2019届中考复习《数据的收集、整理与描述》专题训练题含答案
- 格式:doc
- 大小:778.50 KB
- 文档页数:29
专题05 数据的收集整理与描述一、基础知识1.总体:我们把所要考察的对象的全体叫做总体;2.个体:把组成总体的每一个考察对象叫做个体;3.样本:从总体中取出的一部分个体叫做这个总体的一个样本;4.样本容量:一个样本包括的个体数量叫做样本容量.5.全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等.全面调查的步骤:(1)收集数据;(2)整理数据;(3)描述数据(条形图或扇形图等).6.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.抽样调查的意义:(1)减少统计的工作量;(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.7.判断全面调查和抽样调查的方法在于:①全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况.②注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.调查方法:问卷,观察,走访,试验,查阅资料。
8.扇形统计图:生活中,我们会遇到许多关于数据的统计的表示方法,它们多是利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.(1)扇形统计图的特点:①用扇形面积表示部分占总体的百分比;②易于显示每组数据相对于总体的百分比;③扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只要用各部分分量占总量的百分比之和是否为100%进行检查即可.(2)扇形统计图的画法:把一个圆的面积看成是1,以圆心为顶点的周角是360°,则圆心角是36°的扇形占整个面积的1/10,即10%. 同理,圆心角是72°的扇形占整个圆面积的1/5,即20%. 因此画扇形统计图的关键是算出圆心角的大小.扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数越大;扇形的面积越小,圆心角的度数越小. 扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.(3)扇形统计图的优缺点:扇形统计图的优点是易于显示每组数据相对于总数的大小,缺点是在不知道总体数量的条件下,无法知道每组数据的具体数量.9.条形统计图:用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图. (1)条形统计图的特点:①能够显示每组中的具体数据;②易于比较数据之间的差别.(2)条形统计图的优缺点:条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比.注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.10.频数是指每个对象出现的次数.11.频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数数据总数。
《数据的收集、整理、描述》常考练习题及常考答案与解析一、选择题(共40小题)1.(2019秋•靖远县期末)要调查你校学生学业负担是否过重,选用下列哪种方法最恰当() A.查阅文献资料B.对学生问卷调查C.上网查询D.对校领导问卷调查2.(2019秋•会宁县期末)当前,“低头族”已成为热门话题之一,小颖为了了解路边行人边走路边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查3.(2018秋•槐荫区期末)为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四4.(2014秋•宣汉县校级期末)在设计调查问卷时,下面的提问比较恰当的是() A.我认为猫是一种很可爱的动物B.难道你不认为科幻片比武打片更有意思C.你给我回答到底喜不喜欢猫呢D.请问你家有哪些使用电池的电器5.(2014•仙游县二模) 2.5PM指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测6.(2019春•乐陵市期末)下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查7.(2019春•阜平县期末)下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率.其中适合用抽样调查的个数有()A.1个B.2个C.3个D.4个8.(2019•抚顺县模拟)下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式9.(2018•重庆模拟)下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式10.(2014•渝北区自主招生)下列调查最适合普查的是()A.为了了解重庆2011年初三学生体育考试成绩B.为了了解一批节能灯泡使用寿命C.为了了解我校初三某班每个学生某天睡眠时间D.为了了解我市中学老师的健康状况11.(2019春•左贡县期末)为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A.300名学生是总体B.每名学生是个体C.50名学生是所抽取的一个样本D.这个样本容量是5012.(2019秋•新都区期末)2019年某市有11.7万名初中毕业生参加升学考试,为了了解这11.7万学生的数学成绩,从中抽取5000名学生的数学成绩进行统计,这个问题中一个样本是() A.11.7万名考生B.5000名考生C.5000名考生的数学成绩D.11.7万名考生的数学成绩13.(2016•海宁市一模)中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是()A.调查方式是全面调查B.样本容量是360C.该校只有360个家长持反对态度D.该校约有90%的家长持反对态度14.(2016•白云区一模)为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.抽取的100台电视机的使用寿命D.100台15.(2017•内江)为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是()A.随机抽取100位女性老人B.随机抽取100位男性老人C.随机抽取公园内100位老人D.在城市和乡镇各选10个点,每个点任选5位老人16.(2017•达州三模)在选取样本时,下列说法不正确的是()A.所选样本必须足够大B.所选样本要具有普遍代表性C.所选样本可按自己的爱好抽取D.仅仅增加调查人数不一定能提高调查质量17.(2014春•兴业县期末)为了了解某校学生的每日运动量,收集数据正确的是() A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校某一班级的学生每日的运动量18.(2014春•大城县期末)请指出下列抽样调查中,样本缺乏代表性的是()①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A.①②B.①②④C.②④D.②③19.(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少20.(2019•渝中区校级模拟)某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A.0.96时B.1.07时C.1.15时D.1.50时21.(2015•恩施州)某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.4022.(2014•武汉模拟)为了解某区九年级学生课外体育活动的情况,从该年级学生中随机抽取了4%的学生,对其参加的体育活动项目进行了调查,将调查的数据进行统计并绘制了扇形图和条形图.下列结论:①被抽测学生中参加羽毛球项目人数为30 人;②在本次调查中“其他”的扇形的圆心角的度数为36︒;③估计全区九年级参加篮球项目的学生比参加足球项目的学生多20%;④全区九年级大约有1500 名学生参加乒乓球项目.其中正确结论的个数是()A .1 个B .2 个C .3 个D .4 个23.(2018秋•陵川县期末)如今中学生睡眠不足的问题正愈演愈烈,“缺觉”已是全国中学生们的老大难问题,教育部规定,初中生每天的睡眠时间应为9个小时,鹏鹏记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则鹏鹏这一周的睡眠够9个小时的有()A.1天B.2天C.3天D.4天24.(2017秋•泉州期末)如图是某国产品牌手机专卖店今年812-月高清大屏手机销售额折线统计图.根据图中信息,可以判断相邻两个月高清大屏手机销售额变化最大的是()A.89-月-月B.910-月D.1112-月C.101125.(2017•齐齐哈尔模拟)如图是甲、乙两公司近年销售收入情况的折线统计图,根据统计图得出下列结论,其中正确的是( )A .甲公司近年的销售收入增长速度比乙公司快B .乙公司近年的销售收入增长速度比甲公司快C .甲、乙两公司近年的销售收入增长速度一样快D .不能确定甲、乙两公司近年销售收入增长速度的快慢26.(2019春•中山市期末)要反映无锡市一周内每天的最高气温的变化情况,宜采用( )A .折线统计图B .扇形统计图C .条形统计图D .频数分布直方图 27.(2017秋•港南区期末)能清楚的看出每个项目的具体数量的统计图是( )A .扇形统计图B .折线统计图C .条形统计图D .以上三种均可 28.(2018春•庐江县期末)在一个样本中,50个数据分别落在5个小组内,第1,2,3,5小组数据的个数分别是2,8,15,5,则第4小组的频数是( )A .15B .20C .25D .30 29.(2017秋•资中县期末)“I am a good student .”这句话中,字母“a ”出现的频率是( ) A .2 B .215 C .118 D .111 30.(2016秋•碑林区校级期末)甲校女生占全校总人数的54%,乙校女生占全校总人数的50%,则女生人数( )A .甲校多于乙校B .甲校少于乙校C .不能确定D .两校一样多31.(2018•邵阳县模拟)将50个数据分成五组,编成组号为①~⑤的五个组,频数分布如下表:那么第③组的频率为( )A .14B .7C .0.14D .0.7 32.(2017春•芙蓉区校级期中)一组数据的最大值是97,最小值76,若组距为4,则可分为几组 ( ) A .4B .5C .6D .7 33.(2014春•临沂期末)有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为( )A .4组B .5组C .6组D .7组 34.(2014•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:)mm 的数据分布如下表所示,则棉花纤维长度的数据在832x …这个范围的频率为( )A.0.8 B.0.7 C.0.4 D.0.235.(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.26036.(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元37.(2018秋•雅安期末)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只38.(2014秋•会宁县期末)为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180 B.225 C.270 D.31539.(2014•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.2.5万人B.2万人C.1.5万人D.1万人40.(2016•武汉模拟)小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.A.1080 B.900 C.600 D.108二、填空题(共30小题)41.(2014•高淳县一模)我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为.(填序号)42.(2018春•秦淮区期末)调查乘坐飞机的旅客是否携带危禁物品,适宜采用的调查方式是.(填“普查”或“抽样调查”)43.(2016春•南皮县校级月考)为了了解集贸市场出售的蔬菜中农药残留情况,宜采用调查方式.44.(2015•莆田)要了解一批炮弹的杀伤力情况,适宜采取(选填“全面调查”或“抽样调查”).45.(2017春•淮南期末)为了调查滨湖区八年级学生期末考试数学试卷答题情况,从全区的数学试卷中随机抽取了10本没拆封的试卷作为样本,每本含试卷30份,这次抽样调查的样本容量是.46.(2016春•句容市校级月考)某中学要了解八年级学生的视力情况,在全校八年级中抽取了30名学生进行检测,在这个问题中,总体是,样本是.47.(2015春•邗江区期中)某校为了解该校500名初二学生的期中数学考试成绩,从中抽查了100名学生的数学成绩.在这次调查中,样本容量是.48.(2015秋•盐城校级期中)某课外兴趣小组为了了解所在地区老年人的健康状况,分别做了下列四种不同的抽样调查:①在公园调查了1 000名老年人的健康状况;②在医院调查了1 000名老年人的健康状况;③调查了10名老年邻居的健康状况;④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.你认为抽样比较合理的是(填序号).49.(2014春•平塘县校级期末)某商场在“十一”长假期间平均每天的营业额是15万元,由此推算10月份的总营业额约为1531465⨯=(万元),你认为这样推断是否合理?答:.50.(2014•宁波)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是支.51.(2016春•厦门期末)小明一家三口随旅游团外出旅游,旅途的费用支出情况如图所示,若他们共支出了4800元,则在购物上用去了元.52.(2014春•江阴市校级期中)某校八年级(5)班60名学生在一次英语测试中,优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角是度;表示良好的扇形圆心角是120︒,则良好的学生有人.53.(2014•株洲)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为.54.(2014•义乌市)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是.55.(2016秋•兴宾区校级期末)如下图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,该班共有名学生.56.(2019•六合区模拟)甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是公司(填“甲”或“乙”).57.(2016春•苏州期末)从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第届夏季奥运会.58.(2019春•玉田县期末)已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为,频率为.59.(2016春•无锡期中)一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为.60.(2014•崇左)已知在一个样本中,50个数据分别落在5个组内,第一,二,三,四,五组数据的个数分别是2,8,15,20,5,则第四组频数为.61.(2018•贵阳)某班50名学生在2018年适应性考试中,数学成绩在100?110分这个分数段的频率为0.2,则该班在这个分数段的学生为人.62.(2019春•博白县期末)一组数据的最大值与最小值的差为23,若确定组距为3,则分成的组数是.63.(2019春•西湖区校级月考)某医院20名新生婴儿的体重如下(单位:):kg为了方便统计,欲制定一张频数统计表,若组距为0.4kg,则应分为组,其中3.15~3.55kg这一组的频数是.64.(2017春•鼓楼区期末)体育老师从七年级学生中抽取40名参加全校的健身操比赛.这些学生身高(单位:)cm的最大值为175,最小值为155.若取组距为3,则可以分成组.65.(2019春•白山期末)小明同学按照老师要求对本班40名学生的血型进行了统计,列出如下的统计表.则本班A型血的人数是.66.(2017•普陀区二模)某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是.67.(2015春•江西期末)在样本的频数分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他10个小长方形的面积的和的14,且样本容量是160,则中间一组的频数为.68.(2014•浦东新区二模)为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图),那么仰卧起坐的次数在40~45的频率是.69.(2018秋•太仓市期末)某校在“数学小论文“评比活动中,共征集到论文100篇,对论文评比的分数(分数为整数)整理后,分组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文(分数大于或等于80分为优秀)有篇.70.(2014•湖州)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8C︒的天数分别为a天和b天,则a b+=.三、解答题(共30小题)71.(2015秋•石家庄校级期中)一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为160单位.问:(1)本周哪一天血压最高?哪一天最低?(2)与上周日相比,病人周五的血压是上升了还是下降了?72.(2013秋•新华区期中)李强靠勤工捡学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):(1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?73.(2014秋•郑州期末)为丰富学生的课余生活,陶冶学生的情趣和爱好,重庆一中初2012级开展了学生社团活动.年级为了解学生分类参加情况,进行了抽样调查,制作出如下的统计图.请根据上述统计图,完成以下问题:(1)写出上述统计图中图1的名称是;(2)这次共调查了名学生;参加文学类学生所占的百分比为;在扇形统计图中,表示“书法类”所在扇形的圆心角是度;(3)请把统计图1补充完整;(4)若初2012级共有学生1100名,请估算有多少名学生参加文学类社团?74.(2017•大连)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.请你根据以上的信息,回答下列问题:(1)被调查的学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.75.(2019•宜兴市二模)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为 ,圆心角度数是 度; (2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数. 76.(2015•娄底)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m 分成A 、B 、C 、D 四等(A 等:90100m 剟,B 等:8090m <„,C 等:6080m <„,D 等:60)m <,并绘制出了如图的两幅不完整的统计图:(1)本次模拟测试共抽取了多少个学生? (2)将图乙中条形统计图补充完整;(3)如果该校今年有九年级学生1000人,试估计其中D 等学生的人数.77.(2015•开封县一模)某校为了更好地开展“阳光体育一小时”活动,围绕着“你最喜欢的体育活动项目是什么(只写一项)?”的问题,对本校学生进行了随机抽样调查,以下是根据得到的相关数据绘制的统计图的一部分.各年级学生人数统计表请根据以上信息解答下列问题:(1)该校对多少名学生进行了抽样调查?(2)请将图1和图2补充完整;(3)已知该校七年级学生比九年级学生少20人,请你补全上表,并利用样本数据估计全校学生中最喜欢踢毽子运动的人数约为多少?78.(2014•博山区校级模拟)上海大学青年志愿者协会对报名参加2010年上海世博会志愿者选拔活动的学生进行了一次与大运知识有关的测试,小亮对自己班有报名参加测试的同学的测试成绩作了适当的处理,将成绩分成三个等级:一般、良好、优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)小亮班共有名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有人将参加下轮测试;(3)若这所高校共有1200名学生报名参加了这次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估算全校共有多少名学生可以参加下一轮的测试.79.(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.80.(2015•郴州)郴州市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了本书籍,扇形统计图中的m=,α∠的度数是;(2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.81.(2013•仙桃)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;(3)调查发现,在可回收物中塑料类垃圾占15,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?。
