最新版高一数学上学期期中试题及答案(新人教A版 第122套)
- 格式:doc
- 大小:455.35 KB
- 文档页数:8
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
高中数学学习材料鼎尚图文*整理制作高一数学参考答案一.填空题(1){2} (2) 3 (3) -1 (4)(1,+∞) (5)3(6)(-5,-1) (7)(3,4) (8)0 (9)352x -- (10)3(11)【2,5】 (12)c,a,b (13)0 (14)a ≥2二.解答题:15. A=【-2,1】………………………………………………3分B=(-∞,a )………………………………………………3分(1)【-2,0)………………………………………………3分(2)a >1………………………………………………5分16.(1)251±=a ………………………………………4分 31)(2221=+∴=---aa a a ………………………………………4分 (2) 0)2)(1(2322>--=+-∴>m m m m m ,即232->m m ,x x f 2log )(= 是增函数。
)23(l o g l o g 222->∴m m , 即m m 22log 2)23(log <-…………………………………………6分……………………………………………3分17. (Ⅰ)即1(040)80y t t =<≤ ……………………………………………… 3分2800(40)y t t =>……………………………………3分 y 关于t 的函数是y =21,04080800,40t t t t⎧≤≤⎪⎪⎨⎪>⎪⎩ …………………………………… 2分 (Ⅱ)由题意知,28000.08x ≤, 解得100x ≥或100x ≤-(舍)……………5分 又1004060-=(天) 答:按这个标准,这个家庭在装潢后60天方可入住. …………… 2分18.(1)奇函数,证明略. ………………………………………………5分(2)单调减,证明略. ………………………………………………5分(3)由题意知方程211x x x x +=+等价于310x x ++= 设3()1g x x x =++则(1)0,(0)0g g -<>,所以方程在(1,0)-上必有根 又因为1(1)()02g g -⋅-<,所以方程在1(1,)2--上必有一根。
人教版高一数学期中试卷及答案高一数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:人教必修1.5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)二、1.设全集,则等于A.B.C.D.2.函数的定义域是A.B.C.D.3.已知,则的值为A.B.C.3 D.4.已知函数,则A.−2 B.4 C.2 D.−15.下列关于函数的叙述正确的是A.奇函数,在上是增函数B.奇函数,在上是减函数C.偶函数,在上是增函数D.偶函数,在上是减函数6.已知,,则等于A.B.C.D.7.设a=lg 0.2,b=,c=,则A.B.C.D.8.设是方程的解,则在下列哪个区间内A.(0,1) B.(1,2) C.(2,e) D.(3,4)9.已知,且,则函数与函数在同一坐标系中的图象可能是10.已知函数,则的值为A.2 B.C.0 D.11.已知函数是上的单调增函数,则的取值范围是A.B.C.D.12.已知是上的偶函数,且在上是减函数,若,则不等式的解集是A.B.C.D.第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知集合,集合满足,则集合有__________个.14.若,则__________.15.函数的单调增区间是__________.16.若函数无零点,则实数的取值范围为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合,其中.(1)当时,求;(2)若,求实数的取值范围.18.(本小题满分12分)计算下列各式的值:(1);(2).19.(本小题满分12分)已知函数.(1)判断函数的奇偶性,并证明;(2)利用函数单调性的定义证明:是其定义域上的增函数.20.(本小题满分12分)已知是定义在R上的奇函数,当x≤0时,.(1)求x>0时,的解析式;(2)若关于x的方程有三个不同的解,求a的取值范围.21.(本小题满分12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.若每辆车的月租金每增加50元,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大,最大月收益是多少?22.(本小题满分12分)定义在非零实数集上的函数满足:,且在区间上为递增函数.(1)求、的值;(2)求证:是偶函数;(3)解不等式.。
人教版高一上学期必修1数学期中测试题含答案(总8页)页内文档均可自由编辑,此页仅为封面高一数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。
