第一章随机试验及其概率
- 格式:ppt
- 大小:12.07 MB
- 文档页数:69
内容串讲第一章 随机事件及其概率1. 事件的关系与运算必然事件:Ω—随机试验全部结果构成的集合。
不可能事件:φ 一般事件A :A φ⊂⊂Ω若A 、B 为两事件 若B A ⊂,则其蕴含:“A 发生导致B 发生”。
若φ=⋂=B A AB ,这表示A 发生时,B 必不发生,反之亦然。
若 A-B=A ,则AB=φ; 若 AB=A ,则B A ⊂; 若A ∪B =A ,则B ⊂A 。
若n A A A ,,21为n 个事件,由它们的运算可产生诸多新事件,如1111,,nnni i i i i i i i A A A A ∞=====等等。
例1 事件ni iA 1=发生等于“nAA A ,,21至少有1个发生”。
2.常用概率公式(1)1)(≤≤A P O ,1)(=ΩP ,0)(=φP (2)若B A ⊂,则)()(B P A P ≤(3))()()()(AB P B P A P B A P -+=⋃;当φ=AB ,则)()()(B P A P B A P +=⋃ (4))(1)(A P A P -=(5))()()(AB P A P B A P -=-(6)若n A A A ,,21两两互不相容,则∑===ni in i iA P A P 11)()((7)若n A A A ,,21相互独立,则例2 设1.0)(,4.0)(,2.0)(===AB P B P A P则5.0)()()(1)(1)(=+--=⋃-=⋃AB P B P A P B A P B A P3.古典概型古典概型:当随机试验的结果为有限个且诸结果等可能发生时,任一事件A 的概率为例3 从五个球(其中两个白球、三个红球)中任取两球,设A :取到两个白球;B :一白一红球,求)(),(B P A P(1)无放回抽样:(2)有放回抽样:每次有放回的取一球,连取两次 [注]:若设X 为两次有放回取球中取到白球数,则X ~)52,2(B ,从而12122)521()52()2()(--===C X P A P4.条件概率(1)若0)(>B P ,则)()()(B P AB P B A P =,其中A 为任一事件。
第一章 随机事件和概率第一节 基本概念1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-+→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧Ω→贝努利概型贝叶斯公式/)(独立性全概公式和乘法公式条件概率减法加法五大公式几何概型古典概型随机事件样本空间基本事件随机试验BC C B C B C B A P A E ω2、重要公式和结论1. 设31)(=A P ,21)(=B P ,试就以下三种情况分别求)(A B P : (1)Φ=AB , (2)B A ⊂, (3)81)(=AB P . 解:(1)21)()()()(=-=-=AB P B P AB B P A B P ; (2)61)()()()(=-=-=A P B P A B P A B P ; (3)838121)()()()(=-=-=-=AB P B P AB B P A B P 。
2. 已知41)()()(===C P B P A P ,161)()(==BC P AC P ,0)(=AB P 求事件C B A ,,全不发生的概率。
解:()()1()P ABC P A B C P A B C =++=-++[]1()()()()()()()P A P B P C P AB P AC P BC P ABC =-++---+11111310044416168⎡⎤=-++---+=⎢⎥⎣⎦ 3. 为了防止意外,在矿内同时装有两种报警系统I 和II 。
两种报警系统单独使用时,系统I 和II 有效的概率分别0.92和0.93,在系统I 失灵的条件下,系统II 仍有效的概率为0.85,求(1) 两种报警系统I 和II 都有效的概率;(2) 系统II 失灵而系统I 有效的概率;(3) 在系统II 失灵的条件下,系统I 仍有效的概率。