中考数学总复习《数据的收集、整理与描述》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·河北)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )2.(2024·赤峰)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16 000名初中学生中,视力不低于4.8的人数是( )视力4.7以下4.74.84.94.9以上人数3941334047A.120B.200C.6 960D.9 6003.(2024·盐城)甲、乙两家公司2024~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢4.(2024·云南)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1 000人,则该校喜欢跳绳的学生大约有人.5.(2024·北京)某厂加工了200个工件,质检员从中随机抽取10个工件检测了它们的质量(单位:g),得到的数据如下:50.0349.9850.0049.9950.0249.99 50.0149.9750.0050.02当一个工件的质量x(单位:g)满足49.98≤x≤50.02时,评定该工件为一等品.根据以上数据,估计这200个工件中一等品的个数是.6.(2024·盐城)阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8 000名学生进行了抽样调查(设每天阅读时间为t h,调查问卷设置了四个时间选项:A.t<1;B.1≤t<1.5;C.1.5≤t<2;D.t≥2,并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台一系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为,该地区七年级学生“每天阅读时间不少于1小时”的人数约为;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.B层·能力提升7.(2024·济宁)为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是( )A.班主任采用的是抽样调查B.喜爱动画节目的同学最多C.喜爱戏曲节目的同学有6名D.“体育”对应扇形的圆心角为72°8.(2024·长沙)中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势.2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图.类型人数百分比纯电m54%混动n a%氢燃料3b%油车5c%请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了人;表中a=,b=;(2)请补全条形统计图:(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4 000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?9.(2024·扬州)2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1 200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x(分)百分比A组x<605%B组60≤x<7015%C组70≤x<80aD组80≤x<9035%E组90≤x≤10025%根据所给信息,解答下列问题:(1)本次调查的成绩统计表中a=%,并补全条形统计图;(2)这200名学生成绩的中位数会落在组(填A,B,C,D或E);(3)试估计该校1 200名学生中成绩在90分以上(包括90分)的人数.C层·挑战冲A+10.(2024·浙江)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是( )科普讲座( )科幻电影( )AI应用( )科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是(E)辅助学习(F)虚拟体验(G)智能生活(H)其他根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”的有多少人?(2)某学校共有1 200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.参考答案A层·基础过关1.(2024·河北)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是(A)2.(2024·赤峰)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16 000名初中学生中,视力不低于4.8的人数是(D)视力4.7以下4.74.84.94.9以上人数3941334047A.120B.200C.6 960D.9 6003.(2024·盐城)甲、乙两家公司2024~2023年的利润统计图如下,比较这两家公司的利润增长情况(A)A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢4.(2024·云南)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1 000人,则该校喜欢跳绳的学生大约有120人.5.(2024·北京)某厂加工了200个工件,质检员从中随机抽取10个工件检测了它们的质量(单位:g),得到的数据如下:50.0349.9850.0049.9950.0249.99 50.0149.9750.0050.02当一个工件的质量x(单位:g)满足49.98≤x≤50.02时,评定该工件为一等品.根据以上数据,估计这200个工件中一等品的个数是160.6.(2024·盐城)阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8 000名学生进行了抽样调查(设每天阅读时间为t h,调查问卷设置了四个时间选项:A.t<1;B.1≤t<1.5;C.1.5≤t<2;D.t≥2,并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台一系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为,该地区七年级学生“每天阅读时间不少于1小时”的人数约为;【解析】(1)2023年9月份抽样调查的样本容量为80+320+280+120=800;该地区七年级学生“每天阅读时间不少于1小时”的人数约为8 000×800-80=7800 200(人);答案:8007 200(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)【解析】(2)12月份“每天阅读时间不少于1小时”的占比为(1-5%)=95%,9月份×100%=90%“每天阅读时间不少于1小时”的占比为800-80800(95%-90%)÷90%≈5.56%,故该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率为5.56%;(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.【解析】(3)该地区出台相关激励措施的做法收到了良好的效果,“每天阅读时间少于1小时”的比例由9月份的10%减少到12月份的5%,“每天阅读时间大于1.5小时”的比例也有大幅度上升.(合理即可)B层·能力提升7.(2024·济宁)为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是(D)A.班主任采用的是抽样调查B.喜爱动画节目的同学最多C.喜爱戏曲节目的同学有6名D.“体育”对应扇形的圆心角为72°8.(2024·长沙)中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势.2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图.类型人数百分比纯电m54%混动n a%氢燃料3b%油车5c%请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了人;表中a=,b=;【解析】(1)本次调查活动随机抽取了27÷54%=50(人),∴n=50-27-3-5=15∴a%=1550×100%=30%,b%=350×100%=6%,∴a=30,b=6;答案:50306(2)请补全条形统计图:【解析】(2)补全条形统计图如图所示:(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;答:扇形统计图中“混动”类所在扇形的圆心角的度数为108°;【解析】(3)360°×30%=108°(4)若此次汽车展览会的参展人员共有4 000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?答:估计喜欢新能源(纯电、混动、氢燃料)汽车的有3 600人.【解析】(4)4 000×(54%+30%+6%)=3 600(人).9.(2024·扬州)2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1 200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x(分)百分比A组x<605%B组60≤x<7015%C组70≤x<80aD组80≤x<9035%E组90≤x≤10025%根据所给信息,解答下列问题:(1)本次调查的成绩统计表中a=%,并补全条形统计图;【解析】(1)由题意得,C组的人数为200-10-30-70-50=40(人)∴a=40÷200×100%=20%.答案:20补全条形统计图如图所示.(2)这200名学生成绩的中位数会落在组(填A,B,C,D或E);【解析】(2)将这200名学生成绩按照从小到大的顺序排列,排在第100和101名的学生成绩均在D组∴这200名学生成绩的中位数会落在D组.答案:D(3)试估计该校1 200名学生中成绩在90分以上(包括90分)的人数.【解析】(3)1 200×25%=300(人).∴估计该校1 200名学生中成绩在90分以上(包括90分)的人数约为300.C层·挑战冲A+10.(2024·浙江)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是(A)科普讲座(B)科幻电影(C)AI应用(D)科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是(E)辅助学习(F)虚拟体验(G)智能生活(H)其他根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”的有多少人?【解析】(1)80×40%=32(人)答:本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”的有32人;(2)某学校共有1 200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.【解析】(2)1 200×54=324(人).54+30+80+36答:估计该校最喜爱“科普讲座”的学生人数为324.。
中考复习专题训练数据的收集与处理一、选择题1.下列调查中,适合采用全面调查方式的是()A. 对我县某学校某班50名同学体重情况的调查B. 对我县幸福河水质情况的调查C. 对我县某类烟花爆竹燃放安全情况的调查D. 对我县端午节期间市场上粽子质量情况的调查2.为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A. 某市八年级学生的肺活量 B. 从中抽取的500名学生的肺活量C. 从中抽取的500名学生 D. 5003. 下列说法正确的是()A. “购买1张彩票就中奖”是不可能事件B. “掷一次骰子,向上一面的点数是6”是随机事件C. 了解我国青年人喜欢的电视节目应作全面调查D. 甲、乙两组数据,若S甲2>S乙2,则乙组数据波动大4. 某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A. 众数是6B. 中位数是6 C. 平均数是6 D. 方差是45.假如你想知道自己的步长,那么你的调查问题是()A. 我自己B. 我每跨一步平均长度为多少 C. 步长 D. 我走几步的长度6.为了解学生动地课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计,图(1)与图(2)是整理数据后绘制的两幅不完整的统计图,以下结论不正确的是()A. 由这两个统计图可知喜欢“科学常识”的学生有90人B. 若概年级共有12000名学生,则由这两个统计图可估计喜爱“科学常识”的学生有360人C. 在扇形统计图汇总“漫画”所在扇形的圆心角为72°D. 由这两个统计图不能确定喜欢”小说”的人数7.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106](即96≤净重≤106),样本数据分组为[96,98)(即96≤净重<98)以下类似,[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).A. 90B. 75C. 60D. 458.为积极响应我市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A. D等所在扇形的圆心角为15° B. 样本容量是200C. 样本中C等所占百分比是10% D. 估计全校学生成绩为A等大约有900人9.右面的条形统计图描述了某车间供热那日加工零件数的情况,则这些供热那日加工零件数的平均数、中位数、众数分别是()A. 6.4,10, 4B. 6, 6,6 C. 6.4,6,6 D. 6,6,1010. 随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A. 20、20B. 30、20 C. 30、30 D. 20、30二、填空题11.3,5,8,9,7,6,2的中位数是________.12.元旦欢会,班长对全班学生爱吃哪几种水果作了调查,为了确定买什么水果,最值得关注的应该是统计调查数据的________ (填“中位数”、“平均数”或“众数”)13.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成________组.14.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是________.15.学校篮球集训队11名队员进行定点投篮训练,11名队员在1分钟内投进篮框的球数和人数如下表:则11名队员投进篮框的球数的中位数是________个.16.八(1)班组织了一次汉字听写比赛,甲、乙两队各10人,其比赛成绩如下表(10分制):(1)甲队成绩的中位数是________ 分,乙队成绩的众数是________ 分.(2)计算甲队的平均成绩和方差_________(3)已知乙队成绩的方差是1.4,则成绩较为整齐的是________ 队.17.我市某校八年级的数学竞赛小组进行了一次数学测验,如图是反映这次测验情况的频率分布直方图.那么该小组共有________ 人;80.5~90.5这一分数段的频率是________ .三、解答题18.“五一”期间,新华商场贴出促销海报.在商场活动期间,王莉同学随机调查了部分参与活动的顾客,并将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:(1)王莉同学随机调查的顾客有多少人?(2)请将统计图①补充完整;(3)在统计图②中,“0元”部分所对应的圆心角是多少度?(4)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?19.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?20.现在,共享单车已遍布深圳街头,其中较为常见的共享单车有“A.摩拜单车”、“B.小蓝单车”、“C.OFO单车”、“D.小鸣单车”、“E.凡骑绿畅”等五种类型.为了解市民使用这些共享单车的情况,某数学兴趣小组随机统计部分正在使用这些单车的市民,并将所得数据绘制出了如下两幅不完整的统计图表(图1、图2):根据所给信息解答下列问题:(1)此次统计的人数为________人;根据已知信息补全条形统计图________;(2)在使用单车的类型扇形统计图中,使用E型共享单车所在的扇形的圆心角为________度;(3)据报道,深圳每天有约200余万人次使用共享单车,则其中使用E型共享单车的约有________万人次.21.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?参考答案一、选择题A B B D B D A A B C二、填空题11. 612. 众数13. 1014. 0.415. 916. 9;10;1;甲17. 23;三、解答题18. 解:(1)40÷20%=200(人),答:王莉同学随机调查的顾客有200人。
2019备战中考数学专题练习(全国通用)-数据的收集、整理与描述(含解析)一、单选题1.将100个数据分成①~⑧组,如下表所示:那么第④组的频率为()A. 24B. 26C. 0.24D. 0.262.如图,是七年级(1)班学生参加课外兴趣小组人数的扇形统计图,如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是()A. 4B. 5C. 6D. 73.下列调查的样本具有代表性的是()A. 在我市中学生中调查市民观看电视的时间B. 到农村调查我国普通居民的生活水平C. 在医院里调查我国老年人的健康状况D. 调查一个班级里学号为奇数的学生对班主任工作态度的评价4.一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为()A. 9环与8环B. 8环与9环C. 8环与8.5环D. 8.5环与9环给出下列说法:①广州市运动员在最近八届亚运会上获得金牌的运动项目共有15个;②广州市运动员在最近八届亚运会上获得金牌的总数是57;③上表中,击剑类的频率约为0.211.其中正确的有()A. 3个B. 2个C. 1个D. 0个6.要反映我县某初中七年级学生期末考试数学成绩的分布情况(按照分数段描述),宜采用()A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7.下列命题中,假命题是()A. 平行四边形是中心对称图形B. 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C. 对于简单的随机样本,可以用样本的方差去估计总体的方差D. 若x2=y2,则x=y8.对某中学70名女生进行测量,得到一组数据的最大值169cm,最小值143cm,对这组数据整理时测定它的组距5cm,应分组数()A. 5组B. 6组C. 7组D. 8组9.某校为了了解学生在校午餐所需的时间,抽量了20名同学在校午餐所需的时间,获得如下的数据(单位:分):10,12,15,10,16,18,19,18,20,28,22,25,20,18,18,20,15,16,21,16.若将这些数据以4分为组距进行分组,则组数是()A. 4组B. 5组C. 6组D. 7组10.为了调查1000名学生的身高,从18个班中每班随机抽10名学生进行测量,这次测量的总体是()A. 1000名学生B. 180名学生C. 1000名学生的身高D. 180名学生的身高11.某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是( )A. 众数是9B. 中位数是9C. 平均数是9D. 锻炼时间不低于9小时的有14人12.下列说法中正确的是()A. “打开电视,正在播放《新闻联播》”是必然事件.B. 想了解某种饮料中含色素的情况,宜采用抽样调查.C. 数据1,1,2,2,3的众数是3.D. 一组数据的波动越大,方差越小.二、填空题13.如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是________.14.八年级2班通过投票确定班长,小明同学获得总计40张选票中的30张,得票率超过50%,成为班长,小明得票的频率是________ .15.一个样本有100个数据,最大的是351,最小的是75,组距为25,可分为________ 组.16.为了解现在中学生的身体状况,某市抽取100名初三学生测量了他们的体重.在这个问题中,样本是________ .17.在一个不透明的盒子中装有个除颜色外完全相同的球,这个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则的值大约为________.18.某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:(1)共抽取了________名学生的体育测试成绩进行统计.(2)随机抽取的这部分学生中男生体育成绩的平均数是________ ,众数是________;女生体育成绩的中位数是________ .(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是________人?三、解答题19.李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有________名,D类男生有________名,将下面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.20.为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=________%,n=________%,这次共抽查了________名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?21.某市为了了解七年级学生的身体素质情况,随机抽取了本市七年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如图的统计图表,请你结合图表所给的信息解答下列问题:(1)请你根据图表中的信息计算出所抽取的样本容量是多少;(2)请将表格中缺少的数据补充完整;(3)如果本市共有50000名七年级学生,试估计出合格以上(包括合格)的学生有多少人.四、综合题22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数表2:小王抽样调查单位10名职工的健康指数表3:小李抽样调查单位10名职工的健康指数根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为________(2)小张、小王和小李三人中,________的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.答案解析部分一、单选题1.将100个数据分成①~⑧组,如下表所示:那么第④组的频率为()A. 24B. 26C. 0.24D. 0.26【答案】C【考点】频数与频率【解析】【解答】解:根据表格中的数据,得第④组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=0.24.故选C.【分析】先根据数据总数和表格中的数据,可以计算得到第④组的频数;再根据频率=频数÷数据总数进行计算.2.如图,是七年级(1)班学生参加课外兴趣小组人数的扇形统计图,如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是()A. 4B. 5C. 6D. 7【答案】B【考点】扇形统计图【解析】【解答】解:∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%,∴参加课外兴趣小组人数的人数共有:12÷24%=50(人),∴绘画兴趣小组的人数是50×(1﹣14%﹣36%﹣16%﹣24%)=5(人).故选B.【分析】根据参加外语兴趣小组的人数是12人,所占百分比为24%,计算出总人数,再用1减去所有已知百分比,求出绘画的百分比,再乘以总人数即可解答.3.下列调查的样本具有代表性的是()A. 在我市中学生中调查市民观看电视的时间B. 到农村调查我国普通居民的生活水平C. 在医院里调查我国老年人的健康状况D. 调查一个班级里学号为奇数的学生对班主任工作态度的评价【答案】D【考点】抽样调查的可靠性【解析】【解答】解:A、在我市中学生中调查市民观看电视的时间,不具代表性,故此选项错误;B、到农村调查我国普通居民的生活水平,不具代表性,故此选项错误;C、在医院里调查我国老年人的健康状况,不具代表性,故此选项错误;D、调查一个班级里学号为奇数的学生对班主任工作态度的评价,具有代表性,此选项正确.故选:D.【分析】根据抽样调查的可靠性,分别分析得出即可.4.一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为()A. 9环与8环B. 8环与9环C. 8环与8.5环D. 8.5环与9环【答案】C【考点】频数(率)分布直方图,中位数、众数【解析】【解答】解:根据统计图可得:8出现了3次,出现的次数最多,则众数是8;∵共有8个数,∴中位数是第4和5个数的平均数,∴中位数是(8+9)÷2=8.5;故选C.【分析】根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.5.广州市运动员在最近八届亚运会上获得金牌的运动项目种类及金牌数量如下表所示:给出下列说法:①广州市运动员在最近八届亚运会上获得金牌的运动项目共有15个;②广州市运动员在最近八届亚运会上获得金牌的总数是57;③上表中,击剑类的频率约为0.211.其中正确的有()A. 3个B. 2个C. 1个D. 0个【答案】A【考点】统计表【解析】【解答】解:由表中数据可得:广州市运动员在最近八届亚运会上获得金牌的运动项目种类共有15个,广州市运动员在最近八届亚运会上获得金牌的总数为:7+8+2+4+2+1+1+3+2+4+4+12+1+5+1=57,击剑类的频率约为:=0.211,所以三个说法都正确.故选A.【分析】根据表中所列数据可得获得金牌的运动项目种类共有15个;最近八届亚运会上获得金牌的总数;可求出击剑的频率.6.要反映我县某初中七年级学生期末考试数学成绩的分布情况(按照分数段描述),宜采用()A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图【答案】A【考点】扇形统计图【解析】【解答】解:要反映我县某初中七年级学生期末考试数学成绩的分布情况(按照分数段描述),宜采用条形统计图.故选:A.【分析】利用统计图的特点判定即可.7.下列命题中,假命题是()A. 平行四边形是中心对称图形B. 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C. 对于简单的随机样本,可以用样本的方差去估计总体的方差D. 若x2=y2,则x=y【答案】D【考点】线段垂直平分线的性质,命题与定理,抽样调查的可靠性【解析】【分析】依次分析各选项中的命题是否正确,即可作出判断。