给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A ∩B C u =( )A .{}45,B .{}23,C .{}1D .{}2 2.下列表示错误的是( )A.0∉ΦB.{}12Φ⊆,C.()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=-=+53102,y x y x y x ={}4,3 D.若,A B ⊆则A B A ⋂=3.2log 13a <,则a 的取值范围是 ( )A .()20,1,3⎛⎫+∞ ⎪⎝⎭B .2,3⎛⎫+∞ ⎪⎝⎭C .2,13⎛⎫ ⎪⎝⎭D .220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭4.已知x x f 26log )(=,则=)8(f ( ) A .34 B. 8 C. 18 D .215.当0<a <1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( )6、若函数x a a a y ⋅+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且7. 下列哪组中的函数)(x f 与)(x g 相等( )A .2)(x x f =,4)()(x x g = B . 1)(+=x x f ,1)(2+=xx x gC .x x f =)(,33)(x x g = D.)2)(1()(++=x x x f ,21)(++=x x x g8.若2log 31x =,则39x x +的值为( ) A .6 B .3 C .52 D .129.若函数y = f (x )的定义域为[]1,2,则(1)y f x =+的定义域为( ) A .[]2,3 B .[]0,1 C .[]1,0- D .[]3,2--10. 设3log 21=a ,2.0)31(=b ,312=c ,则a 、b 、c 的大小顺序为( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<11.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则( ) A .)2()2()3(f f f << B .)2()3()2(f f f << C .)2()2()3(f f f << D .)3()2()2(f f f <<12. 已知[]⎩⎨⎧<+≥-=)10()5()10(3)(x x f f x x x f ,其中N x ∈,则)8(f 等于( )A .2 B .10 C .6 D .7第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分。
2021-2022年高一数学上学期期中试题新人教A版说明:考试时间:100分钟满分:100分单项选择题(本题共12题,每小题3分,共计36分。
在每题给出的四个选项中,只有一个选项正确。
)已知集合A={1,2,3,4},B={2,4,6},则的元素个数()A. 0个B.2个C.3个D.5个2、函数的图像关于()对称A. y轴B.直线y=xC.坐标原点D.直线y=-x3、下列四个函数中,与y=x表示同一个函数的是()A. B. C. D.4、三个数的大小关系()B.C. D.5、下列函数中,在(0,+)上为增函数的是()A. B.C. D.6、函数过定点()A. (1,0)B.(0,2)C.(0,0)D.(0,1)7、函数对于任意实数x,y都有()B.C. D.函数图像不过第二象限,则m的取值范围是()A. B. C. D.下列函数中,不满足的是()B. C. D.函数的最大值是()A. B. C. D.函数f(x)是定义域为R的奇函数,当x>0时,f(x)=x+1,则当x<0时,f(x)的表达式为()B. C. D.若函数f(x)为定义域在R上的奇函数,且在(0,+)内是增函数,又f(2)=0,则不等式的解集为()A. (-2,0)(2,+)B.(-,-2)(0,2)C.(-,-2)(2,+)D.(-2,0)(0,2)填空题(每题4分,共20分)函数的定义域为_________________已知指数函数的图像过点(1,2),求=__________________已知,则=________________已知在定义域(1,1)上是减函数,且,则a的取值范围是___________________函数,则=______________________六十一中学期中考答题卷一、选择题(每题3分,共36分)二、填空题(每题4分,共20分)13、______________ 14、_______________ 15、_______________16、______________ 17、_______________三、简答题18、(10分)已知{}{}4,0542+<≤=>--=axaxBxxxA,若。
金台区高一期中质量检测试题(卷)数学(必修1)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至6页. 考试结束后,只将第Ⅱ卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1},{1,}A B m ==,若AB A =,则m =A .0.0或3 C .1.1或3 2.下列几个图形中,可以表示函数关系()y f x =图像的是. 3.在同一坐标系中,函数3log y x =与13log y x =的图像之间的关系是A .关于y 轴对称B .关于原点对称C .关于x 轴对称D .关于直线y x =对称 4.函数3()ln f x x x=-的零点所在的大致区间是 A .(1,2) B .(2,3) C .(3,4) D .(3,)+∞5.已知0.32a -=,0.22b -=,121log 3c =,那么a ,b ,c 的大小关系是 A .c b a >> B .c a b >> C. a b c >> D .b a c >>6.已知幂函数22(1)()(33)m m f x m m x --=-+的图像不经过原点,则m = A .3 B .1或2 C .2D .17.已知1)1(+=+x x f ,则函数的解析式为A.2)(x x f =B.)1(1)(2≥+=x x x fC. )1(22)(2≥+-=x x x x fD.)1(2)(2≥-=x x x x f8.一种放射性元素,每年的衰减率是8%,那么a 千克的这种物质的半衰期(剩余 量为原来的一半所需的时间)t 等于 A .0.5lg0.92B .0.92lg0.5C .lg 0.5lg 0.92D .lg 0.92lg 0.5OOOOh v h v hv hv9.