概率统计第一章随机事件与概率1-4,
- 格式:ppt
- 大小:950.50 KB
- 文档页数:3
概率论公式!一、随机事件与概率二、随机变量及其分布三、多维随机变量及其分布联合分布函数:对任意的n个实数,,,n个事件同时发生的概率,,,,。
联合分布函数,性质:单调性:对x,y单调非减。
有界性:,,,,,右连续性:对每个变量右连续。
非负性:对任意,,有,,,,,。
二维离散随机变量:只取有限个或可列个数对。
联合分布列:,,i,j=1,2…联合分布列性质:非负性、正则性。
联合密度函数:,,使,,,,。
联合密度函数性质:非负性、正则性、,X的边际分布:,,。
Y的边际分布:,,。
二维指数分布:,,,,其他,是参数其边际分布是一维指数分布。
边际分布列:二维离散随机变量对单个变量求和:,,,边际密度函数:,,,=,为X的边际密度函数。
,,,=,为Y的边际密度函数。
相互独立:多维随机变量的分布函数为,,,边际分布为,对任意n个实数,,:,,称,,相互独立。
可分离:,=,,,,。
①相互独立②非零区域可分解为两个一维区间乘积。
多维离散随机变量函数:,,为n维离散随机变量,则,,为一维离散随机变量。
可加性:同一类分布的独立随机变量和的分布仍属于此类分布。
泊松分布的可加性:,,则.二项分布的可加性:,,,,则,。
连续场合的卷积公式:X和Y独立,密度函数分别为和,则Z=X+Y的密度函数为:正态分布的可加性:,,则。
变量变换法:即数分中求二重积分的变量变换法:的联合密度函数是,,若,,有连续偏导数,且存在唯一反函数,,,其雅可比行列式,,,,二维随机变量,,,则的联合密度函数是:,,,,增补变量法:若,,则可令或。
多维随机变量特征数:数学期望:,的数学期望为,,,在离散场合,,,在连续场合当,,得X的期望。
当,,的X的方差。
期望和方差的性质:和的期望得期望的和:积的期望得期望的积:X和Y独立,则和差的方差得方差的和差:X和Y独立,协方差(相关(中心)矩):,特别的,:正相关;:负相关。
:不相关:①X,Y取值毫无关联②存在某种非线性关系。
第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。
随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。
统计规律性:在大量重复试验或观察中所呈现的固有规律性。
概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。
(1)概率论:从数量上研究随机现象的统计规律性的科学。
(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。
2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。
在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。
样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。
样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。
3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。
事件发生:在一次试验中,当这一子集中的一个样本点出现时。
基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。
两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。
空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。
4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。
①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。
事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。
(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。
第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。
这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。
这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。
随机现象所呈现出的这种规律性,称为随机现象的统计规律性。
概率论与数理统计就是研究随机现象统计规律性的一门数学学科。
§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。
举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。
随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。
随机试验£的所有可能结果的集合称为£的样本空间,记作0。
样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。
上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。
二、随机事件试验£样本空间。
第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。
3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。
5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。
(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。
(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。
(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。
用交并补可以表示为。
(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。
8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。
具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。