北京市朝阳区普通中学2019届初三中考数学复习数据的收集、整理与描述专题复习练习题1.某市近几年连年干旱,市政府采取各种措施扩大水源,措施之一是投资建设水厂,如图是该市水资源扇形图,请根据图中圆心角大小计算出长江水在总供水中所占的百分比为( )A.64% B.60% C.54% D.74%2C.2.01∶1.00∶1.44∶1.83 D.1.24∶1.00∶2.50∶1.833.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,5月份这100户居民节约用水的情况如下表:则5月份这100户居民平均节水的吨数为(精确到0.01吨)( )A.1.00吨 B.1.15吨 C.1.23吨 D.无法确定4. 下列调查中,适合采用全面调查(普查)方式的是( )A.了解西宁电视台“教育在线”栏目的收视率B.了解青海湖斑头雁种群数量C.了解全国快递包裹产生包装垃圾的数量D.了解某班同学“跳绳”的成绩5. 要了解一批电视机的使用寿命,从中任意抽取30台进行试验,在这个问题中,30是( ) A.个体 B.总体 C.总体的一个样本 D.样本容量6. 要调查汇川区某所初中学校学生的平均体重,选取调查对象最合适的是( )A.选该校100名男生 B.选该校100名女生C.选该校七年级的两个班的学生 D.在各年级随机选取100名学生7. 空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是( )A.折线图 B.条形图 C.直方图 D.扇形图8. 某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是( )A.第一天 B.第二天 C.第三天 D.第四天9. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是( )A.45° B.60° C.72° D.120°10. 如图,为了解全班同学对“告别六一”活动的三种方案的意见,七年级某班班委会作了一次全面调查,得到扇形图,若调查结果知,赞成甲方案的有10人,弃权的有6人,则赞成丙方案的有____人.11. 为了解居民月用水量,某市对某区居民用水量进行了抽样调查,并制成如下直方图.(1)这次一共抽查了____户;(2)用水量不足10吨的有____户,用水量超过16吨的有____户;(3)假设该区有8万户居民,估计用水量少于10吨的有多少户?12. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)求本次抽样调查的样本容量;(3)已知该校有1 200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.1---9 ABBDD DDBC10. 1411. (1) 100(2) 55 10(3) (3)55100×8 0000=44 000(户).12. 解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为10÷20%=50(人).∴女生中喜欢舞蹈的人数为50-10-16=24(人),补全条形统计图略.(2)本次抽样调查的样本容量是30+6+14+50=100.(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1 200×30100=360(人).2019-2020学年数学中考模拟试卷一、选择题1.在1x ,12,212x +,3xy π,3x y +,1a m +中分式的个数有()A .2 个B .3 个C .4 个D .5 个2.如图,在五边形ABCDE 中,∠A+∠B+∠E =300°,DP 、CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是( )A.50°B.55°C.60°D.65°3.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA4.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程x 2﹣2(a ﹣1)x+a (a ﹣3)=0有两个不相等的实数根,且以x 为自变量的二次函数y =x 2﹣(a 2+1)x ﹣a+2的图象不经过点(1,0)的概率是( ) A .27B .37C .47D .675( ) A .①②B .③④⑤C .②③D .只有④6.如图,在Rt △ABC 中,∠ACB=90°,CD 是∠ACB 的平分线,交AB 于点D ,过点D 分别作AC 、BC 的平行线DE 、DF ,则下列结论错误的是( )A .AD BD =B .FC DF =C .ACD BCD ∠=∠ D .四边形DECF 是正方形 7.如图,点是矩形的对角线上一点,正方形的顶点、都在边上,,,则的值为( )A. B. C. D.8.已知一个圆锥的底面半径为5cmcm ,则这个圆锥的侧面积为( ) A .cm 2B .30πcm 2C .65πcm 2D .85πcm 29.若2(2)a -+0,则(a+b )2011的值是( ) A .﹣2011B .2011C .﹣1D .110.下列分解因式正确的是( ) A.24(4)x x x x -+=-+ B.2()x xy x x x y ++=+ C.2()()()x x y y y x x y -+-=-D.244(2)(2)x x x x -+=+-11.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A .25B .13C .415D .1512.若一个多边形的内角和为1440°,则这个多边形的边数是( ) A .8 B .10C .12D .14二、填空题13.已知点G 是ABC △的重心,那么ABGABCS S ∆=________ 14.如图,在平面直角坐标系xOy 中,直线32y x =与双曲线 k y x=相交于A 、B 两点,且A 点横坐标为2,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点D ,连接BD ,BC .(1)k的值是________;(2)若AD=AC,则△BCD的面积是________.15.如图所示,已知:点A(0,0),B,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于__________.16.若m是方程x2+x﹣1=0的一个根,则代数式2019﹣m2﹣m的值为_____.17.在矩形ABCD中,AB=6,AD=3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A',当点E、A'、C三点在一条直线上时,DF的长度为_____.18.在半径为2 cm的⊙O中,用刻度尺(单位:cm)测得弦AB的长如图所示,则劣弧AB的长为____cm.三、解答题19.如图,△ABC的边BC为⊙O的直径,边AC和⊙O交点D,且∠ABD=∠ACB.(1)求证:AB是⊙O的切线;(2)若BD=4,AB=5,则BC的长为.20.为落实“绿水青山就是金山银山”的发展理念,某县政府部门决定,招标一工程队负责完成一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知1台A型和2台B型挖掘机同时施工1小时共挖土80立方米,2台A型和3台B型挖掘机同时施工1小时共挖土140立方米.每台A型挖掘机一个小时的施工费用是350元,每台B型挖掘机一个小时的施工费用是200元.(1)分别求每台A型,B型挖掘机一小时各挖土多少立方米?(2)若A型和B型挖掘机共10台同时施工4小时,至少完成1360立方米的挖土量,且总费用不超过14000元.问施工时有哪几种调配方案?且指出哪种调配方案的施工费用最低,最低费用多少元?21.(问题)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(2×n矩形表示矩形的邻边是2和n)(探究)不妨假设有a n种不同的镶嵌方案.为探究a n的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.探究一:用1个2×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?如图(1),显然只有1种镶嵌方案.所以,a1=1.探究二:用2个2×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?如图(2),显然只有2种镶嵌方案.所以,a2=2.探究三:用3个2×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?一类:在探究一每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有1种镶嵌方案;二类:在探究二每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有2种镶嵌方案;如图(3).所以,a3=1+2=3.探究四:用4个2×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有种镶嵌方案;二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有种镶嵌方案;所以,a4=.探究五:用5个2×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?(仿照上述方法,写出探究过程,不用画图)……(结论)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(直接写出a n与a n﹣1,a n﹣2的关系式,不写解答过程).(应用)用10个2×1矩形,镶嵌一个2×10矩形,有种不同的镶嵌方案.22.母亲节前,某淘宝店从厂家购进某款网红礼盒,已知该款礼盒每个成本价为30元.经市场调查发现,该礼盒每天的销售量y(个)与销售单价x(元)之间满足一次函数关系.当该款礼盒每个售价为40元时,每天可卖出300个;当该款礼盒每个售价为55元时,每天可卖出150个.(1)求y与x之间的函数解析式(不要求写出x的取值范围);(2)若该店老板想达到每天不低于240个的销售量,则该礼盒每个售价定为多少元时,每天的销售利润最大,最大利润是多少元?23.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若AC=23AD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.24.为响应建设“美丽乡村”,某村在河岸上种植了柳树和香樟树,已知种植柳树的棵数比香樟树的棵数多22棵,种植香樟树的棵树比总数的三分之一少2棵.问这两种树各种了多少棵?25.某图书馆计划选购甲、乙两种图书.已知甲种图书每本价格是乙种图书每本价格的2.5倍,用800元单独购买甲种图书比用800元单独购买乙种图书要少24本.求:(1)乙种图书每本价格为多少元?(2)如果该图书馆计划购买乙种图书的本数比购买甲种图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本甲种图书?【参考答案】***一、选择题二、填空题13.1 314.1815.2n 16.17.1或1118.2 3三、解答题19.(1)见解析;(2)203.【解析】【分析】(1)根据圆周角定理得到∠BDC=90°,求得∠C+∠DBC=90°,等量代换得到∠ABD+∠DBC=90°,于是得到结论;(2)根据勾股定理得到AD =3,根据相似三角形的性质即可得到结论. 【详解】(1)证明:∵BC 为⊙O 的直径, ∴∠BDC =90°, ∴∠C+∠DBC =90°, ∵∠ABD =∠C , ∴∠ABD+∠DBC =90°, ∴∠ABC =90°, ∴AB 是⊙O 的切线;(2)解:∵∠ADB =90°,BD =4,AB =5, ∴AD =3,∵∠ADB =∠BDC =90°,∠C =∠ABD , ∴△ABD ∽△BCD ,AB ADBC BD ∴= 534BC ∴= 203BC ∴=故答案为:203.【点睛】本题考查了切线的判定和性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键. 20.(1) 每台A 型挖掘机一小时挖土40立方米,每台B 型挖掘机一小时挖土20立方米;(2) 当m =7时,即选择方案: 调配7台A 型、3台B 型挖掘机施工时,w 取得最大值,最大值为12200元 【解析】 【分析】(1)设每台A 型挖掘机一小时挖土x 立方米,每台B 型挖掘机一小时挖土y 立方米,根据“1台A 型和2台B 型挖掘机同时施工1小时共挖土80立方米,2台A 型和3台B 型挖掘机同时施工1小时共挖土140立方米”,可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设有m 台A 型挖掘机参与施工,施工总费用为w 元,则有(10﹣m )台B 型挖掘机参与施工,由4小时至少完成1360立方米的挖土量且总费用不超过14000元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,进而可得出各调配方案,再由施工总费用=每台挖掘机所需费用×调配台数×工作时间,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题. 【详解】解:(1)设每台A 型挖掘机一小时挖土x 立方米,每台B 型挖掘机一小时挖土y 立方米,依题意,得:28023140x y x y +=⎧⎨+=⎩,解得:4020x y =⎧⎨=⎩.答:每台A型挖掘机一小时挖土40立方米,每台B型挖掘机一小时挖土20立方米.(2)设有m台A型挖掘机参与施工,施工总费用为w元,则有(10﹣m)台B型挖掘机参与施工,∵4小时至少完成1360立方米的挖土量,且总费用不超过14000元,∴()()404204101360 350420*********m mm m⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得:7≤m≤10.∴共有四种调配方案,①调配7台A型、3台B型挖掘机施工;②调配8台A型、2台B型挖掘机施工;③调配9台A型、1台B型挖掘机施工;④调配10台A型挖掘机施工.依题意,得:w=350×4m+200×4(10﹣m)=600m+8000,∵600>0,∴w的值随m的增大而增大,∴当m=7时,即选择方案①时,w取得最小值,最小值为12200元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.21.(1)2,3,5;(2)a n=a n﹣1+a n﹣2;(3)89.【解析】【分析】探究四:画图进行说明:a4=2+3=5;探究五:同理在探究三每个镶嵌图的右侧再横着镶嵌2个2×1矩形和探究四每个镶嵌图的右侧再竖着镶嵌个1个2×1矩形,相加可得结论;结论:根据探究四和五可得规律:a n=a n-1+a n-2;应用:利用结论依次化简,将右下小标志变为5和4,并将探究四和五的值代入可得结论.【详解】解:探究四:如图4所示:一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有2种镶嵌方案;二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有3种镶嵌方案;所以,a4=2+3=5.故答案为:2,3,5;探究五:一类:在探究三每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有3种镶嵌方案;二类:在探究四每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有5种镶嵌方案;所以,a5=3+5=8.……结论:a n =a n ﹣1+a n ﹣2;应用:a 10=a 9+a 8=a 7+a 8+a 8=2a 8+a 7=2(a 7+a 6)+a 7=3a 7+2a 6=3(a 6+a 5)+2a 6=5a 6+3a 5=5(a 5+a 4)+3a 5=8a 5+5a 4=8×8+5×5=89. 故答案为:89. 【点睛】本题是规律型问题和方案作图题,主要考查了计数方法,培养学生根据已知问题和图形的关系,进行分析推断,得出规律的能力,并运用类比的方法解决问题.22.(1)y=-10x+700;(2)当该礼盒每个售价定为46元时,每天的销售利润最大,最大利润是3840元 【解析】 【分析】(1)依题意直接设y=kx+b ,再根据图表将其中数据依次带入找出错误数据,从而确立y 与x 的正确函数关系为y=-10x+700.(2)依题意可得30<x≤46,设利润为w ,则w=(x-30)(-10x+700),将其化为顶点式,由于对称轴直线不在30<x≤46之间,应说明函数的增减性,根据单调性代入恰当自变量取值,即可求出最大值. 【详解】解:(1)设y 与x 之间的函数解析式为y=kx+b ,由题意,得40300,55150.k b k b +=⎧⎨+=⎩ 解得 10,700.k b =-⎧⎨=⎩∴ y 与x 之间的函数解析式为y=-10x+700. (2)设每天销售利润为W 元,由题意,得W=(x -30)(-10x+700)=-10x 2+1000x -21000=-10(x -50)2+4000. 由题意,得-10x+700≥240,解得x≤46. ∴ 30<x≤46. 又 -10<0, ∴ 当x<50时,W 随x 的增大而增大.∴ 当x=46时,W 取得最大值,最大值为 -10×(46-50)2+400=3840. 答:当该礼盒每个售价定为46元时,每天的销售利润最大,最大利润是3840元. 【点睛】本题考查了一次函数与二次函数的实际应用,同时考查了由二次函数图象的对称性及增减性分析解决实际问题的能力.23.(1)证明见解析;(2)tan ∠D=23;(3)AB=2028119. 【解析】 【分析】(1)如图,过点O 作OF ⊥AB ,,求出OC=OF,证明OF 为⊙O 半径,且OF ⊥AB ,即可求解; (2)连接CE,根据∠ACE =∠D ,且∠A =∠A ,求出△ACE ∽△ADC ,可得23AC CE AD CD ==,即可求解; (3)根据△ACE ∽△ADC ,得AC AEAD AC=,根据AO =AO ,OC =OF ,证明Rt △AOF ≌Rt △AOC ,求出AF =AC =12,根据∠B =∠B ,∠OFB =∠ACB =90°,证明△OBF ∽△ABC ,可得OF OB BFAC AB BC==,求出BF,即可求解. 【详解】证明:(1)如图,过点O作OF⊥AB,∵AO平分∠BAC,OF⊥AB,∠ACB=90°∴OC=OF,∴OF为⊙O半径,且OF⊥AB∴AB是⊙O切线.(2)连接CE∵DE是直径∴∠DCE=90°∵∠ACB=90°∴∠DCE=∠ACB∴∠DCO=∠ACE∵OC=OD∴∠D=∠DCO∴∠ACE=∠D,且∠A=∠A∴△ACE∽△ADC∴2233AD AC CEAD CD AD===∴tan∠D=CE CD=23(3)∵△ACE∽△ADC∴AC AE AD AC=∴AC2=AD(AD﹣10),且AC=23AD∴AD=18∴AC=12∵AO=AO,OC=OF∴Rt△AOF≌Rt△AOC(HL)∴AF =AC =12∵∠B =∠B ,∠OFB =∠ACB =90° ∴△OBF ∽△ABC∴OF OB BFAC AB BC == 即512125OB BF BF BO ==++ ∴5+25=1260512BO BF BF OB ⎧⎨+=⎩∴BF =600119∴AB =FA+BF =12+600119=2028119【点睛】本题考查的是圆的综合运用,熟练掌握相似三角形和全等三角形是解题的关键. 24.种柳树38棵,种香樟树16棵. 【解析】 【分析】设种植柳树x 棵,种植樟树y 棵,根据题目之间的数量关系建立方程求出其解即可. 【详解】解:设种植柳树x 棵,种植香樟树y 棵,由题意,得2223x y x y y -=⎧⎪+⎨=-⎪⎩, 解得:3816x y =⎧⎨=⎩.答:种植柳树38棵,种植香樟树16棵. 【点睛】本题考查了列二元一次方程组解决实际问题的运用,解答时根据题意之间的数量关系建立方程是关键. 25.(1)乙种图书每本价格为20元;(2)该图书馆最多可以购买10本甲种图书. 【解析】 【分析】(1)根据题意,可以列出相应的分式方程,从而可以求得乙种图书每本的价格;(2)根据题意可以列出相应的不等式,从而可以求得该图书馆最多可以购买多少本甲种图书. 【详解】(1)设乙种图书每本价格为x 元,则甲种图书每本价格为2.5x 元,800800242.5x x+=, 解得,x =20,经检验,x=20是原分式方程的解,答:乙种图书每本价格为20元;(2)设购买甲种图书a本,则购买乙种图书(2a+8)本,由(1)知乙种图书每本20元,则甲种图书每本50元,50a+20(2a+8)≤1060,解得,a≤10,答:该图书馆最多可以购买10本甲种图书.【点睛】本题考查分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的分式方程和不等式,注意分式方程要检验.2019-2020学年数学中考模拟试卷一、选择题1.若二次函数y=ax 2+bx+c (a <0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y >0成立的x 的取值范围是( ). A.x <﹣4或x >2B.