如果一个函数)(x f 满足:(1)定义域为,x x R ∈;(2)任意12,x x R ∈,若120x x +=,则12()()0f x f x +=;(3)任意x R ∈,若0t >,总有)()(x f t x f >+.则)(x f 可以是 A .y x =- B .3y x =C .x y 3=D .3log y x =10.一个高为H ,水量为V 的鱼缸的轴截面如图,其底部有一个洞,满缸水从洞中流出,如果水深为h 时水的体积为v ,则函数()v f h =的大致图像是A. B. C. D.二、填空题:本大题共5小题,每小题6分,共30分.把答案填在第Ⅱ卷对应横线上.11. 计算:233128log 27log 4++= .12.已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则 .13.设:f A B →是从集合A 到B 的映射,{}R y R x y x B A ∈∈==,),(,:(,)(,)f x y kx y b →+,若B 中元素(6,2)在映射f 下的原像是(3,1),则A 中元素(5,8)在f 下的像为 .14.已知3(10)()(5)(10)x x f x f x x -≥⎧=⎨+<⎩,则(6)f = .15.已知关于x 的方程3log (1)0x k --=在区间[2,10]上有实数根,那么k 的取值范围是 .高一数学必修1质量检测试题(卷)第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题6分,共30分. 把答案填在题中横线上.11. . 12. . 13. . 14. . 15. .三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤. 16.已知全集U R =,集合{|22}A x x =-<≤,{|1}B x x =>,{|}C x x c =≤.(1)求A B ,()UAB ð,()U A B ð;(2)若A C ≠∅,求c 的取值范围.17.函数()22()xxf x x R -=-∈.(1)证明函数()f x 在R 上为单调增函数; (2)判断并证明函数()f x 的奇偶性.18.某市一家庭今年八月份、九月份和十月份天然气用量和支付费用如下表所示:该市天然气收费的方法是:天然气费=基本费+超额费+保险费.若每月用气量不超过最低额度(8)A A >立方米时,只付基本费16元和每户每月定额保险费)50(≤<C C 元;若用气量超过A 立方米时,超过部分每立方米付B 元. (1)根据上面的表格求C B A ,,的值;(2)记用户十一月份用气量为x 立方米,求他应交的天然气费y (元).19.已知函数2()41f x ax x =--.(1)若2a =,当[0,3]x ∈时,求函数()f x 的值域;(2)若2a =,当(0,1)x ∈时,(1)(21)0f m f m ---<恒成立,求m 的取值范围; (3)若a 为非负数,且函数()f x 是区间[0,3]上的单调函数,求a 的取值范围.高一数学必修1质量检测试题(卷)答案2013.11命题:石油中学 审题:区教研室一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.A3.C4.B5.A6.D7.C8.C9.B 10.D 二、填空题:本大题共5小题,每小题6分,共30分.11. 5 12.(1,2] 13.(10,9) 14. 8 15. [0,2]三、解答题:本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤.16.解:(1)因为集合{|22}A x x =-<≤ ,{}1B x x =>,所以{}2.AB x x =>-…………………… 2分又知{|2U A x x =≤-ð或2}x >,{|1}U B x x =≤ð,………………6分 所以(){|21}U AB x x =-<≤ð,(){|2}U A B x x =>ð………………10分 (2)因为集合AC ≠∅,所以2c >-.所以c 的取值范围是2c >-. ………… 15分 17.(1)证明:在定义域中任取两个实数12,x x ,且12x x <,…………1分112212211211()()22222222x x x x x x x x f x f x ---=--+=-+-.121212121222122(22)(1)22x x x x x x x x x x ++-=-+=-+…………5分 1212,022x x x x <∴<<,121102x x ++>,从而12()()f x f x -0<.…………8分 ∴函数()f x 在R 上为单调增函数.……9分 (2)函数()f x 在R 上为奇函数.……11分()22()x x f x f x --=-=-……14分∴函数()f x 为奇函数.……15分18.解:(1)八月的用气量没有超过最低额度A ,所以1617C +=1=⇒C ……2分九、十月的用气量超过了最低额度A ,所以17(25)6217(35)92A B A B +-=⎧⎨+-=⎩,解得3,10B A ==…………7分(2)当10x ≤时,需付费用为16117+=元…………9分 当10x >时,需付费用为173(10)313x x +-=-元…………13分 所以应交的天然气费17(010)313(10)x y x x <≤⎧=⎨->⎩…………15分19.解:(1)当2a =时,()()2224121 3.f x x x x =--=--所以()f x 在[]0,1上单调递减;在(]1,3上单调递增. ............... 2分 所以()f x 的最小值是()1 3.f =- (3)分又因为()01f =-,()35f =,所以()f x 的值域是[]3,5.- …………………… 5分(2)因为2a =,所以由(Ⅰ)可知:()f x 在[]0,1上单调递减. 因为当()0,1x ∈时,()()1210f m f m ---<恒成立,可得121,011,0211,m m m m ->-⎧⎪<-<⎨⎪<-<⎩…………………… 8分 解得12.23m << 所以m 的取值范围是12.23m <<…………………… 9分 (3)因为()241f x ax x =--, ①当0a =时,()4 1.f x x =--所以()f x 在[]0,3上单调递减.…………………… 11分②当0a >时,()224 1.f x a x a a ⎛⎫=--- ⎪⎝⎭因为()f x 在[]0,3上的单调函数,可得220,3,0,a a a ⎧≤≥⎪⎨⎪>⎩或 解得20.3a <≤…………………… 14分 由①、②可知,a 的取值范围是20,.3⎡⎤⎢⎥⎣⎦……………………15分。
