未知组百分比=未知组的频数÷样本容量③若求未知组在扇形统计图中圆心角的度数,利用360°×其所占样本百分比。
【考点突破】【考点突破】考点1、数据的收集例1、下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查变式1、以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高变式2、下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查例2、下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查变式1、下列调查中,适合采用抽样调查的是()A.调查本班同学的视力B.调查一批节能灯管的使用寿命C.学校招聘教师,对应聘人员面试D.对乘坐某班客车的乘客进行安检例3、为了解某市参加中考的__名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是()A.__名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查变式1、为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.抽取的100台电视机的使用寿命D.100台变式2、某校有200名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从这2000名学生中抽取了100名学生进行调查,在这次调查中,数据100是()A.总体B.总体的一个样本C.样本容量D.全面调查变式3、2016年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体考点2、数据的整理与描述例1、小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过15分钟的频率是()A.0.1 B.0.4 C.0.5 D.0.9变式1、将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:组号①②③④⑤⑥⑦⑧频数14111213■131210那么第⑤组的频率是()A.14 B.15 C.0.14 D.0.15例2、某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40变式1、如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A.33 B.36 C.39 D.42变式2、某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课ABCDEF人数4060100根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少例3、武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.九(1)班的学生人数为40B.m的值为10C.n的值为20D.表示“足球”的扇形的圆心角是70°变式1、如图所示,反映的是九(1)班学生外出乘车、步行、骑车的人数直方图的一部分和圆形分布图,下列说法①①九(1)班外出步行有8人;②在圆形统计图中,步行人数所占的圆心角度数为82°;③九(1)班外出的学生共有40人;④若该校九年级外出的学生共有500人,那么估计全年级外出骑车的人约有150人,其中正确的结论是()A.①②③ B.①③④ C.②③ D.②④变式2、如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人B.骑车人数占总人数的10%C.该班总人数为50人D.乘车人数是骑车人数的40%例4、班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(如图).根据图中,发言次数是4次的男生、女生分别有()A.4人,6人B.4人,2人C.2人,4人D.3人,4人变式1、超速行驶是交通事故频发的主要原因之一.交警部门统计某日7:00~9:00经过高速公路某测速点的汽车的速度,得到如下频数分布折线图,若该路段汽车限速为110km/h,则超速行驶的汽车有辆.变式2、下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=.例4、某商场今年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.4月份商场的商品销售总额是75万元B.1月份商场服装部的销售额是22万元C.5月份商场服装部的销售额比4月份减少了D.3月份商场服装部的销售额比2月份减少了变式1、随着经济的发展,人们的生活水平不断地提高.如图是西湖景点2009﹣2011年游客总人数和旅游收入年增长率统计图.已知该景点2010年旅游收入4500万元.下列说法:①三年中该景点2011年旅游收入最高;②与2009年相比,该景点2011年的旅游收入增加[4500×(1+29%)﹣4500×(1﹣33%)]万元;③若按2011年游客人数的年增长率计算,2012年该景点游客总人数将达到280×(1)万人次,其中正确的个数是()A.0 B.1 C.2 D.3考点3、数据的分析例1、在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数变式1、2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差例2、九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数B.众数和极差C.众数和方差D.中位数和极差变式1、小明因流感在医院观察,要掌握他在一周内的体温是否稳定,则医生需了解小明7天体温的()A.众数B.方差C.平均数D.频数例3、某校参加校园青春健身操比赛的16名运动员的身高如表:身高(cm)172173175176人数(个)4444则该校16名运动员身高的平均数和中位数分别是(单位:cm)()A.173cm,173cm B.174cm,174cm C.173cm,174cmD.174cm,175cm变式1、重庆市主城区2016年8月10日至8月19日连续10天的最高气温统计如表:最高气温(℃)383940天数3214则这组数据的中位数和平均数分别为()A.39.5,39.6 B.40,41 C.41,40 D.39,41例4、某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定变式1、某校共有40名初中生参加足球兴趣小组,他们的年龄统计情况如图所示,则这40名学生年龄的中位数是()A.12岁B.13岁C.14岁D.15岁例5、根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15203035户数36795则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25变式1、随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、30变式2、某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18192021人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁例6、为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.54变式1、初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个)123457人数(人)114231这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.7例7、某中学篮球队12名队员的年龄如表:年龄(岁)13141516人数1542关于这12名队员年龄的年龄,下列说法错误的是()A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.8变式1、2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31,则下列表述错误的是()A.众数是31 B.中位数是30 C.平均数是32 D.极差是5变式2、某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12124下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48例8、甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()队员平均成绩方差甲9.72.12乙9.60.56丙9.70.56丁9.61.34A.甲B.乙C.丙D.丁变式1、学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7887s211.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁变式2、学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,最适合的人选是.例9、射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次平均成绩中位数甲108981099①乙107101098②9.5(1)完成表中填空①;②;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩的方差为,你认为推荐谁参加比赛更合适,请说明理由.(注:方差公式s2=[(x1﹣)2+(x2﹣)2+。