﹣4≤x≤2C.x≤﹣4或x≥2D.﹣4<x <22.有理数a 在数轴上的位置如图所示,下列结论正确的是( )A .﹣2+a 是负数B .﹣2+a 是正数C .a ﹣2是负数D .a ﹣2为03.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x ,那么x 满足的方程为( ) A .10(1+x )2=42 B .10+10(1+x )2=42C .10+10(1+x )+10(1+2x )=42D .10+10(1+x )+10(1+x )2=42 4.如图,曲线2C 是双曲线15:(0)C y x x=>绕原点O 逆时针旋转45︒得到的图形,P 是曲线2C 上任意一点,过点P 作直线PQ l ⊥于点Q ,且直线l 的解析式是y x =,则POQ △的面积等于( )A B .52C .72D .55.雾霾天气对北京地区的人民造成严重影响,为改善大气质量,北京市政府决定投入7600亿元治理雾霾,请你对7600亿元用科学记数法表示( ) A .7.6×1010元B .76×1010元C .7.6×1011元D .7.6×l012元6.如图所示的立体图形,从左面看到的图形是( )A.B.C.D.7.民间剪纸是中国古老的传统民间艺术,它历史悠久,风格独特,深受国内外人士所喜爱,下列剪纸作品中,是轴对称图形的为()A.B.C.D.8.如图AB、AC与⊙O相切于B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是()A.65°B.115°C.65°和115°D.130° 和50°9.用简便方法计算,将98×102变形正确的是()A.98×102=1002+22B.98×102=(100﹣2)2C.98×102=1002﹣22D.98×102=(100+2)210.如图,在▱ABCD中,对角线AC,BD相交于点O,AC=6,BD=10,则AD的长度可以是()A.2B.7C.8D.1011.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=( )A.12B.34C.45D.3512.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是()A.35°B.45°C.55°D.125°二、填空题13.如图,在▱ABCD中,AD>CD,按下列步骤作图:①分别以点A,C为圆心,大于12AC的长为半径画弧,两弧交点分别为点F,G;②过点F,G作直线FG,交AD于点E.如果△CDE的周长为8,那么▱ABCD的周长是_____.14.若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn=_____.15.已知13a cb d==,则a cb d++的值是_____.16.数据﹣5,3,2,﹣3,3的平均数是___,众数是___,中位数是___,方差是___.17.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是______.18.若m,n为实数,且m+8,则m+n的算术平方根为_____.三、解答题19.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)20.李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A ,B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 与x 轴交于点N (n ,0),如图3.当m 时,n =_____.21.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B 作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO.延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE. (1)求证:CD 是⊙O 的切线; (2)若3AE DE ==,求AF 的长.22.如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,CF ∥AB ,交DE 的延长线于点F ,连接BF ,CD .求证:四边形CDBF 是平行四边形.23.如图,△ABC 中,∠BAC =90°.(1)尺规作图:在BC上求作E点,使得△ABE与△ABC相似;(保留作图痕迹,不写作法)(2)在(1)的条件下,AC=3,AB=4,求△AEC的周长.24.计算:.25.丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A、B两班学生测试成绩的平均数、中位数、方差如下:根据以上信息,回答下列问题:(1)补全数学成绩频数分布直方图;(2)写出表中m、n的值;(3)请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).【参考答案】***一、选择题二、填空题13.14.715.1 316.0, 3, 2, 11.2.17.218.3三、解答题19.见解析.【解析】【分析】,由此可知新正方形的边长等于三个小正方形组成的矩形对角线的长.于是,画出分割线,拼出新正方形即可.【详解】解:所画图形如图所示.【点睛】此题主要考查对正方形与三角形之间关系的灵活掌握.20.4【解析】【分析】先根据已知条件得出△PDE的边长,再根据对称的性质可得出PF⊥DE,DF=EF,锐角三角函数的定义求出PF的长,由m MF的长,再根据相似三角形的判定定理判断出△PFM∽△PON,利用相似三角形的性质即可得出结论.【详解】∵AB=3,△PDE是等边三角形,∴PD=PE=DE=1,以DE的垂直平分线为y轴建立直角坐标系,∵△PDE关于y轴对称,∴PF⊥DE,DF=EF,DE∥x轴,∴PF=2, ∴△PFM ∽△PON ,∵m∴FM32, ∴PF FM OP ON =,即22=32ON , 解得:ON =4﹣故答案为:4﹣【点睛】本题考查的是相似三角形的判定与性质及等边三角形的性质,能根据题意得出FM 的长是解答此题的关键.21.(1)详见解析;(2)2【解析】【分析】(1)欲证明CD 是⊙O 的切线,只要证明∠CDO =∠CBO =90°,由△COB ≌△COD 即可解决问题.(2)先证明∠BAO =∠OAD =∠DAE =∠ABO =30°,在Rt △AEF 中利用30度性质以及勾股定理即可解决问题.【详解】解:(1)如图,连接OD .∵BC 为圆O 的切线,∴∠CBO =90°.∵AO 平分∠BAD ,∴∠OAB =∠OAF .∵OA =OB =OD ,∴∠OAB =∠ABO =∠OAF =∠ODA ,∵∠BOC =∠OAB +∠OBA ,∠DOC =∠OAD +∠ODA ,∴∠BOC =∠DOC ,在△COB 和△COD 中, CO CO COB COD OB OD ⎧⎪∠∠⎨⎪⎩===,∴BOC ≌△DOC ,∴∠CBO =∠CDO =90°,∴CD是⊙O的切线;(2)∵AE=DE,∴AE DE=,∴∠DAE=∠ABO,∴∠BAO=∠OAD=∠ABO∴∠BAO=∠OAD=∠DAE,∵BE是直径,∴∠BAE=90°,∴∠BAO=∠OAD=∠DAE=∠ABO=30°,∴∠AFE=90°,在Rt△AFE中,∵AE=3,∠DAE=30°,∴EF=12AE=32,∴AF=.【点睛】本题考查切线的判定和性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,发现特殊角30°,属于中考常考题型.22.见解析.【解析】【分析】易证△CEF≌△BED,得CF=BD,根据一组对边平行且相等的四边形是平行四边形可证【详解】证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF是平行四边形.【点睛】此题主要考查平行四边形的判定,解题关键是熟记平行四边形的判定方法23.(1)见解析;(2)△AEC的周长=36 5【解析】【分析】(1)过点A作BC的垂线即可;(2)在直角三角形ABC中,根据勾股定理可求出BC长,由(1)知,△ABE 与△ABC相似,相似三角形对应线段成比例,由此,可求出AE,CE长,即知△AEC的周长.【详解】解:(1)如图所示,点E即为所求;(2)由(1)可得,△ABE∽△CBA,∵∠BAC=90°,AC=3,AB=4,∴BC=5,∴AE=125,CE=95,∴△AEC的周长=3+125+95=365.【点睛】本题主要考查了相似三角形的性质,确定相似三角形成比例的线段是解题的关键.24.4【解析】【分析】根据负整数指数幂,绝对值的非负性,三角函数进行解答即可.【详解】解:原式=2+2-+=4.【点睛】此题考查绝对值,负整数指数幂,特殊角三角函数,掌握运算法则是解题关键.25.(1)见解析;(2)m=81,n=85;(3)略.【解析】【分析】(1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;(2)根据中位数的定义求解即可;(3)可以从中位数和方差的角度分析,合理即可.【详解】解:(1)A、B两班学生人数=5+2+3+22+8=40人,A班70≤x<80组的人数=40-1-7-13-9=10人,A、B两班学生数学成绩频数分布直方图如下:(2)根据中位数的定义可得:m=80822+=81,n=85852+=85;(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.【点睛】本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.。
中考数学总复习《数据的收集整理与描述》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________知识点一:与统计调查有关的几个概念(1)总体:我们把所要考察的对象的全体叫做总体;(2)个体:把组成总体的每一个考察对象叫做个体;(3)样本:从总体中取出的一部分个体叫做这个总体的一个样本;(4)样本容量:一个样本包括的个体数量叫做样本容量.知识点二:全面调查和抽样调查调查的方式有两种:全面调查和抽样调查:1.全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等.全面调查的步骤:(1)收集数据;(2)整理数据;(3)描述数据(条形图或扇形图等).2.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.抽样调查的意义:(1)减少统计的工作量;(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.3.判断全面调查和抽样调查的方法在于:①全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况.②注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.调查方法:问卷,观察,走访,试验,查阅资料。
知识点三:扇形统计图和条形统计图及其特点1.扇形统计图:生活中,我们会遇到许多关于数据的统计的表示方法,它们多是利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.(1)扇形统计图的特点:①用扇形面积表示部分占总体的百分比;②易于显示每组数据相对于总体的百分比;③扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只要用各部分分量占总量的百分比之和是否为100%进行检查即可.(2)扇形统计图的画法:把一个圆的面积看成是1,以圆心为顶点的周角是360°,则圆心角是36°的扇形占整个面积的1/10,即10%. 同理,圆心角是72°的扇形占整个圆面积的1/5,即20%. 因此画扇形统计图的关键是算出圆心角的大小.扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数越大;扇形的面积越小,圆心角的度数越小. 扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.(3)扇形统计图的优缺点:扇形统计图的优点是易于显示每组数据相对于总数的大小,缺点是在不知道总体数量的条件下,无法知道每组数据的具体数量.2.条形统计图:用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图. (1)条形统计图的特点:①能够显示每组中的具体数据;②易于比较数据之间的差别.(2)条形统计图的优缺点:条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比.注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.知识点四:直方图1.频数是指每个对象出现的次数.2.频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数数据总数。
中考数学总复习《数据的收集、整理与描述》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.为了解全班同学对新闻、体育、动漫和娱乐四类电视节目的喜爱情况,张亮同学调查后绘制了一个扇形统计图(如图),则喜欢体育类节目所对应扇形的圆心角的度数为( )A.135∘B.144∘C.150∘D.140∘2.谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的( )A.6%B.10%C.20%D.25%3.若扇形统计图中有4组数据,其中前三组数据相应圆心角度数分别为72∘,108∘,144∘则这四组数据所占圆心角度数的比为( )A.2:3:4:1B.2:3:4:3C.2:3:4:5D.比无法确定4.为了解我市某中学“书香校园”的建设情况,在该校随机抽取了50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校1500名学生中,一周课外阅读时间不少于4小时的人数约为( )A.300B.600C.900D.12006.某校为了解七年级学生的体能情况,随机调查了其中100名学生1min跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数x在120≤x<200范围内的学生人数占抽查总人数的百分比为( )A.43%B.50%C.57%D.73%7.班长对全班同学说:“请同学们投票,选举一位同学.”你认为班长在收集数据过程中的失误( ).A.没有确定调查对象B.没有规定调查方法C.没有展开调查D.没有明确调查问题8.我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A.条形图B.扇形图C.折线图D.频数分布直方图二、填空题(共5题,共15分)9. 4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如下:阅读时间x/h x≤3.5 3.5<x≤55<x≤6.5x>6.5若该校共有1200名学生,试人数12864估计全校每周课外阅读时间在5h以上的学生人数为.如果取组距为2,应分为组,第一组的起点定为18.5,在26.5∼28.5范围内的频数是.11.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.12.某校对八年级600名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生(含非常喜欢和喜欢两种情况)约为名.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为.三、解答题(共3题,共45分)14.为了了解某地区七年级男学生的身高情况,随机抽取了 60 名七年级男学生,测得他们的身高 x (单位:cm )分别为:156162163172160141152173180174157174145160153165156167161172178156166155140157167156168150164163155162160168147161157162165160166164154161158164151169169162158163159164162148170161(1) 将数据适当分组,并绘制相应的频数分布直方图;(2) 如果身高在 155 cm ∼170 cm (含 155 cm ,不含 170 cm )的男学生为正常,试求身高正常的男学生所占的百分比.15.某中学开展“阳光体育一小时”活动.根据学校实际情况,决定开设四项运动项目:A :踢键子;B :篮球;C :跳绳;D :乒乓球.为了了解学生最喜欢哪一种运动项目,随机抽取了 n 名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下的统计图,若参与调查的学生中喜欢A 方式的学生的人数占参与调查学生人数的 40%.根据统计图提供的信息,解答下列问题:(1) 求 n 的值.(2) 求参与调查的学生中喜欢C 的学生的人数.(3) 根据统计结果,估计该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.16.某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了如图两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1) 共抽取名学生进行问卷调查.(2) 补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数.(3) 该校共有2500名学生,请估计全校学生喜欢足球运动的人数.参考答案1. 【答案】B2. 【答案】C3. 【答案】A4. 【答案】C5. 【答案】C6. 【答案】C7. 【答案】D8. 【答案】B9. 【答案】40010. 【答案】116511. 【答案】240012. 【答案】40;10813. 【答案】40%14. 【答案】(1) 在样本数据中,最大值是180,最小值是140,它们的差是180−140=40,当=8,即分为8组.组距为5时405(2) 由频数分布直方图可知,身高在正常范围内的男学生有12+20+10=42(名),×100%=70%.其所占的百分比是426015. 【答案】(1) n=80÷40%=200(人).(2) 参与调查的学生中喜欢C的学生的人数为:200−80−30−50=40(人).×1800=90(人).(3) 40−30200答:该校1800名学生中喜欢C方式的学生比喜欢B方式的学生多90人.16. 【答案】(1) 200(2) 足球的人数为:200−60−30−24−36=50(人)×360∘=108∘.“篮球”所对应的圆心角的度数为60200=625(人).(3) 2500×50200答:全校学生喜欢足球运动的人数为625人.。
天津市和平区普通中学2019届初三数学中考复习数据的收集、整理与描述专题复习训练题1.下列调查中最适合采用全面调查的是( C )A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量2.电视剧《铁血将军》在某市拍摄,该剧展示了抗日民族英雄范筑先的光辉形象,某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查,在这次调查中,样本是( C )A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况3.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是( A )A.0.1 B.0.2 C.0.3 D.0.44.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是( B )A.30,40 B.45,60 C.30,60 D.45,405.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A,B,C,D,E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( D )A.18户 B.206.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》于2019年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有__2700__人.7.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图①和图②是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是__6000__.8.某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有__240__名学生,根据调查数据分析,全校约有__400__名学生参加了音乐社团;请你补全条形统计图. 补图略9.为了解某市九年级学生的体育测试成绩和课外体育锻炼时间的情况,现从全市九年级学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.(1)(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间如表所示,请将表格填写完整(记学生课外体育锻炼时间为x 小时);(3)全市九年级学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.解:(1)样本扇形图中体育成绩“良好”所对扇形圆心角的度数为(1-15%-14%-26%)×360°=162°(3)62120×14400=7440(人),估计课外体育锻炼时间不少于4小时的学生人数为7440人10.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是__100__;(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?解:(2)用水15吨~20吨的户数为100-10-36-24-8=22(户),补图略;“15吨~20吨”部分的圆心角的度数=360°×22100=79.2°(3)6×10+22+36100=4.08(万户),则该地区6万用户中约有4.08万户的用水全部享受基本价格11.“每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增加了,某校有学生8200人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表所示:(1)表格中m =__30__(2)该校每天锻炼时间达到1小时的约有__820__人.12.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题: (1)在这次问卷调查中一共抽取了__50__名学生,a =__30__%; (2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为__36__度; (4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.解:(2)无所谓态度的人数为15人,补图略(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为10+2050×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人)13.