解:令=A “系统(Ⅰ)有效” ,=B “系统(Ⅱ)有效” 则85.0)|(,93.0)(,92.0)(===A B P B P A P(1))()()()(B A P B P B A B P AB P -=-=862.085.0)92.01(93.0)|()()(=⨯--=-=A B P A P B P (2)058.0862.092.0)()()()(=-=-=-=AB P A P AB A P A B P(3)8286.093.01058.0)()()|(=-== B P B A P B A P 4. 一大批产品的优质品率为30%,每次任取1件,连续抽取5次,计算下列事件的概率:(1)取到的5件产品中恰有2件是优质品;(2) 在取到的5件产品中已发现有1件是优质品,这5件中恰有2件是优质品。
第一章随机事件及其概率习题一1举出几个必然事件、不可能事件和随机事件的例子.解(1)设v10为10次射击命中次数,则{5<v10≤8=——随机事件,{v10≤10}——必然事件,{v10>10}——不可能事件;(2)掷一枚骰子试验中,{出现偶数点}——随机事件,{出现i点}(i=1,2,…,6)——随机事件,{出现点数小于7}——必然事件,{点数不小于7}——不可能事件;(3)盒中有2个白球,3个红球,从盒中随机取出3球,则{取出的3个球中含有红球}——必然事件,{取出的3个球中不含红球}——不可能事件.2互不相容事件与对立事件的区别何在?说出下列各对事件的关系:(1)|x-a|<δ与x-a≥δ;(2)x>20与x≤20;(3)x>20与x<18;(4)x>20与x≤22;(5)20个产品全是合格产品与20个产品中只有一个废品;(6)20个产品全是合格产品与20个产品中至少有一个废品.解对立事件一定是互不相容事件,但互不相容事件不一定是对立事件.对立事件和互不相容事件的共同特点是事件间没有公共的样本点,但两个对立事件的并(和)等于样本空间,即若A与__A是两个对立事件,则A__A=Φ,A+__A=Ω;而两个互不相容事件的并(和)被样本空间所包含,即若A与B是两个互不相容事件,则AB=Φ,且A+B⊂Ω.(1)由于{x||x-a|<δ=∩{x|x-a≥δ}=Φ,且{x||x-a|<δ=∪{x|x-a≥δ}⊂R,所以事件|x-a|<δ与x-a≥δ是互不相容事件;(2)由于{x|x>20}∩{x|x≤20}=Φ,且{x|x>20}∪{x|x≤20}=R,所以事件x>20与x≤20是对立事件;(3)由于{x|x>20}∩{x|x<18}=Φ,且{x|x>20}∪{x|x<18}=R,所以事件x>20与x<18是互不相容事件;(4){x|x>20}∩{x|x≤22}≠Φ,所以事件x>20与x≤22是相容事件;(5)设事件A={20个产品全是合格品},事件B={20个产品中只有一个废品},显然AB=Φ,A+B⊂Ω={20个产品},所以A与B是互不相容事件;(6)设事件A={20个产品全是合格品},事件B={20个产品中至少有一个废品},显然AB=Φ,A+B=Ω={20个产品},所以A与B是对立事件.3写出下列随机试验的样本空间.(1)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(2)生产产品直到得到10件正品,记录生产产品的总件数;(3)测量一汽车通过给定点的速度.解(1)将3只次品都取出,至少要抽取3次,而最多抽取10次即可,故所求样本空间Ω={3,4,…,9,10};(2)最理想的情形是开始生产的10件产品都是正品,故所求样本空间Ω={10,11,12,…};(3)若不考虑汽车的运动方向,则所求样本空间Ω={v|v>0}.若考虑汽车的运动方向,θ表示该运动方向与正东方向之间的夹角,则所求样本空间Ω={(vcosθ,vsinθ)|v>0,0≤θ<2π=.4事件A表示在三件被检验的仪器中至少有一件为废品,事件B表示所有的仪器为合格品,问事件(1)A∪B;(2)A∩B各表示什么意义?解(1)A∪B=Ω; (2)A∩B= .5设A,B,C为三个随机事件,试将下列事件用A,B,C来表示:(1)仅仅A发生;(2)三个事件都发生;(3)至少有两个事件发生;(4)恰有一个事件发生;(5)没有一个事件发生;(6)不多于两个事件发生.解(1)A__B__ C;(2)ABC;(3)AB∪AC∪BC;(4)A__B__C∪__AB__C∪__A__BC;(5)__A__B__C;(6)AB__ C.7袋内装有5个白球,3个黑球,从中任取两个球,求取出的两个球都是白球的概率.解随机试验是从8个球中任取2个,样本空间所包含的样本点总数为n=C28.设事件A={取出两个球均为白球},此时,事件A包含的样本点数为k=C25,故P(A)= k / n = C25 / C28≈0.357.8一批产品共200个,其中有6个废品,求:(1)这批产品的废品率;(2)任取3个恰有一个是废品的概率;(3)任取3个全是废品的概率.