人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。
1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。
2013—2014学年度上学期期中考试高一数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.做答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·第Ⅰ卷 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}*∈<<=N x x x U ,100,若{}3,2=B A ,{}7,5,1=B C A U ,{}9=B C A C U U ,则集合B=( )A .}4,3,2{B .}6,4,3,2{C .}8,6,4,2{D . }8,6,4,3,2{2.函数0)2()1lg(4)(-+-+-=x x x x f 的定义域为( )A. }41|{≤<x xB. }2,41|{≠≤<x x x 且C. }241|{≠≤≤x ,x x 且D. }4|{≥x x3.下列各式正确的是( )A .327.17.1> B. 32.09.07.1>C. 7.2log 8.1log 3.03.0<D. 9.2lg 4.3lg <4.已知2)(35+++=bx ax x x f ,且3)2(-=-f ,则)2(f =( ) A .3B .5C .7D .-15.函数122++-=x x y 在区间[-3,a]上是增函数,则a 的取值范围是( ) A . 13≤<-a B .23≤<-a C . 3-≥a D .13-≤<-a6.已知[0,1]x ∈,则函数y =的值域是( )A .]13,12[--B .]3,1[C .]3,12[-D .]12,0[-7.设f(x)=⎪⎩⎪⎨⎧>+≤--1||,111||,2|1|2x x x x ,则1(())2f f 等于( )A .21 B .134 C .59- D . 41258.若2()21x f x a =-+是奇函数,则a 的值为( )A . 0B .-1C .1D . 2 9.若14log 3=x ,则x x -+44的值为( ) A .38 B .310 C .2 D .1 10.已知}1,0{}1,0,1{=- A ,且}2,1,0,2{}2,0,2{-=- A ,则满足上述条件的集合A 共有( )A .2个B . 4个C . 6个D .8个11.若函数f(x)=)2(log ax a -在[0,1]上是减函数,则实数a 的取值范围是( ) A.20<<a B.1>a C.21<<a D.10<<a 12.下列所给4个图象中,与所给3件事吻合最好的顺序为( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高一上学期期中考试数学试卷(普通班)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知集合{}0A x x =>,且A B B =,则集合B 可以是( )A.{}1,2,3,4,5 B.{y y = C.(){}2,,x y y x x R =∈D.{}0x x y +≥ 2. 已知函数⎩⎨⎧≤+>=0,10,2)(x x x x x f ,若0)1()(=+f a f ,则实数a 的值等于( )A. -1B. -3 C .1 D .33. 给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(01),上单调递减的函数序号是( )A .①②B.②③C.③④ D.①④5. 若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,参考数据那么方程220x x x +--=的一个近似根(精确到0.1)为()A .1.2B .1.3C .1.4D .1.5 6. 若函数()11x mf x e =+-是奇函数,则m 的值是() A .0 B .21C .1D .2 7. 已知0.1 1.32log 0.3,2,0.2ab c ===,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<8. 已知方程2lg (lg 2lg 3)lg lg 2lg 30x x +++⋅=的两根为12,x x ,则12x x ⋅=()A.lg 6-B.lg 2lg 3⋅C.6D.169. 函数3,(1)()11,(1)ax x f x x x+≤⎧⎪=⎨+>⎪⎩,满足对任意定义域中的21,x x )(21x x ≠,))](()([2121x x x f x f --0<总成立,则实数a 的取值范围是( )A.()0,∞-B.)0,1[-C.)0,1(-D.),1[+∞-安庆一中2013—2014学年度上学期期中考试高一数学答题卷第Ⅱ卷(非选择题,共70分)5小题,每小题4分,共20分。
高一上学期期中考试数学试题一、选择题(每一个小题5分,共计60分)1、下列四个关系式中,正确的是( )。