某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)以上严重污染2(1) 统计表中m=__20__,n=__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹2019-2020学年数学中考模拟试卷一、选择题1.已知实数a 、b 在数轴上的位置如图所示,化简 )A.2a -B.2aC.2bD.2b -2.如图,在Rt △ACB 中,∠ACB =90°,AC =BC ,点D 是AB 上的一个动点(不与点A ,B 重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接DE ,DE 与AC 相交于点F ,连接AE ,若,AD =2BD ,则CF 等于( )A. B. C. D.3.如图,△ABC 纸片中,AB =BC >AC ,点D 是AB 边的中点,点E 在边AC 上,将纸片沿DE 折叠,使点A 落在BC 边上的点F 处.则下列结论成立的个数有( )①△BDF 是等腰直角三角形;②∠DFE =∠CFE ;③DE 是△ABC 的中位线;④BF+CE =DF+DE .A.1个B.2个C.3个D.4个4.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是A.12B.1C.23 D.135.如图,证明矩形的对角线相等知:四边形ABCD 是矩形,求证:AC BD =,以下是排乱的证明过程:①AB CD ∴=,ABC DCB ∠=∠.②BC CB =,③四边形ABCD 是矩形.④AC DB ∴=.⑤ABC∴≌DCB .证明步骤正确的顺序是( )A.③①②⑤④B.②①③⑤④C.②⑤③①④D.③⑤②①④6.已知a ,b ,c 满足a+c=b ,4a+c=-2b ,抛物线y=ax²+bx+c(a >0)过点A (-12,y 1),B y 2,)C (3,y 3),则y 1,y 2,y 3的大小关系为( ) A.y 2<y 1<y 3B.y 3<y 1<y 2C.y 2<y 3<y 1D.y 1<y 2<y 37.下列运算正确的是( )=﹣5 B.(x 3)2=x 5 C.x 6÷x 3=x 2D.(﹣14)-2=16 8.一个几何体的三种视图如图所示,则这个几何体是( )A .长方体B .圆锥C .圆台D .圆柱9.如果关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是( ) A .1k <B .1k ≤C .1k >D .1k ³10.下列各式计算正确的是( )A B .(﹣a 2b )3=a 6b 3C .a 3﹒a=a 4D .(b ﹢2a)(2a ﹣b)=b 2﹣4a 211.如图,AB A B ''=,A A '∠=∠,若ABC A B C '''∆≅∆,则还需添加的一个条件有( )A.1种B.2种C.3种D.4种12.从五个数510152,,,.π-- 中任意抽取一个作为x ,则x 满足不等式2x ﹣1≥3的概率是( ) A .15 B .25C .35D .45二、填空题13.如图,在矩形ABCD 中, AB=3,BC=2,点E 为线段AB 上的动点,将△CBE 沿 CE 折叠,使点B 落在矩形内点F 处,则AF 的最小值为__.14.使代数式3xx +有意义的x 的取值范围是_______ . 15.如图,图形B 是由图形A 旋转得到的,则旋转中心的坐标为_____.16.若关于x的方程(a+3)x|a|-1﹣3x+2=0是一元二次方程,则a的值为________.17.计算的结果是_____.1811x-有意义的x的取值范围是______.三、解答题19.原题:“如图1,正方形ABCD中,BG是外角∠CBH的角平分线,E是AB上一点(不与A、B重合),EF⊥DE交BG于F,求证:DE=EF.”证明的思路是:在AD上取一点M,使AM=AE,连接ME,由AAS可得△DME≌△EBF.阅读了以上材料后,请你解答下列问题:(1)如图2,如果将原题中的条件“正方形”改为“正三角形”,“EF⊥DE”改为“∠DEF=60°”,其它条件不变,原题的结论还成立吗?如果成立请给出正面,如果不成立请给出反例.(2)如果将原题中的条件“正方形”改为“正五边形”,请你模仿原题写出一个真命题,并在图3中画出相应的图形.20.由于部分医疗机构药品储存规范落实不到位,近年来药品抽查不合格率不断上升.药监局对三家制药厂的某一种药品进行检测,抽样和检测结果的数据如表:(1)将不合格率填在表内(用百分数表示);(2)绘制条形统计图表示这三种药品的不合格率.21.已知:如图,⊙O是△ABC的内切圆,切点分别是D、E、F,AB=AC.连结AD,交⊙O于H;直线HF 交BC的延长线于G.(1)求证:圆心O在AD上;(2)求证:CD=CG;(3)若AH:AF=3:4,CG=10,求HF的长.22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=mx的图象在第一象限的交点为C,CD⊥x轴于D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的表达式;(2)当x>0时,比较kx+b与mx的大小.23.庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;(2)若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;(3)在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?24.如图1,已知在矩形ABCD中,AD=10,E是CD上一点,且DE=5,点P是BC上一点,PA=10,∠PAD =2∠DAE.(1)求证:∠APE=90°;(2)求AB的长;(3)如图2,点F在BC边上且CF=4,点Q是边BC上的一动点,且从点C向点B方向运动.连接DQ,M是DQ的中点,将点M绕点Q逆时针旋转90°,点M的对应点是M′,在点Q的运动过程中,①判断∠M′FB 是否为定值?若是说明理由.②求AM′的最小值.25.学习完一次函数后,小荣遇到过这样的一个新颖的函数:y=|x-1|,小荣根据学校函数的经验,对函数y=|x-1|的图象与性质进行了探究。
2019备战中考数学基础必练(人教版)-第十章-数据的收集、整理与描述(含解析)一、单选题1.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A. 0.1B. 0.2C. 0.3D. 0.42.以下问题,不适合用全面调查的是()A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱3.某学习小组对所在城区初中学生的视力情况进行抽样调查,如图是这些同学根据调查结果画出的条形统计图如图所示,则下列说法中不正确的是()A. 本次抽查活动共抽查了2100名学生B. 本次抽查活动中视力不低于4.8的学生人数占总人数的66.7%C. 本次抽查活动中视力不低于4.8学生人数中的极差为300人D. 由活动结果可以知道随着年级的增长,视力低于4.8的人数越来越多,呈上升趋势,那么同年级中抽到视力不低于4.8的学生的概率将越来越小4.现将100个数据分成了①﹣⑧,如表所示,则第⑤组的频率为()组号①②③④⑤⑥⑦⑧频数 3 9 15 22 15 17 8A. 11B. 12C. 0.11D. 0.125.下列方法属于“划记法”的是()A. 我国古代的象形文字B. 鲁滨孙漂流时为了记日期而在船上刻的线C. 古罗马数字D. 阿拉伯数字6.某地区为了估计该地区梅花鹿的数量,先捕捉了10只梅花鹿给它们做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉30只梅花鹿,发现其中5只有标记,从而估计这个地区的梅花鹿约有()只.A. 50B. 55C. 60D. 657.根据下列条形统计图,下面回答正确的是()A. 步行人数为50人B. 步行与骑自行车的人数和比坐公共汽车的人要少C. 坐公共汽车的人占总数的50%D. 步行人最少只有90人8.在下列四个选项中,不适合普查的是()A. 了解全班同学每周体育锻炼的时间B. 鞋厂检查生产鞋底能承受的弯折次数C. 学校招聘新教师,对应聘教师面试D. 某中学调查九年级全体540名学生的平均身高9.图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()A. 39.0℃B. 38.5℃C. 38.2℃D. 37.8℃二、填空题10.如图是地球表面的一部分,扇形A表示地球某几种水域占总面积的40%,则此扇形的圆心角为________.11.七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):月均用水量x/m30<x≤55<x≤1010<x≤1515<x≤20x>20频数/户12 20 3频率0.12 0.07若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有________户.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min 0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数) 20 16 9 5则通话时间超过15min的频率为________.13.从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第________届夏季奥运会.14.某校初中三个年级学生总人数为3000人.三个年级学生人数所占比例如图所示,则九年级学生人数为________.15.已知一个样本容量为60,在频数分布直方图中,各小长方形的高比为2:4:1:3,那么第二组的频数是________.16.一个样本有100个数据,最大的是351,最小的是75,组距为25,可分为________ 组.17.某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在________ 组.三、综合题18.某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.19.为了解高邮市6000名九年级学生英语口语考试成绩的情况,从中随机抽取了部分学生的成绩(满分30分,得分均为整数),制成下表:分数段(x分)x≤1011≤x≤1516≤x≤2021≤x≤2526≤x≤30人数10 15 35 112 128(1)本次抽样调查共抽取了________名学生;(2)若用扇形统计图表示统计结果,则分数段为x≤10的人数所对应扇形的圆心角为________°;(3)学生英语口语考试成绩的众数________落在11≤x≤15的分数段内;(填“会”或“不会”)(4)若将26分以上(含26)定为优秀,请估计该区九年级考生成绩为优秀的人数.答案解析部分一、单选题1.【答案】B【考点】频数与频率【解析】【分析】,从直方图可知在5.5~6.5组别的频数是8,总数是40可求出解.【解答】∵在5.5~6.5组别的频数是8,总数是40,∴=0.2.故选B.【点评】本题考查频数分布直方图,从直方图上找出该组的频数,根据,可求出解.2.【答案】D【考点】全面调查与抽样调查【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】D【考点】条形统计图【解析】【解答】解:A、∵200+600+300+500+200+300=2100,∴本次抽查活动中共抽查了2100名学生,故说法正确;B、∵600+500+300=1400,∴本抽查中视力不低于4.8的学生人数为1400人,∵1400÷2100=≈66.7%,∴本次抽查活动中视力不低于4.8的学生人数约占总人数的66.7%,故说法正确;C、本次抽查活动中视力不低于4.8学生人数中的极差为:600﹣300=300人,故说法正确;D、由活动结果可以知道,视力低于4.8的人数七年级为200人,八年级为300人,九年级为200人,所以视力低于4.8的人数不是越来越多,没有呈上升趋势,同年级中抽到视力不低于4.8的学生的概率也不是越来越小,故说法错误.故选D.【分析】利用各部分的和等于总体求出抽查的学生总数,即可判断A;用视力不低于4.8的学生人数除以总人数,即可判断B;根据极差的定义,用视力不低于4.8的学生人数的最大值减去最小值,即可判断C;根据条形统计图可知,视力低于4.8的人数七年级与九年级都是200人,八年级为300人,由此即可判断D.4.【答案】C【考点】频数与频率【解析】【解答】解:100﹣3﹣9﹣15﹣22﹣15﹣17﹣8=11,11÷100=0.11,故选:C.【分析】根据各小组频数之和等于数据总和求出第⑤组的频数,根据频率=频数÷数据总和,求出第⑤组的频率.5.【答案】B【考点】数据分析【解析】【分析】根据“划记法”的特征依次分析各项即可判断。
2019备战中考数学巩固复习-第十章数据的收集、整理与描述(含解析)一、单选题1.下图是初三(2)班同学的一次体检中每分钟心跳次数的频率分布直方图(次数均为整数)。
已知该班只有5位同学的心跳每分钟75次。
请观察下图,指出下列说法中错误的是( )A. 数据75落在第2小组B. 第4小组的频率为0.1C. 心跳为每分钟75次的人数占该班体检人数的D. 数据75一定是中位数2.下列调查中,最适合用普查方式的是()A. 了解全市高三年级学生的睡眠质量B. 了解我校同学对国家设立雄安新区的看法C. 对端午出游旅客上飞机前的安全检查D. 对电影“摔跤吧,爸爸”收视率的调查3.在一次有24 000名学生参加的数学质量抽测的成绩中,随机抽取2 000名考生的数学成绩进行分析,则在该抽样中,样本指的是()A. 所抽取的2 000名考生的数学成绩B. 24000名考生的数学成绩C. 2000D. 2000名考生4.某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,统计图如图所示,则本次测试共抽调人数为()A. 120B. 150C. 180D. 无法确定5.有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A. 4组B. 5组C. 6组D. 7组6.在下列实数,,-,3.14,π.其中有理数出现的频率为()A. 20%B. 40%C. 60%D. 80%7.已知数据:10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频数为4的一组是()A. 5.5~7.5B. 7.5~9.5C. 9.5~11.5D. 11.5~13.58.小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.根据统计图表中的数据和评分规则,本次竞选中小明的综合得分数为()A. 85B. 85.2C. 85.3D. 85.59.下列调查中,最适宜采用普查方式的是()A. 对量子科学通信卫星上某种零部件的调查B. 对我国初中学生视力状况的调查C. 对一批节能灯管使用寿命的调查D. 对“最强大脑”节目收视率的调查10.为了了解某校八年级1000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,以下说法正确的是()A. 1 000名学生是总体B. 抽取的50名学生是样本容量C. 每位学生的身高是个体D. 被抽取的50名学生是总体的一个样本二、填空题11.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为________人.12.本市某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动,为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,将收集的数据给绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是________ .13.某班50名学生右眼视力的检查结果如下表:视力0.1 0.1 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5人数 1 1 3 4 3 4 4 6 8 10 6视力在1.0以上(包括1.0)的为正常,则视力正常的人数占全班人数的________%;该班学生视力情况________(选填“好”“一般”“差”).14.如果你要购买一枝钢笔,你最关心________ .15.为了知道一张课桌所占的空间,应该通过测量收集数据,包括课桌的________ 、________ 和________16.经调查,某校学生上学所用的交通方式中.选择“自行车”、“公交车”、“其他”的比例为7:3:2,若该校学生有1200人,则选择“公交车”的学生人数是________ .三、综合题17.在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有________盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于________度.(3)请将图2的统计图补充完整.(4)通过计算得出________类礼盒销售情况最好.18.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.(1)请根据以上信息,直接补全条形统计图(图1)和扇形统计图(图2);(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史?(3)若该校共有学生540人,请估算全校有多少学生选修篮球课?19.为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(90~100 分);B(80~89 分);C(60~79 分);D(0~59 分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题.(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200 人,若分数为80 分(含80 分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?答案解析部分一、单选题1.【答案】D【考点】频数(率)分布直方图,数据分析,中位数、众数【解析】【分析】分别根据中位数,频率的概念分析各选项的说法,得出各选项的正误。
中考数学总复习《数据的收集、整理与描述》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.以下调查中,适宜全面调查的是( )A.了解全班同学每周体育锻炼的时间B.调查某批次汽车的抗撞击能力C.调查春节联欢晩会的收视率D.鞋厂检测生产的鞋底能承受的弯折次数2.要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有2条鱼是刚才做了记号的鱼,假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数大约为( )A.5000B.2500C.1750D.12503.统计得到的一组数据有80个,其中最大值为139,最小值为48,取组距为10,则可分成( )A.10组B.9组C.8组D.7组4.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类;②去图书馆收集学生借阅图书的记录;③绘制扇形图来表示各个种类所占的百分比;④整理借阅图书记录并绘制频数分布表.正确统计步骤的顺序是( )A.② →③ →① →④B.③ →④ →① →②C.① →② →④ →③D.② →④ →③ →①5.甲、乙两超市今年上半年盈利情况统计图如图,下面结论不正确的是( )A.甲超市利润逐月减少B.乙超市利润在1月至3月间逐月增加C.6月份两家超市利润相同D.乙超市在7月份的利润必超过甲超市6.如图的两个统计图,女生人数多的学校是( )A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定7.甲校男生占全校总人数的50%,乙校女生占全校总人数的50%,则甲乙两校女生人数相比( )A.甲校多于乙校B.甲校少于艺校C.甲乙两校一样多D.不能确定8.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是( )分.A.7.2B.8.1C.9.1D.9.2二、填空题(共5题,共15分)9.某住宅小区5月1日∼5月5日每天用水量变化情况如图所示,则2日到3日的每天用水量的增长率为.10.为了了解某中学七年级450名学生期中考试的数学成绩,从中抽取了50名学生期中考试的数学成绩进行分析,在这次抽样分析过程中,总体是,样本是,个体是,样本容量是.11.将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,则该班共有人.12.某校为了了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图所示的扇形统计图,那么该校通过手机收看“空中课堂”的学生人数是.13.某校八年级共240名学生参加某次数学测试,教师从中随机抽取了40名学生的成绩进行统计,共有12名学生成绩达到优秀等级,根据上述数据估算该校八年级学生在这次数学测试中达到优秀的人数大约有人.三、解答题(共3题,共45分)14.某校部分男生分3组进行引体向上训练.对训练前后的成绩进行统计分析,得到相应数据的统计图(如图).每一个组男生都认为本组的训练效果最好,请分别提出一个理由来支持他们的观点.15.王老师布置的社会调查作业是:了解国庆黄金周期间游客在南京旅游的满意率.小明在多家旅游公司共调查了100名导游,并将调查结果绘制成如图1所示的统计图;小红到一个景点调查了10名游客,并将调查结果绘制成如图2所示的统计图.(1) 小明和小红根据自己的统计图都说国庆黄金周期间游客在南京旅游的满意率很高.你同意吗?为什么?(2) 为了客观地了解国庆黄金周期间游客在南京旅游的满意率,你认为应怎样收集数据?16.如图是若干名同学在引体向上训练时一次测试成绩(单位:个)的频数分布折线图.(1) 参加这次测试的同学共有多少名?(2) 测试成绩为9个的频数是多少?频率是多少?(3) 分布在两端虚设的频数为0的是哪两个成绩?参考答案1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】D5. 【答案】D6. 【答案】D7. 【答案】D8. 【答案】C9. 【答案】20%10. 【答案】该中学七年级450名学生期中考试的数学成绩;50名学生期中考试的数学成绩;每名学生期中考试的数学成绩;5011. 【答案】6012. 【答案】2513. 【答案】7214. 【答案】答案不唯一,如:第一组认为本组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大;第二组认为本组训练效果最好,因为训练后第二组平均成绩比训练前增长的个数最多;第三组认为本组训练效果最好,因为训练后第三组平均成绩最好.15. 【答案】(1) 不同意他们的说法.小明调查的对象不具有代表性,小红调查的对象人数太少.(2) 为了客观地了解国庆黄金周期间游客在南京旅游的满意率,可以在多个不同景点了解不同类型的人,调查的人数越多越好.16. 【答案】(1) 2+4+5+10+2=23(名).(2) 测试成绩为9个的频数是10,频率是10÷23≈0.43.(3) 5和11.。