解随机试验是从200个产品中任取3个,样本空间所包含的样本点总数为n=C3200.设事件A i={取出的3个产品中含有i个废品},i=1,3,事件B={这批产品的废品率}.若取出的3个产品中含有i个废品,则i个废品必须从6个废品中获得,3-i个合格品必须从194 个合格品中获得,从而事件A i所包含的样本点数为k i=C i6C3-i194 ,i=1,3.故P(B)= 6 / 200 =0.03,P(A1)=k1 / n=C16C2194/C3200≈0.086,P(A3)=k3 /n=C36/C3200≈0.000 02.9两封信随机地向四个邮筒投寄,求第二个邮筒恰好投入一封信的概率.解将两封信随机地投入四个邮筒,共有4×4=16种投法,即n=16.设A={第二个邮筒恰好投入一封信},此时,需将两封信中的一封放入第二个邮筒,共有2种放法,剩下的一封放入其他三个邮筒中的一个,共有3种放法,从而事件A包含的样本点数为k=2×3=6,故P(A)=k/n=6/16=3/ 8.10在房间里有10个人,分别佩带着从1号到10号的纪念章,任意选3人记录其纪念章的号码.(1)求最小号码为5的概率;(2)求最大号码为5的概率.解设事件A={最小号码为5},事件B={最大号码为5},则P(A)=C25/C310=1/12,P(B)=C24 /C310=1/20.11把10本书任意地放在书架上,求其中指定的三本书放在一起的概率.解设事件A={指定的三本书放在一起},将指定的三本书作为一个整体,10本书成为8本,故P(A)=k/n=A33A88/A1010≈0.067.12甲、乙二人约定1点到2点之间在某处会面,约定先到者等候10分钟即离去.设想两个人各自随意地在1点到2点之间选一个时刻到达该处,问“甲乙二人能会面”这事件的概率是多少?解记事件A={两人能会面},以x,y分别表示两人到达时刻,则两人能会面的充要条件为|x-y|≤10,即A={(x,y):|x-y|≤10}.这是一个几何概率问题,样本空间为Ω={(x,y):0≤x,y≤60},P(A)=L(A)/L(Ω)=602-502/602=11/36.13在一间房里有四个人,问至少有两人的生日是在同一个月的概率是多少?解四个人在12个月中任一月出生的可能性是相等的,故基本事件的总数为124.设事件A={四个人生日均不在同一个月},则P(__A)=1-P(A)=1-A412/124=738/1728=41/96.14设有10件样品,编以号码0~9,随机地抽取1件样品,以B表示“取到号码为偶数的样品”;A1表示“取到号码为1的样品”,A2表示“取到号码为2的样品”,A3表示“取到号码大于7的样品”,分别求A1,A2,A3的概率和A1,A2,A3对B的条件概率,并将条件概率与无条件概率做一比较.解由题设可知:P(A1)=1/10,P(A2)=1/10,P(A3)=2/10=1/5,P(A1|B)=0,P(A2|B)= 1/5,P(A3|B)= 1/5 .15某人忘了电话号码的最后一个数字,因而随意拨号,不超过三次而接通所需要电话的概率是多少?如果已知最后一个数是奇数,那么此概率是多少?解(1)设A={三次中至少有一次接通}, __A={三次每次都不通},A i={第i次接通}(i=1,2,3).易知,__A=__A1__A2__A3,故P(__A1)=9/10, P(__A2__A1)=8/9,P(__A3|__A1__A2)=7/8,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 9/10×8/9×7/8=7/10.故P(A)=1- P(__A)=1-7/10=3/10.(2)若已知最后一个数字是奇数,从0到9有十个数,其中五个是奇数,则P(__A1)=4/5, P(__A2__A1)=3/4,P(__A3|__A1__A2)=2/3,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 4/5×3/4×2/3=2/5.故P(A)=1- P(__A)=1-2/5=3/5.16考察甲、乙两地出现春旱的情况,以A,B分别表示甲、乙两地出现春旱这一事件.根据以往气象记录知P(A)=0.2,P(B)=0.15,P(AB)=0.08,求P(A|B),P(B|A)及P(A∪B).