盾构机自动导向系统的测量方法研究_潘明华
- 格式:pdf
- 大小:690.29 KB
- 文档页数:3
盾构机激光导向测量系统原理研究盾构机激光导向测量系统原理研究摘要:以我公司在某工程使用的海瑞克S481盾构机为例,介绍该盾构机配套的激光导向测量系统的组成,探讨该激光导向系统的工作过程,从测绘学角度,研究该激光导向系统的工作原理。
关键字:盾构施工盾构机导向测量系统姿态中图分类号:V556文献标识码: A引言目前,盾构法已成为我国隧道施工的一种主要方法,包括地铁隧道,电缆隧道,大的输水隧洞,伴随着激光、计算机及自动控制等技术的发展成熟,激光导向测量系统得到成功运用和发展。
我国盾构施工技术自20世纪50、60年代引进以来,在许多领域有了进步和发展,但在激光导向系统方面,尤其是测绘学原理方面研究不深,在一定程度上影响了盾构施工对隧洞中心轴线控制,而且对我国自行研发也不利。
全面理解激光导向系统的测量原理,有助于工程技术人员在盾构施工中解决问题,保证隧道中心轴线和准确贯通。
1、盾构机激光导向系统组成及其作用激光导向系统是综合运用测绘技术、激光传感技术、计算机应用技术以及机械电子等技术指导盾构施工的独立运行体系,它主要由:(1)激光全站仪(激光发射和接收源、距离和角度量测设备)和黄盒子(信号传输和供电装置,共2个);(2)激光接收靶(内置光栅和横、竖向测斜仪)和小棱镜;(3)主控室的中继箱、工业电脑(包括安装的软件)、PLC;(4)油缸伸长量测量装置等。
海瑞克盾构机激光导向系统核心是VMT测量系统软件。
在整个盾构施工过程中,激光导线测量系统起着非常重要的作用,它比作盾构机的“眼睛”,如下图2-1盾构施工基本过程图所示,盾构机激光导向系统贯穿整个盾构施工过程:在测量系统工业电脑上动态显示盾构机轴线相对于隧道设计轴线的偏差,指导盾构司机根据显示盾构姿态,调整推进参数,使盾构机沿着隧道设计轴线掘进;获取各环掘进姿态,输入相应数据,自动科学计算管片封顶块拼装位置,指导管片拼装。
输入设计图纸给定的隧洞轴线设计元素,自动计算隧道的理论设计中心轴线;导向系统自带远程数据传输功能,和地面监控室电脑相连,对盾构机的掘进姿态和相关推进参数实施远程实时监控,并能储存每个时间段的数据,以利于以后的研究。
一种新的盾构自动引导方法摘要:提出两个棱镜加上倾斜仪的盾构自动引导系统模型,利用双轴倾斜仪读取俯仰角和扭转角,根据盾首盾尾以及两个棱镜的空间位置关系用空间解析几何方法推导了盾构姿态解算方法。
关键词盾构姿态坐标转换两点模型倾斜仪A new method of TBM automated guidance systemZhang Sha1 wangjinlei1Wang Zhi2,3(1 Zhejiang Dacheng Construction Group CO.,LTD., ZheJiang, 310012 )(2 Qingdao Surveying and Mapping Research Institute, Qindao, 266032)(3 Department of Surveying and Geomatics Engineering, Tongji University, Shanghai, 200092)Abstract:Two-prisms model with clinometers of TBM automated guidance system is proposed. Angles of pitch and rotation is measured using two-axis inclinometer. The author used the way of space analytic to deduce formula of TBM gesture based on the spatial relations and locations of the head and tail of TBM machine and the clinometers.Key words: TBM gesture; coordinate transform; two-points model; clinometers1 引言随着城市化进程的加快,城市人口大量增加,地面交通状况越来越差,国内许多城市都在积极兴建地铁来缓解地面交通压力,目前国内地铁施工中获取盾构机的实时姿态主要采用人工测量手段,耗时且费力,使用的自动引导系统均是从国外引进,如德国VMT公司的SLS系统及日本的小松系统等等[1],国内一些单位研究的自动引导系统基本都处于试验阶段,其普遍是三棱镜模型[2] [3],它基于空间直角坐标转换或是根据空间相应特征点距离不变的特性解算方程组来求取盾首盾尾的坐标。