备战中考数学基础必练数据的收集整理与描述(含解析)2019备战中考数学基础必练-数据的收集整理与描述(含解析)一、单选题1.某地区为了估计该地区梅花鹿的数量,先捕捉了10只梅花鹿给它们做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉30只梅花鹿,发现其中5只有标记,从而估计这个地区的梅花鹿约有()只.A. 50B. 55C. 60D. 652.今年我市有9万名初中毕业生参加升学考试,为了了解9万名考生的数学成绩,从中抽取2019名考生数学成绩进行统计分析.在这个问题中总体是()A. 9万名考生 B. 2019名考生 C. 9万名考生的数学成绩 D. 2019名考生的数学成绩D. 9组5.已知一个样本:23,24,25,26,26,27,27,27,27,27,28,28,28,29,29,30,30,31,31,32,那么频数为8的范围是()A. 24.5~26.5B. 26.5~28.5C. 28.5~30.5D. 30.5~32.56.下面调查适合用选举的形式进行数据收集的是()A. 5月4日是什么节日B. 某班谁在期末考试中数学得第一C. 某班学生的身高D. 谁最适合当班长7.为了解学生动地课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计,下面是整理数据后绘制的两幅不完整的统计图,以下结论不正确的是()A. 由这两个统计图可知喜欢“科学常识”的学生有90人B. 若该年级共有12019名学生,则由这两个统计图可估计喜爱“科学常识”的学生有360人C. 在扇形统计图汇总“漫画”所在扇形的圆心角为72°D. 由这两个统计图不能确定喜欢“小说”的人数二、填空题8.为了了解500名初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,可得频率分布表:组别分组频数频率1 89.5~99.540.042 99.5~109.530.033 109.5~119.5460.464 119.5~129.5B c5 129.5~139.560.066 139.5~149.520.02合计 a 1.00(1)这个问题中,总体是________;样本容量a=________;(2)第四小组的频数b=________,频率c=________.9.某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为________个.10.为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 48 0.2B a 0.25C 84 0.35D 36 bE 12 0.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为________ ,b的值为________ 并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?________ (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年12019名九年级学生中体育成绩为优秀的学生人数约有________ 名11.本溪电视台某日发布的当天的天气预报,我市Ⅱ各地区当天最高气温(℃)统计如表:气温(℃)10 11 12 13 14 15 17频数1 1 13221那么这些城市当天的最高气温的众数和中位数分别是________ ,________ .12.在对一组数据进行整理列表时,常常通过画“正“字的方法表示数据的个数,这种方法叫________ .13.某人走进一家商店,进门付l角钱,然后在店里购物花掉当时他手中钱的一半,走出商店付1角钱;之后,他走进第二家商店付1角钱,在店里花掉当时他手中钱的一半, 走出商店付1角钱;他又进第三家商店付l角钱,在店里花掉当时他手中钱的一半,出店付1角钱;最后他走进第四家商店付l角钱,在店里花掉当时他手中钱的一半, 出店付1角钱,这时他一分钱也没有了.该人原有钱的数目是________角.14.某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是________支.三、解答题15.原创大型文化情感类节目《朗读者》在中央电视台综合频道、综艺频道播出后引起社会各界强烈反响.小明想了解本小区居民对《朗读者》的看法,进行了一次抽样调查 ,把居民对《朗读者》的看法分为四个层次:A.非常喜欢;B.较喜欢;C.一般;D.不喜欢,并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次调查的居民总人数为________人;(2)将图1和图2补充完整;(3)图2中“C” 层次所在扇形的圆心角的度数为________.(4)估计该小区4000名居民中对《朗读者》的看法表示喜欢(包括A层次和B层次)的大约有________人.16.国家规定“中小学生每天在校体育活动时间不低于1小时”,为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t <1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是,并补全直方图;(2)本次调查数据的中位数落在哪组内?(3)若该辖区约有24000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?17.某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵.四、综合题18.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等说个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):选择意向文学鉴赏国际象棋音乐舞蹈书法其他所占百分比a 20% b10%5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“音乐舞蹈”社团的学生人数.19.某校团委要组织班级歌咏比赛,为了确定一首喜欢人数最多的歌曲作为每班必唱歌曲,团委提供了代号为A,B,C,D四首备选曲目让学生选择(每个学生只选课一首),经过抽样调查后,将采集的数据绘制如下两幅不完整的统计图,请根据图1,图2所提供的信息,解答下列问题:(1)在抽样调查中,求选择曲目代号为A的学生人数占抽样总人数的百分比;(2)请将图2补充完整;(3)若该校共有1530名学生,根据抽样调查的结果,估计全校选择曲目代号为D的学生有多少名?20.在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.月信息消费额分组统计表组别消费额(元)A 10≤x<100B 100≤x<200C 20≤x<300D 300≤x<400E x≥40请结合图表中相关数据解答下列问题:(1)这次接受调查的有________户;(2)在扇形统计图中,“E”所对应的圆心角的度数是________;(3)请你补全频数直方图;(4)若该社区有2019户住户,请估计月信息消费额不少于200元的户数是多少?答案解析部分一、单选题1.【答案】C【考点】用样本估计总体【解析】【解答】解:设这个地区的梅花鹿约有x只,则10:x=5:30解之得,x=60故选C.【分析】第二次捕捉30只梅花鹿,发现其中5只有标记,即有标记的占到总数的,再根据总共有10只有标记,求出总数.2.【答案】C【考点】总体、个体、样本、样本容量【解析】【分析】根据总体的定义仔细分析题意即可得到结果。
天津市河西区普通中学2019届初三数学中考复习数据的收集与整理专题训练1.下列调查中,适宜采用普查方式的是( D )A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件2.电视剧《铁血将军》在我市拍摄,该剧展示了抗日民族英雄范筑先的光辉形象,某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查,在这次调查中,样本是( C )A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况3.在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为( B )A.145,136 B.140,136 C.136,148 D.136,14542根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( A )A.甲 B.乙 C.丙 D.丁5.为了了解一段路车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数、中位数分别是( D )A.众数是80千米/时,中位数是60千米/时B.众数是70千米/时,中位数是70千米/时C.众数是60千米/时,中位数是60千米/时D.众数是70千米/时,中位数是60千米/时6.小明在射击训练中,五次命中的环数分别为5,7,6,6,6,则小明命中环数的众数为__6__,平均数为__6__.7.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__90__分.8.一组数据2,3,x,5,7的平均数是4,则这组数据的众数是__3__.9.某学校为了解本校学生课外阅读的情况,从全体学生中抽取了部分学生进行调查,并将调查结果绘制成统计表,已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学10.作为宁波市政府民生实事之一的公共自行车建设工程已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车辆的统计,结果如下:(1)求这7天日租车辆的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车辆多少万车次?(3)市政府在公共自行车建设项目中共投入9600万元,估计2019年共租车辆3200万车次,每车次平均收入租车费0.1元,求2019年租车费收入占总投入的百分率.(精确到0.1%)解:(1)根据条形统计图得:出现次数最多的为8,即众数为8;将数据按照从小到大顺序排列为7.5,8,8,8,9,9,10,中位数为8;平均数为(7.5+8+8+8+9+9+10)÷7=8.5(2)根据题意得30×8.5=255(万车次),则估计4月份(30天)共租车辆255万车次 (3)根据题意得3200×0.19600=130≈3.3%,则2019年租车费收入占总投入的百分率为3.3%11.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁被录用.解:(1)x 甲=83+79+903=84,x 乙=85+80+753=80,x 丙=80+90+733=81,∴排名顺序为甲、丙、乙(2)由题意可知,甲不符合规定,即甲不能被录用,又∵x ′乙=85×60%+80×30%+75×10%=82.5,x ′丙=80×60%+90×30%+73×10%=82.3,∴乙将被录用12.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数.现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数; (2)写出这50名工人加工出合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.解:(1)∵把合格品数从小到大排列,第25,26个数都是4,∴这50名工人加工出的合格品数的中位数(2)设加工的合格品数是5的人数是x 人,加工的合格品数是6的人数是y 人,则2+6+8+10+x +y +4+2=50,即x +y =18,∵当x =11~17时,y =7~1,∴此时众数为5;当x =1~7时,y =17~11,∴此时众数为6;当x =8时,y =10,∴此时众数为4,6;当x =9时,y =9,∴此时众数为4;当x =10时,y =8,∴此时众数为4,5.综上所述,这50名工人加工出合格品数的众数的可能取值为4,5,6 (3)这50名工人中,合格品数低于3件的有8人,∵400×850=64,∴估计该厂将接受技能再培训的人数约有64人13.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为____,图①中m 的值是____; (2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解:(1)根据条形图4+16+12+10+8=50(人),m =100-20-24-16-8=32 (2)∵x =150(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为12(15+15)=15(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名2019-2020学年数学中考模拟试卷一、选择题1.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度为( )米A.B.4C. D.4π2.长为10米的木杆斜靠在墙壁上,且与地面的夹角∠OBA =60°,当木杆的上端A 沿墙壁NO 竖直下滑时,木杆AB 的中点P 也随之下落,则点P 下落的路线及路线长为( ) A.线段,5 B.线段,C.以点O 为圆心,以AB 为半径的一段弧,弧长为D.以点O 为圆心,以OP 为半径的一段弧,弧长为3.猫眼专业版数据显示,截至北京时间2月10日21:00,选择在春节档上映的8部国产电影(《疯狂的外星人》、《飞驰人生》、《新喜剧之王》、《流浪地球》、《神探蒲松龄》《廉政风云》、《小猪佩奇过大年》、《熊出没•原始时代》)总票房已经达到57.82亿元(含服务费),其中《流浪地球》居首.57.82亿用科学记数法表示为( ) A .5.782×108B .57.82×108C .5.782×109D .0.5782×10104.已知一元二次方程22410x x +-=的两个根为1x ,2x ,且12x x <,下列结论正确的是( ) A .122x x +=B .121x x =-C .12x x <D .211122x x +=5.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( ) A .1个B .2个C .3个D .4个6.在同一平面内,⊙O 的半径为5cm ,点A 到圆心O 的距离OA =3cm ,则点A 与圆O 的位置关系为( ) A .点A 在圆内B .点A 在圆上C .点A 在圆外D .无法确定7.如图,直线,a b 都与直线m 垂直,垂足分别为M N 、,1MN =.等腰直角ABC △的斜边AB 在直线m 上,2AB =,且点B 位于点M 处.将等腰直角ABC △沿直线m 向右平移,直到点A 与点N 重合为止.记点B 平移的距离为x ,等腰直角ABC △的边位于直线,a b 之间部分的长度和为y ,则y 关于x 的函数图像大致为( )A. B. C. D.8.如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数8yx,在第二象限的图像经过点E,则正方形AOBC与正方形CDEF的面积之差为()A.6B.8C.10D.129.如图,以正方形ABCD的顶点A为圆心,以AD的长为半径画弧,交对角线AC于点E,再分别以D,E为圆心,以大于12DE的长为半径画弧,两弧交于图中的点F处,连接AF并延长,与BC的延长线交于点P,则∠P=( )A.90°B.45°C.30°D.22.5°10.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52 =(x+1)2B.x2+52 =(x﹣1)2C.x2+(x+1)2 =102D.x2+(x﹣1)2=5211.将一把直尺与一块三角板如图放置,若∠1=60°,则∠2为()A .150°B .120°C .100°D .60°12.不等式3(x-2)≥x+4的解集是( ) A.x≥5 B.x≥3C.x≤5D.x≥-5二、填空题13.如图,将边长为3的正方形纸片ABCD 对折,使AB 与DC 重合,折痕为EF ,展平后,再将点B 折到边CD 上,使边AB 经过点E ,折痕为GH ,点B 的对应点为M ,点A 的对应点为N ,那么折痕GH 的长为_____.14.若直角三角形的两个锐角之差为34°,则此三角形较小锐角的度数为_____.15.从党的“十八大”到“十九大”经历43800小时,我国的“天宫、蛟龙、天眼、悟空、墨子、大飞机”等各项科技创新成果“井喷”式发展,这些记录下了党的极不平凡的壮阔进程,请将数43800用科学记数法表示为_____16.如果关于x 的一元二次方程20ax bx c ++=有两个实根,且其中一个根为另一根的2倍,则称这样的方程为“倍根方”,以下关于倍根方程的说法正确的是_______(填正确序号) ①方程220x x --=的倍根方程.②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=. ③若点(,)p q 在反比例函数2y x=的图像上,则关于x 的方程230px x q ++=是倍根方程. ④若方程20ax bx c ++=是倍根方程且相异两点(1,)M t s +、(4,)N t s -都在抛物线2y ax bx c =++上,则方程20ax bx c ++=必有一个根为53. 17.如图,在矩形ABCD 中,有一个小正方形EFGH ,其中顶点E ,F ,G 分别在AB ,BC ,FD 上.连接DH ,如果BC=13,BF=4,AB=12,则tan ∠HDG 的值为______________.18.如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC=100三、解答题19.计算:021)()2π-+.20.某校为了调查初三男生和女生周日学习用时情况,随机抽取了初三男生和女生各50人,对他们的周日学习时间进行了统计,分别得到了初三男生的学习时间的频率分布表和女生学习时间的频率分布直方图(学习时间x ,单位:小时,0≤x≤6). 男生周日学习时间频率表(1)请你判断该校初三年级周日学习用时较长的是男生还是女生,并说明理由;(2)从这100名学生中周日学习用时在5≤x≤6内的学生中抽取2人,求恰巧抽到一男一女的概率.21.(10(3)tan 45π︒--. (2)化简:2(2)(1)x x x ---.22.231125123x x x x +≥+⎧⎪+⎨-<-⎪⎩23.先化简:222211x x +-⎛⎫-÷⎪然后解答下列问题:(1)当x =2时,求代数式的值(2)原代数式的值能等于0吗?为什么?24.如图,在平行四边形ABCD 中,CE ⊥BC 交AD 于点E ,连接BE ,点F 是BE 上一点,连接CF . (1)如图1,若∠ECD =30°,BC =4,DC =2,求tan ∠CBE 的值;(2)如图2,若BC =EC ,过点E 作EM ⊥CF ,交CF 延长线于点M ,延长ME 、CD 相交于点G ,连接BG 交CM 于点N 且CM =MG ,①在射线GM 上是否存在一点P ,使得△BCP ≌△ECG ?若存在,请指出点P 的位置并证明这对全等三角形;若没有,请说明理由. ②求证:EG =2MN .25.先化简,再求值: 32221644m m m m m-⋅+-,其中m【参考答案】*** 一、选择题二、填空题13 14.28°. 15.38×104 16.②③④. 17.12 18.33100 三、解答题 19.-1.【分析】原式利用零指数幂、负整数指数幂法则,平方根、立方根定义计算即可求出值.【详解】解:原式=1+4﹣3+(﹣3)=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(1)该校初三年级周日学习用时较长的是男生;(2)3 5【解析】【分析】(1)分别求出男生和女生周日学习用时的平均数,由此判断即可;(2)从被抽到的100名学生中周日学习用时在[5,6]内的学生中男生由2人,女生由4人,列树状图求得抽到1男1女的概率即可.【详解】解:(1)由频数分布直方图得女生学习时间的平均数为:150(10×1.5+10×2.5+14×3.5+8×4.5+2×5.5)=2.75;由男生周日学习时间频率表得男生学习时间的平均数为:0.5×0.34+1.5×0.36+2.5×0.38+3.5×0.22+4.5×0.14+5.5×0.06=3.39,∵2.75<3.39,∴该校初三年级周日学习用时较长的是男生;(2)这100名学生中周日学习用时在5≤x≤6内的学生中,男生有3人,女生有2人,列树状图如图所示,由树状图可知,共有20种情况;刚好抽到一男一女的有12种等可能结果,所以刚好抽到一男一女的概率为123 205.【点睛】此题考查了概率公式与列表法或树状图法求概率.列表法或树状图法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)5;(2)-3x+4【解析】【分析】(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.(2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.(1)解:原式5115=+-=(2)解:原式224434x x x x x =-+-+=-+ 【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值. 22.原不等式组无解. 【解析】 【分析】分别解两个不等式后,利用“同大取大,同小取小,大小小大中间找,大大小小找不到”确定不等式组的解集即可. 【详解】231125123x x x x +≥+⎧⎪⎨+-<-⎪⎩①② 解不等式①得,x≥8; 解不等式②得,x<45; 所以,原不等式组无解. 【点睛】本题考查的是解一元一次不等式组,掌握解一元一次不等式组一般步骤及方法是关键. 23.(1)11x x +-;(2)见解析. 【解析】 【分析】(1)将x =2代入化简后的式子即可解答本题;(2)先判断,然后令化简的结果等于0,求出x 的值,再将所得的x 的值代入化简后的式子,看是否使得原分式有意义即可解答本题. 【详解】 解:2222111211x x x x x x +-⎛⎫-÷⎪--++⎝⎭22(1)11(1)(1)(1)1x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21(1)11x x x ⎛⎫=-⋅+ ⎪--⎝⎭1(1)1x x =⋅+- 11x x +=-(1)当x =2时,原式=2121+-=3; (2)原代数式的值不等等于0, 理由:令11x x +-=0,得x =﹣1, 当x =﹣1时,原分式无意义,故原代数式的值不等等于0.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1(2)①详见解析;②详见解析. 【解析】【分析】(1)由平行四边形的性质和已知条件得出∠BCE =∠CED =90°,由直角三角形的性质得出DE =12CD =1,CE(2)①由等腰直角三角形的性质得出∠MCG =∠MGC =45°,由线段垂直平分线的性质得出CP =CG ,得出∠CPM =∠CGM =45°,求出∠PCG =90°,得出∠BCP =∠ECG ,由SAS 证明△BCP ≌△ECG 即可;②由全等三角形的性质得出BP =EG ,∠BPC =∠EGC =45°,得出∠BPG =90°,证出BP ∥MN ,得出BN =GN ,MN 是△PBG 的中位线,由三角形中位线定理得出BP =2MN ,即可得出结论.