解由题设可知:P(A|B)=P(AB)/P(B)=0.08/0.15=8/15,P(B|A)=P(AB)/P(A=0.08/0.2=2/5,P(A∪B)=P(A)+P(B)-P(AB)=0.2+0.15-0.08=0.27.17掷三个均匀骰子,已知第一粒骰子掷出幺点(事件B),问“掷出点数之和不小于10”这个事件A的条件概率是多少?解设事件B={第一粒骰子掷出幺点},事件A={掷出点数之和不小于10},由题设可知,若第一粒掷出幺点,第二粒可能掷出3、4、5、6点;若第二粒掷出3点,第三粒必掷出6点;第二粒掷出4点,第三粒可能为5、6点;第二粒掷出5点,第三粒可能掷出4、5、6点;第二粒掷出6点,第三粒可能掷出3、4、5、6点,则P(A|B)=P(AB)/P(B)=10/36=5/18.18甲、乙二人射击,甲击中的概率为08,乙击中的概率为07,二人同时射击,并假定中靶与否是独立的,求:(1)中靶的概率;(2)甲中、乙不中的概率;(3)甲不中、乙中的概率.解设A、B分别表示甲中靶、乙中靶两事件,则事件A与B独立,又P(A)=0.8,P(B)=0.7,于是,所求概率为(1)P(A∪B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)=0.8+0.7-0.7×0.8=0.94;(2)P(A__B)=P(A)P(__B)=0.8×(1-0.7)=0.24;(3)P(__AB)=P(__A)P(B)=(1-0.8)×0.7=0.14.19从厂外打电话给这个工厂某一车间要由工厂的总机转进,若总机打通的概率为0.6,车间的分机占线的概率为0.3,假定二者是独立的,求从厂外向该车间打电话能打通的概率.解设A,B分别表示从厂外打电话总机打通、分机打通两事件,则事件A,B独立,又P(A)=0.6,P(B)=1-0.3=0.7,所求概率为P(AB)=P(A)P(B)=0.6×0.7=0.42.20设事件A,B的概率均不为0,证明事件A与B独立及互不相容不会同时成立.证若P(A)>0,P(B)>0,则有(1)因A,B两事件相互独立,且P(A)>0,P(B)>0,有P(AB)=P(A)P(B)>0,故AB≠Φ,即A、B不互不相容;(2)因AB=Φ,故P(AB)=P(Φ)=0,而P(A)>0,P(B)>0,故P(A)P(B)>0,于是P(AB)≠P(A)P(B),即A与B不相互独立.21有四个大小质地一样的球,分别在其上写有数字1,2,3和“1,2,3”,令Ai={随机抽出一球,球上有数字i}(i=1,2,3).试证明A1,A2,A3两两独立而不相互独立.证由题设可知P(A1)=1/2,P(A2)=1/2,P(A3)=1/2,且P(A1A2)=1/4= 1/2×1/2,P(A1A3)=1/4= 1/2×1/2,P(A2A3)=1/4= 1/2×1/2 .以上等式说明A1,A2,A3两两独立.但P(A1A2A3)=1/4≠1/2×1/2×1/2=P(A1)P(A2)P(A3).可见事件A1A2A3不相互独立.22加工某一零件共需四道工序,设第一、二、三、四道工序的次品率分别是2%,3%,5%,3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解设Ai={第i道工序出次品},i=1,2,3,4.又设A={零件为次品},则有A=A1∪A2∪A3∪A4.由题知,A1,A2,A3,A4相互独立,__A1 ,__A2 ,__A3 ,__A4也相互独立,于是P(A)=P(A1∪A2∪A3∪A4)=1-P(________________________4321AAAA⋃⋃⋃)=1-P(__A1__A2__A3__A4)=1-P(__A1)P(__A2)P(__A3)P(__A4)=1-0.98×0.97×0.95×0.97≈0.124.23掷三枚均匀骰子,记B={至少有一枚骰子掷出1},A={三枚骰子掷出的点数中至少有两枚一样},问A,B是否独立?解考虑P(A|__B),若__B发生,则三枚骰子都不出现幺点,那么,它们都只有5种可能性(2,3,4,5,6),比不知__B发生时可能取的点数1,2,3,4,5,6少了一个.从5个数字取3个(可重复取),其中有两个一样的可能性,应比6个数字中取3个时,有两个一样的可能性要大些,即P(A)<P(A|__B).由此推出P(A)>P(A|B),故A,B不独立.24一批玉米种子,其出芽率为09,现每穴种5粒,问“恰有3粒出芽”与“不大于4粒出芽”的概率是多少?解设A={恰有3粒出芽了},B={不大于4粒出芽}.