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。
学生姓名 年级 学科 数学 上课时间 教师 教学课题 概率与统计 教学目标 1.统计里的基本概念和应用 2.用列表法和树状图法解决概率问题 教学重难点 1.用列表法和树状图法解决概率问题
教学过程 统计 【知识梳理】 一、数据的收集 1.调查方式: (1)全面调查:考察①__________对象的调查叫做全面调查,也叫普查.如:人口普查,安全检查,卫星零部件检查. (2)抽样调查:只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.如:节目收视率,灯泡寿命. (3)简单随机抽样:在抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样. 2.总体、个体、样本、样本容量(每年必考) (1)总体:所要考察的全体对象称为总体. (2)个体:组成总体的每一个对象称为个体. (3)样本:从总体中抽取的一部分个体叫做总体的一个样本. (4)样本容量:一个样本中所包含的个体的数目称为样本容量(易错点) 【典型例题】 1.下列调查中,适宜采用普查方式的是( ) A.了解一批圆珠笔的寿命 B.了解全国九年级学生身高的现状 C.检查一枚用于发射卫星的运载火箭的各零部件 D.考察人们保护海洋的意识 2.在2009年的母亲节,第一学习小组为了解本地区大约有多少中学生知道自己母亲的生日,随机调查了100个中学生,结果其中只有30个学生知道自己母亲的生日.对于这个关于数据收集与处理的问题,下列说法正确的是( ) A.调查的方式是普查 B.本地区约有30%的中学生知道自己母亲的生日 C.样本是30个中学生 D.本地区约有70个中学生不知道自己母亲的生日 二、数据的代表(每年必考)
众数:一组数据中出现的次数最多的数据称为这组数据的众数。 【典型例题】 1.有一组数据:1,3,3,6,7,8,这组数据的中位数是( ) A.3 B.3.5 C.4 D.4.5 2.某车间20名工人每天加工零件数如表所示: 每天加工零件数 4 5 6 7 8 人数 3 6 5 4 2 这些工人每天加工零件数的众数、中位数分别是( ) A.5,5 B.5,6 C.6,6 D.6,5
平均数
算术平均数:一般地,如果有n个数x1,x2,…,xn, 那么x=② 叫做这n个数的算术 平均数加权平均数:一般地,若n个数x1,x2,…,
xn的权分别是w1,w2,…,wn,则x1w1+x2w2+…+xnwnw1+w2+…+wn 叫做这n个数的加权平均数
中位数
定义:将一组数据按照由小到大或由大到小的顺序排列, 如果数据的个数是奇数,则称处于③ 的数 为这组数据的中位数;如果数据的个数是偶数,则称中间 两个数据的平均数为这组数据的中位数注:确定中位数时,一定要先把整组数据按照大小顺序排列, 并确定数据个数的奇偶 3.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则这组数据的众数为( ) A.6 B.8 C.9 D.10 4.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示: 用水量(吨) 15 20 25 30 35 户数 3 6 7 9 5 则这30户家庭该用用水量的众数和中位数分别是( ) A.25,27 B.25,25 C.30,27 D.30,25 三、统计图的分析(每年必考,重点是1和2) 1.扇形统计图能清楚表示各部分在整体中所占百分比. 总结:①各百分比之和等于1;②圆心角的度数=百分比×360°. 2.条形统计图能清楚表示各个项目的具体数目. 总结:①各组数量之和等于样本容量;②未知组的频数=样本容量-已知组频数之和=样本容量×未知组样本所占百分比. 3.折线统计图能清楚反映数据的变化情况. 总结:各组数据之和等于样本容量. 4.频数分布直方图能清楚表示各频数分布的情况. 总结:①各组频数之和等于样本容量;②各组频率之和等于1;③未知组的频数=样本容量-已知组频数之和=样本容量×未知组样本所占百分比.
【典型例题】 1.某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为( )
A.54° B.60° C.72° D.108° 2.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是( ) A.0.1 B.0.2 C.0.3 D.0.4 3.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是 运动员.(填“甲”或“乙”) 4.某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题: (1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据); (2)m= ,n= ; (3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?
概率 一、事件的分类(近五年苏州没考) 类别 定义 概率
确定性事件 必然事件 在一定条件下,必然会发生的事件 ①_________ 不可能事件 在一定条件下,必然不会发生的事件 ②_________ 随机事件 在一定条件下,有可能发生也有可能不发生的事件 0~1之间 二、概率的计算(每年必考) 1.公式法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=③__________. 2.列表法:当一次试验涉及两个因素(例如掷两枚骰子)并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法. 3.画树状图法:当一次试验涉及三个或更多因素(例如从三个口袋中取球时),为了不重不漏地列出所有可能的结果,通常采用画树状图法.(此法方便理解) 4.频率估计概率:一般地,在大量重复试验时,如果事件A发生的频率mn稳定于某个常数p,那么事件A发生的概率P(A)=p. 三、考点归纳 1.几何概率计算 1.(2019•姑苏区校级二模)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是( )
A. B. C. D. 2.(2019•工业园区一模)如图所示的飞镖游戏板是顺次连接正六边形的三个不相邻的顶点后得到的,若某人向该游戏板投掷镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )
A.1 B. C. D. 3.(2019•苏州二模)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )
A. B. C. D. 2.用树状图或列表法求概率 例:(2018遵义)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,如图1所示.方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同. (若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受9折优惠的概率为__________; (2)若顾客选择方式二,请用画树状图法或列表法写出所有可能,并求顾客享受8折优惠的概率.
【训练】 (2018•苏州)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3. (1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).
【课后作业】 一.选择题(共3小题) 1.(2007•中山)袋中有同样大小的4个小球,其中3个红色,1个白色.从袋中任意地同时摸出两个球,这两个球颜色相同的概率是( )
A. B. C. D. 2.(2018•苏州)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )
A. B. C. D. 3.(2015•鄂尔多斯)如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是( )
A. B. C. D. 二.填空题(共3小题) 4.(2019•苏州)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任