【详解】(1)解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵CE ⊥BC ,∴CE ⊥AD ,∴∠BCE =∠CED =90°,∵∠ECD =30°,DC =2,∴DE =12CD =1,∴CE∴tan ∠CBE =CE BC = (2)①解:在射线GM 上存在一点P ,MP =MG 时,△BCP ≌△ECG ;理由如下:如图2所示:∵CM =MG ,∴△CMG 是等腰直角三角形,∴∠MCG =∠MGC =45°,∵MP =MG ,EM ⊥CF ,∴CP =CG ,∴∠CPM =∠CGM =45°,∴∠PCG =90°,∴CP ⊥CG ,∵∠BCE =∠PCG =90°,∴∠BCP =∠ECG ,在△BCP 和△ECG 中,BC EC BCP ECG CP CG =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ECG (SAS );②证明:由①得:△BCP ≌△ECG ,∴BP =EG ,∠BPC =∠EGC =45°,∴∠BPG =90°,∴BP ∥MN ,∵PM =GM ,∴BN =GN ,∴MN 是△PBG 的中位线,∴BP =2MN ,∴EG =2MN【点睛】本题是四边形综合题目,考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、线段垂直平分线的性质、三角函数等知识;本题综合性强,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.25.6【解析】【分析】直接将分子与分母分解因式,进而化简即可.【详解】解:原式=32m m+m-m m+m-(4)(4)(4)(4)=2m2,2=6.【点睛】此题主要考查了分式的化简求值,正确分解因式是解题关键.2019-2020学年数学中考模拟试卷一、选择题1.若2m =3,2n =4,则23m ﹣2n 等于( ) A.1 B.98 C.278 D.27162.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .3.下列图形中,可以看作中心对称图形的是( )A. B. C. D.4.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .5.2018年广东省经济保持平稳健康发展,经国家统计局核定,实现地区生产总值(GDP )9730000000000元,将数据9730000000000用月科学记数法表示为( )A.1093710⨯B.1193710⨯C.129.3710⨯D.130.93710⨯6.如图,数轴上有A ,B ,C ,D 四点,则所表示的数与5最接近的是( )A.点AB.点BC.点CD.点D 7.下列各式:①a 0=1; ②a 2•a 3=a 5; ③2﹣2=﹣14;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )A .①②③B .①③⑤C .②③④D .②④⑤ 8.下列四个函数中,自变量的取值范围为x ≥1的是( )A .y =B .y =C .y =D .y =9.如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG最小值为( )A.65B.75C.3225D.362510.如图,已知点A、B在反比例函数4yx=的图像上,AB经过原点O,过点A做x轴的垂线与反比例函数2yx=-的图像交于点C,连接BC,则△ABC的面积是()A.8B.6C.4D.311.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4 B.4πC.8πD.812.给出四个数0,1,-2,其中最大的数是()A.0BC.1D.-2二、填空题13.如图,在每个边长都为1的小正方形组成的网格中,为格点,,为小正方形的中点.(Ⅰ)线段的长为______; (Ⅱ)在线段上存在一个点,使得点满足,请你借助给定的网格,用无刻度...的直尺作出,并简要说明你是怎么找到点的______.1441()32--+-______. 15.不等式组的解集是_____.16.分解因式:221x x ++=_____________.17.若关于x 的方程21x m x +=-的解是非负数,则m 的取值范围是__________. 18.计算: 的结果是_____.三、解答题19.(1)解方程:3211x x =-+; (2)求不等式组253(2)123x x x x +≤+⎧⎪-⎨<⎪⎩的解集 20.一次函数y =kx+b 的图象经过(﹣4,﹣2),(1,8)两点.(1)求该一次函数的表达式;(2)如图,该一次函数的图象与反比例函数y =m x的图象相交于点A ,B ,与y 轴交于点C ,且AB =BC ,求m 的值.21.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程式是重要的数学成就。
2019备战中考数学(苏科版)巩固复习-数据的收集、整理、描述(含解析)一、单选题1.八年级某班50位同学中,1月份出生的频率是0.20,那么这个班1月份生日的同学有()A. 10位B. 11位C. 12位D. 13位2.一个容量为80的样本,最大值是141,最小值是50,取组距为10,可以分成()A. 10组B. 9组C. 8组D. 7组3.下列调查中,适合用全面调查方式的是()A. 调查北海市市民的吸烟情况B. 调查北海市电视台某节目的收视率C. 调查北海市某校某班学生对“创建卫生城市”的知晓率D. 调查北海市市民家庭日常生活支出情况4.对60个数据进行处理时,适当分组,各组数据个数之和与百分率之和分别等于()A. 60,1B. 60,60C. 1,60D. 1,15.已知数据:10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频数为4的一组是()A. 5.5~7.5B. 7.5~9.5C. 9.5~11.5D. 11.5~13.56.下列调查中,适合用普查的是()A. 新学期开始,我校调查每一位学生的体重B. 调查某品牌电视机的使用寿命C. 调查我市中学生的近视率D. 调查长江中现有鱼的种类7.李老师对本班50名学生的血型作了统计,列出如下的统计表,则本班AB型血的人数是()A. 20人B. 15人C. 5人D. 10人8.数据共40个,分为6组,第1到第四组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为()A. 4B. 10C. 6D. 8给出下列说法:①广州市运动员在最近八届亚运会上获得金牌的运动项目共有15个;②广州市运动员在最近八届亚运会上获得金牌的总数是57;③上表中,击剑类的频率约为0.211.其中正确的有()A. 3个B. 2个C. 1个D. 0个10.数据3,1,5,1,3,4中,数据“3”出现的频数是()A. 1B. 2C. 3D. 411.已知一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为()A. 0.1B. 0.2C. 0.3D. 0.412.下列事件中最适合使用普查方式收集数据的是()A. 了解某班同学的身高情况B. 了解全市每天丢弃的废旧电池数C. 了解50发炮弹的杀伤半径D. 了解我省农民的年人均收入情况二、填空题13.一个样本有100个数据,最大的是351,最小的是75,组距为25,可分为________ 组.14.某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表(满分100分)若已知成绩在91﹣100分的同学为优胜者.那么优胜率为________15.数学老师布置10道选择题作为课堂练习,学习委员将全班同学的答题情况绘制成如下条形统计图,根据统计图可知,答对8道题的同学的频率是________ .16.已知一组数据都是整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是________ .17.为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x满足:60≤x<100,赛后整理所有参赛选手的成绩如下表:根据表中提供的信息得到m= ,n=________.18.调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用________ (填“普查”或“抽样调查”).19.根据去年某班学生体育毕业考试的成绩(成绩取整数),制成如图所示的频数分布直方图,若成绩在24.5~27.5分范围内为良好,则该班学生体育成绩良好的百分率是________ .三、解答题20.为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?21.小明所在班级有16名男生报名参加校运动会,他们的身高(单位:cm)如下:170 165 178 166 173 163 178 172170 174 170 170 174 178 178 178(1)将这16名男生的身高由矮到高排列,统计每种身高的频数和频率,并填如表.(2)身高超过170cm的同学有几名?约占总人数的百分之几?(精确到1%)22.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率.(2)求表中A,B的值.(3)该校学生平均每人读多少本课外书?四、综合题23.小龙的妈妈让小龙去买一盒火柴,并叮嘱小龙,一定要试试火柴是否好用.小龙回家后,高兴地告诉妈妈:火柴好用,我每根都试过了.(1)小龙采取的方法是哪种调查?(2)你认为小龙采取的方法是否合适?为什么?24.某班同学进行数学测验,将所得成绩(得分取整数)进行整理分成五组,并绘制成频数直方图(如图),请结合直方图提供的信息,回答下列问题:(1)该班共有多少名学生参加这次测验?(2)求60.5~70.5这一分数段的频数是多少?(3)若80分以上为优秀,则该班的优秀率是多少?25.为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图(如图).已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)求第二小组的频数和频率;(2)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.答案解析部分一、单选题1.【答案】A【考点】频数与频率【解析】【解答】解:50×0.2=10.故选A.2.【答案】A【考点】频数(率)分布直方图【解析】【解答】解:∵最大值为141,最小值为50,∴最大值与最小值的差是141﹣50=91,∵组距为10,=9.1,∴可以分成10组.故选A.【分析】先根据最大值为141,最小值为50,求出最大值与最小值的差,再根据组数=(最大值﹣最小值)÷组距,即可求出答案.3.【答案】C【考点】全面调查与抽样调查【解析】【解答】A. 调查北海市市民的吸烟情况,调查范围广,适合抽样调查,A不符合题意;B. 调查北海市电视台某节目的收视率,调查范围广,适合抽样调查,B不符合题意;C. 调查北海市某校某班学生对“创建卫生城市”的知晓率,调查范围小,适合普查,C符合题意;D. 调查北海市市民家庭日常生活支出情况,调查范围广,适合抽样调查,D不符合题意;故答案为:C.【分析】根据全面调查的定义来判断.全面调查就是对需要调查的对象进行逐个调查.这种方法所得资料较为全面可靠,但调查花费的人力、物力、财力较多,且调查时间较长,不适合一般企业的要求.全面调查只在产品销售范围很窄或用户很少的情况下可以采用.对品种多、产量大、销售范围广的产品,就不适用全面调查,而可以采用抽样调查.4.【答案】A【考点】频数(率)分布直方图【解析】【解答】解:各组数据个数之和为60,百分率之和为1,故选:A.【分析】各组数据个数之和为数据总个数;百分率之和为100%.5.【答案】D【考点】频数与频率【解析】【解答】解:5.5~7.5组有6,7,频数为2;7.5~9.5组有8,8,9,8,9,9,频数为6;9.5~11.5组有10,10,11,10,11,10,11,10,频数为8;11.5~13.5组有13,12,12,12,频数为4.故选D.【分析】找出四组中的数字,判断出频数,即可做出判断.6.【答案】A【考点】全面调查与抽样调查【解析】【解答】A. 新学期开始,我校调查每一位学生的体重适合普查,故A符合题意;B. 调查某品牌电视机的使用寿命,调查具有破坏性,适合抽样调查,故B不符合题意;C. 调查我市中学生的近视率适合抽样调查,故C不符合题意;D. 调查长江中现有鱼的种类适合抽样调查,故D不符合题意;故答案为:A.【分析】普查适用于范围较小,事件较短的一些事件,或者是精确度要求非常高的事件,根据此知识点逐一判断即可。
第十章数据的收集、整理与描述检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1. (2019·福建漳州中考)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件2.①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查;②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查;③某班学生拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查;④为了了解全班同学的作业完成情况,对学号为奇数的学生进行调查.以上调查中,用普查方式收集数据的是()A.①③B.①②C.②④D.②③3. 下面是四位同学对他们学习小组将要共同进行的一次统计活动分别设计的活动程序,其中正确的是()A. B. C. D.4. 某电脑厂家为了安排台式电脑和手提电脑的生产比例,而进行一次市场调查,调查员在调查表中设计了下面几个问题,你认为哪个提问不合理()A.你明年是否准备购买电脑(1)是(2)否B.如果你明年购买电脑,打算购买什么类型的(1)台式(2)手提C.你喜欢哪一类型电脑(1)台式(2)手提D.你认为台式电脑是否应该被淘汰(1)是(2)否5. (2019·山东聊城中考)电视剧《铁血将军》在我市拍摄,该剧展示了抗日民族英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2 400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是()A.2 400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况6.对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A.通常不可互相转换B.条形统计图能清楚地反映事物的变化情况C.折线统计图能清楚地表示出每个项目的具体数目D.扇形统计图能清楚地表示出各部分在总体中所占的百分比7. 大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是()A.0.1B.0.2C.0.3D.0.78.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲、乙和丙9.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15 C.0.25 D.0.310. 要反映台州某一周每天的最高气温的变化趋势,宜采用( )A.条形统计图 B.扇形统计图C.折线统计图 D.频数分布直方图二、填空题(每小题3分,共24分)11.(2019·福建漳州中考)我市今年中考数学学科开考时间是6月22日15时,数串“201906221500”中“0”出现的频数是.12. 某校为了了解七年级300名学生每天完成作业所用时间的情况,从中对20名学生每天完成作业所用时间进行了抽查,这个问题中的样本容量是 .13. 专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过得到的(填抽样调查或全面调查).14. 学校团委会为了举办庆祝“五四”活动,调查了本校所有学生喜欢的项目,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有人.15. 已知在一个样本中有50个数据,它们分别落在5个组内,第一、二、三、四、五组数据的个数分别为2,8,15,,5,则等于,第四组的频率为.16. 一组数据:12,13,15,14,16,18,19,14,则这组数据的极差是 .17.某校要了解七年级新生的身高情况,在七年级四个班中,每班抽10名学生进行检测,在这个问题中,总体是,样本是,样本容量是 .18.一组数据19,22,25,30,28,27,26,21,20,22,24,23,25,29,27,28,27,30,19,20,为了画频率分布直方图,先计算出最大值与最小值的差是,如果取组距为2,应分为组,第一组的起点定为18.5,在26.5~28.5范围内的频数是,频率是 .三、解答题(共46分)19.(6分)小李在家门口进行了一项社会调查,对从家门口经过的车辆进行记录,分析出本地车辆与外地车辆的数据,同时也对汽车牌照的尾号进行了记录.(1)在这过程中他要收集种数据;(2)设计出记录用的表格.20.(6分)为了帮助数学成绩差的学生,老师调查了180名这样的学生,设计的问题是“你的数学作业完成情况如何”给出五个选项(独立完成、辅导完成、有时抄袭完成、经常抄袭完成、经常不完成)供学生选择.结果老师发现选择独立完成和辅导完成这两项的学生一共占了52%,明显高于他平时观察到的比例,你能解释这个统计数字失真的原因吗?21.(6分)调查某班全体同学每周做家务的时间,填写统计表如下:(1)这个班的同学每周做多长时间家务的人最多?做多长时间家务的人最少?(2)请你根据以上的结果,用一句话谈谈自己的感受.22.(6分)下表是光明中学七(5)班的40名学生的出生月份的调查记录:(1)求出10月份出生的学生的频数和频率;(2)现在是1月份,如果你准备为下个月生日的每一位同学送一份小礼物,那你应该准备多少份礼物?23.(6分)某中学对全校学生进行文明礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).第23题图请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整.(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标.(3)若该校学生有1 200人,请你估计此次测试中,全校达标的学生有多少人?24.(8分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和.25. (8分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?第25题图第十章数据的收集、整理与描述检测题参考答案1. D 解析:选项A中了解一批圆珠笔的使用寿命,具有破坏性,适宜于抽样调查,故A不符合题意;选项B中调查全国九年级学生身高的现状,所费人力、物力和时间较多,适宜于抽样调查,故B不符合题意;选项C中调查人们保护海洋的意识,所费人力、物力和时间较多,适宜于抽样调查,故C不符合题意;选项D中检查一枚用于发射卫星的运载火箭的各零部件必须采用普查的方式,故本选项符合题意.2. A 解析:②不是对全体初中生进行的调查,④不是对全班同学作业完成情况的调查,故②④采用的不是普查方式.①③采用的是普查方式,所以选A.3.C 解析:统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C.4.D 解析:根据设计问卷调查应该注意的问题可知D不合理,问题和调查的目的不符合,故选D.5. C 解析:从总体中抽取的一部分个体叫做组成总体的一个样本.本题中的样本是所抽取的100名学生对“民族英雄范筑先”的知晓情况.6. D 解析:因为这三种统计图是能互相转换的,故A项错误.条形统计图能清楚地表示出每个项目的数据,故B项错误;折线统计图能清楚地反映事物的变化情况,故C项错误;扇形统计图直接反映部分占总体的百分比大小,故D项正确.故选D.7.B 解析:跳绳次数在90~110之间的数据有91,93,100,102四个,故频率为=0.2.故选B.8. B 解析:由题图可以得出:八年级共有学生800×33%=264(人);七年级的达标率为;八年级的达标率为;九年级的达标率为.所以九年级的达标率最高.故乙、丙的说法是正确的,故选B.9.D 解析:根据频数分布直方图知绘画兴趣小组的人数为12,所以参加绘画兴趣小组的频率是12÷40=0.3.故选D.10. C 解析:要反映最高气温的变化趋势,用折线统计图较直观.11. 4 解析:数串“201906221500”中“0”出现的频数是4.12. 20 解析:因为某校为了了解七年级300名学生每天完成作业所用时间的情况,从中对20名学生每天完成作业所用的时间进行了抽查,所以这个问题中的样本容量是20.13. 抽样调查解析:这个调查个体数量多,范围广,工作量大,不宜采用全面调查,只能采用抽样调查.14. 250 解析:400÷40%=1 000(人),1 000×(1-40%-35%)=1 000×25%=250(人).15.20 0.4 解析:根据题意,得第四组数据的个数即x=50-(2+8+15+5)=20,其频率为=0.4.16.7 解析:由题意可知,极差为19-12=7.17.七年级新生的身高情况所抽出的40名新生的身高情况 4018.11 6 5 0.2519.分析:根据题意可知需要收集2种数据,本地车辆与外地车辆的数据,汽车牌照的尾号的数据,设计表格合理即可.解:(1)2;(2)20. 分析:调查问卷是管理咨询中一个获取信息的常用方法.设计问卷调查应该注意:1.提问不能涉及人的隐私;2.提问不要问他人已经回答的问题;3.提问的选择答案要尽可能简单详细;4.问题要简明扼要;5.问卷调查要简单易懂.解:抄袭和不完成作业是不好的行为,勇于承认错误不是每个人都能做到的,所以,这样的问题设计得不好,容易失真.21. 分析:(1)根据表格,可知求这个班同学每周做家务的人数最多的时间即是求这组数据的众数,表格中第二行最小的数字所对应的第一行的时间即为做家务的人数最少的时间;(2)根据实际情况,让学生结合自己谈主观感受即可.解:(1)每周做3小时的人最多,做0小时或1小时的人最少.(2)从表中可以看出,这个班的同学每周做家务的时间大部分在2~3个小时,平均每天做一二十分钟,有的甚至一点也不做,我感到我们中学生做家务的时间用得太少,我们不但应该搞好自己的学习,同时也要更多地做些力所能及的家务,一方面减轻父母的负担,另一方面提高我们的自理能力.22. 分析:(1)根据频数与频率的概念可得答案;(2)根据频数的概念,读表可得2月份生日的频数,即可得答案.解:(1)读表可得:10月份出生的学生的频数是5,频率为=0.125.(2)2月份有4位同学过生日,因此应准备4份礼物.23. 解:(1)成绩一般的学生占的百分比为1-20%-50%=30%,测试的学生总人数为24÷20%=120(人),成绩优秀的人数为120×50%=60(人),所补充图形如下所示:第23题答图(2)该校被抽取的学生中达标的人数为36+60=96(人).(3)1 200×(50%+30%)=960(人).答:估计全校达标的学生有960人.24.分析:根据平均数的求法求出平均数,再用样本估计总体的方法求出产量总和即可解答.解:(千克),(千克),总产量为40×100×98%×2=7 840(千克).25. 分析:(1)用10吨~15吨的用户数除以所占的百分比,计算即可得解;(2)用总户数减去其他四组的户数,计算求出15吨~20吨的用户数,然后补全统计图即可,用“25吨~30吨”所占的百分比乘360°计算即可得解;(3)用享受基本价格的用户数所占的百分比乘20万计算即可.解:(1)10÷10%=100(户);(2)100-10-36-25-9=100-80=20(户),画直方图如图,第25题答图×360°=90°;(3)×20=13.2(万户).答:该地20万用户中约有13.2万户居民的用水全部享受基本价格.。