把穴中每一粒种子是否发芽看作一次试验,而各粒种子发芽与否是互不影响的,所以5次试验是相互独立的,故P(A)=b3(5,0.9)=C35×0.93×(1-0.9)2=C35×0.93×0.12≈0.073,P(B)=1-b5(5,0.9)=1-C55×0.95×(1-0.9)0=1-0.95≈0.41.25某一由9人组成的顾问小组,若每个顾问贡献正确意见的百分比是70%,现在该机构对某事件可行与否个别征求各位顾问意见,并按多数人意见作出决策,求作出正确决策的概率.解显然本问题是:如果9人中超过4人作出正确决策,则可对该事件可行与否作出正确决策,从而设事件A={作出正确决策},由题设知,n=9,p =0.7,q=0.3,于是bk(n,p)=bk(9,0.7)=Ck9×0.7k×0.39-k(k=5,6,7,8,9),所以5次试验是相互独立的,故P(A)=∑=95kCk9×0.7k×0.39-k≈0.901.26电灯泡使用寿命在1 000小时以上的概率为02,求3个灯泡在使用1 000小时后,最多只有一个坏了的概率.解利用二项概型,有P n(k≤1)=b0(3,0.8)+b1(3,0.8)=C03×0.80×0.23+C13×0.81×0.22=0.104.27用三台机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别等于0.94,0.9,0.95,求全部产品中的合格率.解设事件A、B、C分别表示三台机床加工的产品,事件E表示合格品.依题意,P(A)=0.5,P(B)=0.3,P(C)=0.2,P(E|A)=0.94,P(E|B)=0.9,P(E|C)=0.95,由全概率公式P(E)=P(A)P(E|A)+P(B)P(E|B)+P(C)P(E|C)=0.5×0.94+0.3×0.9+0.2×0.95=0.93.2812个乒乓球中有9个新的,3个旧的,第一次比赛时,同时取出了3个,用完后放回去.第二次比赛时,又同时取出3个,求第二次取出3个球都是新球的概率.解以Ai(i=0,1,2,3)表示事件“第一次比赛从盒中任取的3个球中有i个新球”.可知A0,A1,A2,A3是样本空间Ω的一个划分.以B表示事件“第二次取出的球都是新球”.则P(A0)=C33/C312=1/220,P(A1)=C19C23/C312=27/200,P(A2)=C29C13/C312=27/55,P(A3)=C39/C312=21/55,P(B|A0)=C39/C312=21/55,P(B|A1)=C38/C312=14/55,P(B|A2)=C37/C312=35/220,P(B|A3)=C36/C312=1/11.由全概率公式,得P(B)=∑=3iP(Ai)P(B|Ai)=1/220×21/55+27/220×14/55+27/55×35/220+21/55×1/11=1746/12100≈0.14629发报台分别以概率0.6和0.4发出信号“·”和“-”.由于通信系统受到干扰,当发出信号“·”时,收报台以概率08及02收到信号“·”和“-”;当发出信号“-”时,收报台以概率09及01收到信号“-”和“·”.求:(1)收报台收到信号“·”的概率;(2)当收报台收到信号“·”时,发报台确系发出信号“·”的概率.解设事件B={收到信号“·”},A0={发出信号“·”},A1={发出信号“-”}.显然A0,A1构成一个完备事件组,且P(A0)=0.6,P(A1)=0.4,P(B|A0)=0.8,P(B|A1)=0.1.(1)应用全概率公式,有P(B)=∑=1iP(Ai)P(B|Ai)=0.6×0.8+0.4×0.1=0.52.(2)应用贝叶斯公式有P(A0|B)=P(A0)P(B|A0)/∑=1iP(Ai)P(B|Ai)=0.6×0.8/0.52≈0.923.30设某种病菌在人口中的带菌率为0.83.当检查时,带菌者未必检出阳性反应,而不带菌者也可能呈阳性反应,假定P(阳性|带菌)=0.99,P(阴性|带菌)=0.01,P(阳性|不带菌)=0.05P(阴性|不带菌)=0.95.设某人检出阳性,问他“带菌”的概率是多少?解设A={某人检出阳性},B1={带菌},B2={不带菌}.由题设知P(B1)=0.83,P(B2)=1-0.83=0.17,P(A|B1)=0.99,P(A|B2)=0.05,故所求的概率为P(B1|A)=P(AB1)/P(A)=P(B1)P(A|B1)/∑=2jP(B j)P(A|B j)=(0.83×0.99)/(0.83×0.99+0.17×0.05)=0.8217/(0.0085+0.8217)≈0.9898.31设有五个袋子,其中两个袋子(品种A1)每袋有两个白球和三个黑球,另外两个袋子(品种A2)每袋有一个白球和四个黑球,还有一个袋子(品种A3)中有四个白球和一个黑球,(1)从五个袋中任挑一袋,并从这袋中任取一球,此球为白球的概率;(2)从不同品种的三袋中任挑一袋,并由其中任取一球,结果是白球(事件B),问这球由三个品种的袋子中取出的概率各是多少?