盾构施工人工测量与自动测量的方法分析摘要:盾构施工中的掘进方向控制和高程控制直接决定了工程项目的质量、成本以及安全性,因此就需要在盾构施工中要采用可靠的技术测量这些关键的参数。
目前主要利用自动测量方法监控盾构机的实时姿态和掘进方向,同时利用人工方式加以检验,提高测量的可靠性。
研究以上两种测量路径的基本实现原理,并分析了其具体应用场景。
关键词:盾构施工;人工测量;自动测量;方法引言:在盾构施工中,自动测量方法可实时显示测量结果,实现全程监控,人工测量在效率上有所欠缺,通常只能在施工暂停的间隙开展人工测量,但这两种测量方式在盾构掘进控制中都是不可缺少的技术,二者要实现相互配合,全面提高盾构测量的可靠性和准确性,对这两种测量方式开展研究具有重要的工程指导意义。
1.测量在盾构施工中的重要性盾构机在地铁、高铁以及其他地下工程的施工中发挥着非常关键的作用。
以最常见的地铁施工为例,盾构机呈现出掘进效率高、安全风险可控、环境扰动小等一系列技术优势。
但地下掘进施工的关键是控制好方向,地铁线路要按照设计图纸经过多个站点,相邻站点之间尽可能保持直线,这样可减少路线整体长度、降低车站和线路的建造成本以及提高工程效率。
盾构机械在地下空间作业,方向测量是非常关键的一道工序,并且伴随着整个掘进过程。
一旦放线测量失误,整体的掘进线路就会发生偏移,盾构机械的瞬时位置是测量过程中的关键因素,测量的基本原理是在盾构机的特定位置设置专门的检测参考点,然后使用专业化的工具测量其位置变化,借此来实现盾构方向的全程控制[1]。
1.盾构施工测量方法分类(一)盾构施工人工测量方法第一,标尺测量。
这种测量工具可用于检测盾构机的管片是否存在偏差的问题。
在盾构机内部设置有专门的参考坐标,其位置位于盾尾内壳的铝合金尺上,利用水平标尺测量贴在其表面的三维坐标,获得数据之后,根据测量点与盾构机头部和尾部的距离关系,即可计算出其当前是否存在首尾方向上的偏差,这种方法在弯曲度较大的盾构作业中难以发挥作用,更加适用于直线段的测量,但整体精度偏低。
目前国内外使用的盾构和TBM安装有自动导向系统,该系统具有施工数据采集、管理、实时传递以及姿态管理等功能,能自动精确测定盾构和TBM的三维空间位置,给出其偏离设计中线的所有必要的导向信息。
运用导向系统连续不断地提供关于盾构和TBM立体方位的最新信息,准确控制盾构和TBM沿着设计的隧洞轴线方向掘进,将盾构和TBM控制在设计隧道线路允许公差范围内,实现信息化施工。
盾构和TBM的操作司机需要实时掌握其掘进方向,确认是否与隧道设计轴线方向一致,以便通过适当的控制、及时地进行纠偏,防止方向错误。
1 几种常见的导向系统我国目前使用的盾构主要有德国海瑞克、日本小松、法国NFM、加拿大LOVAT等,TBM主要是美国罗宾斯、德国维尔特及海瑞克。
近几年,国产盾构越来越多地得到使用,如上海隧道股份、中国中铁等品牌。
在这些盾构和TBM上使用的导向系统主要有:海瑞克公司盾构、TBM使用的SLS-T APD系统,LOVAT盾构使用的TACS系统,小松盾构使用的ROBOTEC测量系统,NFM盾构、罗宾斯TBM和盾构使用的PPS系统,中国中铁盾构使用的ZED系统等。
1.1 PPS 导向系统法国NFM盾构和罗宾斯TBM常用PPS导向系统。
图1是PPS导向系统的基本组成。
PPS倾斜仪以及电动棱镜安装在机头架上,这些设备均采用密封和防震设计,具有良好的系统防水、防潮、防雾、防尘、防震性能。
该系统可以实时显示隧道掘进机的方位、姿态,导向系统全站仪的精度等级一般为2s,有效距离达300m~500m,系统响应时间小于1s,通过设定的位置偏离值,进行位置偏离报警。
1.2 TACS 导向系统LOVAT盾构采用的TACS导向系统是基于视频跟踪的全自动激光系统,为使用者提供有关盾构和隧道设计轴线的详细偏差信息,便于及时纠正盾构的姿态,精度2s。
见图2。
浅谈盾构和TBM的导向系统Talk about guide system of shield and TBM康宝生/ KANG Bao-sheng(中铁隧道集团有限公司专用 设备中心,河南 洛阳 471009)介绍了目前我国城市地铁、铁路和水工隧道施工中比较常见的几种盾构和TBM的导向系统。