2019 初三数学中考复习数据的收集、整理与分析专题复习练习1.下列调查中,最适宜采用普查方式的是( B )A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查2.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是( B )A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查3.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一请你估计该200户家庭这个月节约用水的总量是( A )A.240吨 B.360吨 C.180吨 D.200吨4.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( D )A.80分 B.82分 C.84分 D.86分5则这12A.2,20岁 B.2,19岁 C.19岁,20岁 D.19岁,19岁6.如图是某市2019年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是( A )A.14℃,14℃ B.15℃,15℃C.14℃,15℃ D.15℃,14℃7.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计请你根据上表中的数据选一人参加比赛,最适合的人选是__乙__.8.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有__2700__人.9.“植树节”时,九年级(1)班6个小组的植树棵数分别是:5,7,3,x ,6,4.已知这组数据的众数是5,则该组数据的平均数是__5__.10.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是__5__.11.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__6__.12.某市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题: (1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度? (3)求抽查的学生劳动时间的众数、中位数.解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100-(12+30+18)=40(人),补图略(2)根据题意得:40÷100×360°=144°,则扇形图中的“1.5小时”部分圆心角是144° (3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时13.某中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若这个中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?解:(1)12÷20%=60(名),共调查了60名学生 (2)最喜爱教师职业的人数为9人.补图略 (3)660×1500=150(名)答:该中学最喜爱律师职业的学生有150名 14. 某中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A 类,20分钟<t≤40分钟的学生记为B 类,40分钟<t≤60分钟的学生记为C 类,t >60分钟的学生记为D 类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=____%,n=____%,这次共抽查了____名学生进行调查统计.请补全上面的条形图;(2)这组数据的中位数在____类;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?解:(1)26,14,50,由题意可得,C类的学生数为:50×20%=10,补图略(2)B(3)1200×20%=240(人),即该校C类学生约有240人2019-2020学年数学中考模拟试卷一、选择题1.若()220x +=,则xy 的值为( )A.5B.6C.﹣6D.﹣82( ) A .①②B .③④⑤C .②③D .只有④324a =5===;④= )A .①B .②C .③D .④4.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.5.设函数ky x=(0k ≠,0x >)的图象如图所示,若1z y =,则z 关于x 的函数图象可能为( )A .B .C .D .6.下列运算正确的是( )A.624a a a -=B.()222a b a b +=+ C.()232622ab a b = D.2326a a a =g7.下列说法:①如果a 2>b 2,那么a>b 4;③过一点有且只有一条直线与已知直线平行;④关于x 的方程2210mx x ++=没有实数根,那么m 的取值范围是m>1且m≠0;正确的有( ) A .0个B .1个C .2个D .3个8.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .9.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位10.如图,在平面直角坐标系中2条直线为12:33,:39l y x l y x =-+=-+,直线1l 交x 轴于点A ,交y 轴于点B ,直线2l 交x 轴于点D ,过点B 作x 轴的平行线交2l 于点C ,点A E 、关于y 轴对称,抛物线2y ax bx c =++过E B C 、、三点,下列判断中:①0a b c -+=;②25a b c ++=;③抛物线关于直线1x =对称;④抛物线过点(),b c ;⑤四边形5ABCD S =四边形,其中正确的个数有( )A .5B .4C .3D .211.如图,菱形ABCD 的边长为1,点M 、N 分别是AB 、BC 边上的中点,点P 是对角线AC 上的一个动点,则MP PN +的最小值是( )A .12B .1CD .212.下列说法正确的是( )A .为了解全省中学生的心理健康状况,宜采用普查方式B .掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为12C .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件D .甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定 二、填空题13.函数y 中,自变量x 的取值范围是________. 14.如图,抛物线y =ax 2﹣1(a >0)与直线y =kx+3交于MN 两点,在y 轴负半轴上存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称,则点P 的坐标是_____15.已知一个正数的平方根是3x -2和5x -6,则这个数是_____.16.如图,AB 和DE 是直立在地面上的两根立柱,AB =5米,某一时刻AB 在阳光下的投影BC =3米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为_____.17.已知2m -3n=-4,则代数式m(n -4)-n(m -6)的值为 . 18.已知m 是关于x 的方程2230x x --=的一个根,则224m m -=______. 三、解答题19.某学校打算假期组织老师外出旅游,初步统计,参加旅游的人数约在30~60人左右.该校联系了两家报价均为1200元的旅行社,甲旅行社的优惠措施是30人以内(包括30人)全额收费,超出部分每人打六折;乙旅行社的优惠措施是每人打九折,若人数在30人(包括30人)以上,还可免去两个人的费用. (1)该校选择哪一家旅行社合算?(2)若该校最终确定参加旅游的人数为48人,学校可给每位参加旅游的教师补贴200元,则参加旅游的教师每人至少要花多少钱?20.如图,点O 在△ABC 的BC 边上,⊙O 经过点A 、C ,且与BC 相交于点 D .点E 是下半圆弧的中点,连接AE 交BC 于点F ,已知AB =BF . (1)求证:AB 是⊙O 的切线;(2)若OC =3,OF =1,求cosB 的值.211tan 602|︒-+-.22.在一次综合实践课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB 表示窗户,且AB =2米,BCD 表示直角遮阳蓬,已知当地一年中正午时刻太阳光与水平线CD 的最小夹角∠PDN =18.6°,最大夹角∠MDN =64.5°.请你根据以上数据,帮助小明同学计算出遮阳篷中CD 的长是多少米?(结果精确到0.1)(参考数据:sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)23.先化简,再计算:2221222x x x x x x x--+--+,其中x 1. 24.为响应建设“美丽乡村”,某村在河岸上种植了柳树和香樟树,已知种植柳树的棵数比香樟树的棵数多22棵,种植香樟树的棵树比总数的三分之一少2棵.问这两种树各种了多少棵?25.某专卖店准备购进甲、乙两种运动鞋,其进价和售价如下表所示。
第十章数据的收集、整理与描述1.数据处理的一般过程2.数据处理一般包括收集数据、_____________、_______________和分析数据等过程.数据处理可以帮助我们更好地了解周围世界,对未知事物作出合理的推断和预测.3.全面调查和__________是收集数据的两种方式,全面调查通过调查________来收集数据,抽样调查通过调查_______来收集数据.4.实际调查中常采用抽样调查的方法获取数据.用样本估计_______是统计的基本思想.抽样调查具有花费少、省时的特点,还适用一些不宜使用全面调查的情况.采用抽样调查需要注意:①样本容量要适中,一般为总体的5%~10%;②抽取时要尽量使每一个个体都有相等的机会被抽到.这样抽取的样本才具有代表性和广泛性.才能使样本较好地反映总体的情况.5.要考察的全体对象称为________,组成总体的每一个考察对象称为______,被抽取的那些个体组成一个________,样本中个体的数目称为_____________.6.利用统计图表描述数据是统计分析的重要环节.四种统计图的各自特点:(1)条形统计图:能清楚地表示出每个项目的具体数目;(2)扇形统计图:能清楚地表示出各部分在全体中所占的百分比;(3)折线统计图:能清楚地反映事物的变化情况;(4)直方图:能清楚地表示出每组频数的大小.7.扇形统计图表明的是部分在总体中所占的百分比,一般不能直接从图中得到具体数量,用圆代表的是总体1,圆的大小与具体数量大小没有关系. 扇形圆心角=该部分百分比×360°画扇形统计图的步骤:先调查收集数据,根据数据计算百分比,圆心角,画出扇形,标出百分比.8.画直方图的一般步骤:⑴计算最大值与最小值的差⑵决定组距和组数⑶列频数分布表⑷画频数分布直方图(或频数折线图).注意对以下概念的理解:⑴组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.⑵频数:对落在各个小组内的数据进行累计,得到各个小组内数据的个数叫做频数.⑶频数分布直方图⑷频数折线图9.频数分布直方图是以小长方形的________来反映数据落在各个小组内的频数的大小.小长方形的高是频数与_________的比值.在等距分组时,各小长方表的面积(频数)与高的比是常数(组距).熟悉以下各题:10.调查收集数据的方式通常有______________和_____________两种.当总体中个体数目较少时用________________的方式获得数据较好,当总体中个体数目较多时用____________的方式获得数据较好.但关于电视机寿命、火柴质量等具有破坏性的调查不宜采用_____________,国家人口普查采用________________.11.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别是2, 8, 15, 5.则第四组频数是______.12.有40个数据,共分成6组,第1~4组的频数分别为10,5,7,6.第5组的频率是0.1,则第6组的频数是________.13.对60个数据进行处理时,适当分组,各组数据个数之和与百分率之和分别等于()A.60,1B.60,60C.1,60D.1,114. 一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( )A .10组B .9组C .8组D .7组 15. 为了考察某市初中3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是( )A .3500B .20C .30D .600 16. 右图是甲、乙两户居民家庭全年支出费用的扇形统计图。
天津市和平区普通中学2019届初三数学中考复习数据的收集、整理与描述专题复习训练题1.下列调查中最适合采用全面调查的是( C )A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量2.电视剧《铁血将军》在某市拍摄,该剧展示了抗日民族英雄范筑先的光辉形象,某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查,在这次调查中,样本是( C )A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况3.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是( A )A.0.1 B.0.2 C.0.3 D.0.44.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是( B )A.30,40 B.45,60 C.30,60 D.45,405.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A,B,C,D,E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( D )A.18户 B.206.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》于2019年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有__2700__人.7.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图①和图②是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是__6000__.8.某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有__240__名学生,根据调查数据分析,全校约有__400__名学生参加了音乐社团;请你补全条形统计图. 补图略9.为了解某市九年级学生的体育测试成绩和课外体育锻炼时间的情况,现从全市九年级学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.(1)(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间如表所示,请将表格填写完整(记学生课外体育锻炼时间为x 小时);(3)全市九年级学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.解:(1)样本扇形图中体育成绩“良好”所对扇形圆心角的度数为(1-15%-14%-26%)×360°=162°(3)62120×14400=7440(人),估计课外体育锻炼时间不少于4小时的学生人数为7440人10.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是__100__;(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?解:(2)用水15吨~20吨的户数为100-10-36-24-8=22(户),补图略;“15吨~20吨”部分的圆心角的度数=360°×22100=79.2°(3)6×10+22+36100=4.08(万户),则该地区6万用户中约有4.08万户的用水全部享受基本价格11.“每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增加了,某校有学生8200人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表所示:(1)表格中m =__30__(2)该校每天锻炼时间达到1小时的约有__820__人.12.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题: (1)在这次问卷调查中一共抽取了__50__名学生,a =__30__%; (2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为__36__度; (4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.解:(2)无所谓态度的人数为15人,补图略(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为10+2050×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人)13.某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)以上严重污染2(1) 统计表中m=__20__,n=__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹2019-2020学年数学中考模拟试卷一、选择题1.如图是用卡钳测量容器内径的示意图,现量得卡钳上A,D两个端点之间的距离为10cm,1 2AO DOBO CO==,则容器的内径是( )A.5cmB.10cmC.15cmD.20cm2.关于反比例函数y=﹣,下列说法中正确的是()A.它的图象位于一、三象限B.它的图象过点(﹣1,﹣3)C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小3.如图,等边三角形ABC的边长为4,点O是△ABC的内心,∠FOG=120”,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE:②S△ODE=S△BDE:③四边形ODBE的面;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1B.2C.3D.44.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为25.如图,是由一个长方体和一个圆锥体组成,则该几何体的左视图是()A. B. C. D.6.如图1,在Rt ABC ∆中,090C ∠=,点P 从点A 出发,沿A C B →→的路径匀速运动到点B 停止,作PD AB ⊥于点D ,设点P 运动的路程为x ,PD 长为y ,y 与x 之间的函数关系图象如图2所示,当12x =时,y 的值是( )A .6B .245C .65D .27.2018年某区域GDP (区域内生产总值)总量为90.03亿元,用科学计数法表示90.03亿为( ) A .9.003×1010B .9.003×109C .9.003×108D .90.03×1088.若x>y ,a<1,则( ) A .x>y+1B .x+1>y+aC .ax>ayD .x -2>y -19.下列说法正确的是( ) A .周长相等的两个三角形全等 B .面积相等的两个三角形全等 C .三个角对应相等的两个三角形全等 D .三条边对应相等的两个三角形全等10.如图,在矩形ABCD 中,,点M 在边AD 上,连接BM ,BD 平分∠MBC ,则AM MD的值为( )A.12B.2C.53D.3511.如图,矩形纸片ABCD ,AD =4,AB =3,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当△EFC 是直角三角形时,那么BE 的长为( )A.1.5 B.3C.1.5或3 D.有两种情况以上12.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6B.4C.2D.﹣2二、填空题13.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为_____.14.如图所示,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内,将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C运动的路线长为______.15.如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠,CD=3,则AC ________.16.若x+2y=4,则4+x+y=_____.的立方根是__________.17.818.如图,已知∠ACB=90°,直线MN∥AB,若∠1=33°,则∠2=_____°.三、解答题19.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.≈1.4)20.如图,抛物线的顶点D的坐标为(﹣1,4),抛物线与x轴相交于A.B两点(A在B的左侧),与y 轴交于点C(0,3).(1)求抛物线的表达式;(2)如图1,已知点E(0,﹣3),在抛物线的对称轴上是否存在一点F,使得△CEF的周长最小,如果存在,求出点F的坐标;如果不存在,请说明理由;(3)如图2,连接AD,若点P是线段OC上的一动点,过点P作线段AD的垂线,在第二象限分别与抛物线、线段AD相交于点M、N,当MN最大时,求△POM的面积.21.下表是2019年三月份某居民小区随机抽取20户居民的用水情况:(1)求出m=,补充画出这20户家庭三月份用电量的条形统计图;(2)据上表中有关信息,计算或找出下表中的统计量,并将结果填入表中:(3)为了倡导“节约用水,绿色环保”的意识,台州市自来水公司实行“梯级用水、分类计费”,价格表如下:如果该小区有500户家庭,根据以上数据,请估算该小区三月份有多少户家庭在ⅠI级标准?并估算这些级用水户的总水费是多少?22.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=12,⊙O的半径为4,求图中阴影部分的面积.23.每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O出发,按箭头所指方向先后经过的A、B、C、D、E这几个点点的坐标;(2)按图中所示规律,找到下一个点F的位置并写出它的坐标.24.(1)计算:201)3tan 30|1π︒-++-.(2)解不等式组:3(2)42113x x x x -->⎧⎪+⎨>-⎪⎩.25.如图,在四边形ABCD 中,AC 、BD 相交于点O ,且AO =CO ,AB ∥CD . (1)求证:AB =CD ;(2)若∠OAB =∠OBA ,求证:四边形ABCD 是矩形.【参考答案】*** 一、选择题二、填空题 13.15 14.315. 16.6 17.-2 18.57 三、解答题19.(1)此校车在AB 路段超速,理由见解析.【解析】【分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可。