解(1)设事件B表示“取到白球”,A i表示“从五个袋中取到A i品种袋子”(i=1,2,3),故P(A1)=2/5, P(A2)=2/5,P(A3)=1/5,P(B|A1)=2/5,P(B|A2)=1/5,P(B|A3)=4/5,利用全概率公式,所求概率为P(B)=∑=31iP(A i)P(B|A i )=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2/5×2/5+2/5×1/5+1/5×4/5=10/25=2/5 .(2)设事件B={取到白球},A i={从不同品种三袋中取到品种A i 袋子}(i=1,2,3),根据题设,欲求下述三个条件概率P(B|A1),P(B|A1),P(B|A1). 于是P(A1)=1/3 ,P(A2)=1/3,P(A3)=1/3,P(B|A1)=2/5 ,P(B|A2)=1/5,P(B|A3)=4/5. 利用全概率公式,取到白球概率为P(B)=∑=31iP(A i)P(B|A i)=1/3×2/5+1/3×1/5+1/3×4/5=7/15.再由贝叶斯公式,有P(A1|B)=P(A1)P(B|A1)/∑=31iP(Ai)P(B|Ai )=(1/3×2/5)/7/15=2/7.P(A2|B)=P(A2)P(B|A2)/∑=31iP(Ai)P(B|Ai )=(1/3×1/5)/7/15=1/7.P(A3|B)=P(A3)P(B|A3)/∑=31iP(Ai)P(B|Ai )=(1/3×4/5)/7/15=4/7.。
第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。
这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。
这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。
随机现象所呈现出的这种规律性,称为随机现象的统计规律性。
概率论与数理统计就是研究随机现象统计规律性的一门数学学科。
§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。
举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。
随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。
随机试验£的所有可能结果的集合称为£的样本空间,记作0。
样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。
上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。
二、随机事件试验£样本空间。
概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。
相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为B A BA =-。
互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时B A ⋃可记为A +B 。
对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂ 第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时 概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -= (4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB) 第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可. 第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B). 乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则 第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立. 三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
第一章 随机事件与概率§1.1 随机事件及其运算1.1.1 随机现象在一定条件下必然出现的现象叫做确定性现象。
在相同的条件下可能出现也可能不出现,但在进行了大量重复地观测之后,其结果往往会表现出某种规律性的现象叫做随机现象。
(举例)为了研究和揭示随机现象的统计规律性,我们需要在相同条件下对随机现象进行大量重复地观测、测量或试验,统称为随机试验。
也有很多随机试验是不能重复的,比如某些经济现象、比赛等。
概率论与数理统计主要研究能够大量重复的随机现象,但也十分注意不能重复的随机现象的研究。
1.1.2 样本空间用{}ωΩ=表示随机现象的一切可能基本结果组成的集合,称为样本空间。
样本空间的元素,即每个基本结果ω,称为样本点。
例1 抛掷一枚硬币,观察正面和背面出现(这两个基本结果依次记为1ω和2ω)的情况,则该试验的样本空间为12{,}ωωΩ=例2 一枚骰子,观察出现的点数,则基本结果是“出现i 点”,分别记为iω(i =1,2,3,4,5,6),则该试验的样本空间为123456{,,,,,}ωωωωωωΩ= 例3 在一只罐子中装有大小和形状完全一样的2个白球和3个黑球,依次在2个白球上标以数字1和2,在3个黑球上标以数字3,4和5,从罐子中任取一个球,用i ω表示“取出的是标有i 的球”(i =1,2,3,4,5),则试验的样本空间为12345{,,,,}ωωωωωΩ=例4 在一个箱子中装有10个同型号的某种零件,其中有3件次品和7件合格品,从此箱子中任取3个零件,其中的次品个数可能是0,1,2,3,试验的样本空间为{0,1,2,3}Ω=例5 某机场问讯电话在一天内收到的电话次数可能是0,1,2,…,则试验的样本空间为{0,1,2,}Ω=L例6 考察某一大批同型电子元件的使用寿命(单位:h ),则使用的样本空间为[0,)Ω=+∞ 注意:1样本空间中的元素可以是数也不是数;2样本空间至少有两个样本点,仅含两个样本点的样本空间是最简单的样本空间;3从样本空间中所含的样本点个数来区分,样本空间可分为有限与无限两类,有限样本空间比如例1、2、3、4,无限比如例5、6,例5中样本点的个数是可列的,但例6中样本点的个数是不可列无限的。
概率论基础知识第一章随机事件及其概率一随机事件§1几个概念1、随机实验:(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。
例如:E1:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数。
2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B,C……例如,在E1中,A表示“掷出2点”,B表示“掷出偶数点”均为随机事件。
3、例如,在E1中,6点”的事件便是不可能事件,4、基本事件:例如,在E1中,“掷出1点”,“掷出2点”,……,“掷出6点”均为此试验的基本事件。
E1中“掷出偶数点”便是复合事件。
5、样本空间: e.例如,在E1中,用数字1,2,……,6表示掷出的点数,而由它们分别构成的单点集{1},{2},…{6}便是E1中的基本事件。
在E2中,用H表示正面,T表示反面,此试验的样本点有(H,H),(H,T),(T,H),(T,T),其基本事件便是{(H,H)},{(H,T)},{(T,H)},{(T,T)}显然,任何事件均为某些样本点构成的集合。
例如,在E1中“掷出偶数点”的事件便可表为{2,4,6}。
试验中所有样本点构成的集合称为样本空间。
记为Ω。
例如,在E1中,Ω={1,2,3,4,5,6}在E2中,Ω={(H,H),(H,T),(T,H),(T,T)}在E3中,Ω={0,1,2,……}例1,一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种。
此试验样本空间所有样本点的个数为NΩ=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为(组合)例2.随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。