A.{}a ∈φB. {}a a ⊆C. {}{}b a a ,∈D. {}b a a ,∈2. 已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 ( )A. {x |x ∈R }B. ∅C. {(0,0),(1,1)}D. {y |y ≥0}3. 下列图象中不能作为函数图象的是 ( )4. 下列各式错误的是 ( ).A .216x = x=4B .0.50.5log 0.4log 0.6>C .0.10.10.750.75-<D .1ln 1e=- 5. 已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f =( ) A.4 B. 14 C. 4- D.41- 6.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则( )A .2,2a b == B.2a b == C .2,1a b == D.a b ==7. 已知集合P ={x ,y ,z },Q ={1,2}, 映射Q P f →:中满足()2=y f 的映射的个数共有 ( )A .2B .4C .5D .68. 若函数()1122+-+=x a x y 在(]2,∞-上是减函数,则实数a 的取值范围是 ( ) A. ),23[+∞- B. ]23,(--∞ C. ),23[+∞ D. ]23,(-∞ 9. 下列函数中,在其定义域内既是奇函数又是增函数的为( ) A .1y x =+ B .2y x =- C .1y x=- D .||y x x = 10. 若函数22)(23--+=x x x x f 的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程02223=--+x x x 的一个近似根(精确到1.0)为 ( )A 、2.1B 、3.1C 、4.1D 、5.111. 二次函数y =ax 2+bx 与指数函数y =(b )x 的图象只可能是 ( )12、若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”, 那么函数解析式为221y x =-,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个 二、填空题:本大题4小题, 每小题4分, 共16分。
2013—2014学年度上学期期中考试高一数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.做答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·第Ⅰ卷第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}*∈<<=N x x x U ,100,若{}3,2=B A ,{}7,5,1=B C A U ,{}9=B C A C U U ,则集合B=( )A .}4,3,2{B .}6,4,3,2{C .}8,6,4,2{D . }8,6,4,3,2{2.函数0)2()1lg(4)(-+-+-=x x x x f 的定义域为( )A. }41|{≤<x xB. }2,41|{≠≤<x x x 且C. }241|{≠≤≤x ,x x 且D. }4|{≥x x3.下列各式正确的是( )A .327.17.1> B. 32.09.07.1>C. 7.2log 8.1log 3.03.0<D. 9.2lg 4.3lg <4.已知2)(35+++=bx ax x x f ,且3)2(-=-f ,则)2(f =( )A .3B .5C .7D .-15.函数122++-=x x y 在区间[-3,a]上是增函数,则a 的取值范围是( )A . 13≤<-aB .23≤<-aC . 3-≥aD .13-≤<-a6.已知[0,1]x ∈,则函数y )A .]13,12[--B .]3,1[C .]3,12[-D .]12,0[-7.设f(x)=⎪⎩⎪⎨⎧>+≤--1||,111||,2|1|2x xx x ,则1(())2f f 等于( ) A .21 B .134 C .59- D . 4125 8.若2()21x f x a =-+是奇函数,则a 的值为( ) A . 0 B .-1 C .1 D . 29.若14log 3=x ,则x x -+44的值为( )A .38B .310 C .2 D .1 10.已知}1,0{}1,0,1{=- A ,且}2,1,0,2{}2,0,2{-=- A ,则满足上述条件的集合A 共有( )A .2个B . 4个C . 6个D .8个11.若函数f(x)=)2(log ax a -在[0,1]上是减函数,则实数a 的取值范围是( )A.20<<aB.1>aC.21<<aD.10<<a12.下列所给4个图象中,与所给3件事吻合最好的顺序为( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
A .(1)(2)(4) B.(4)(2)(3) C.(4)(1)(3) D.(4)(1)(2)第Ⅱ卷二.填空题:本大题共4小题,每小题5分。
13.已知2log ,3log 9log ,3log 3log 32222=-=+=c b a ,则c b a ,,的大小关系为_____.14.若x -3≤___________.15.化简4log ]18log 2log )3log 1[(66626÷⋅+-=_____________.16.设偶函数||log )(b x x f a +=在(0,+∞)上单调递增,则)2(-b f 与)1(+a f 的大小关系为_____________.三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)已知集合{}52|≤≤-=x x A ,集合{}121-≤≤+=p x p x B ,若B B A = ,求实数p 的取值范围。
18.(本小题满分12分) 12,x x 是方程22(1)10x m x m --++=的两个不等实根,且2212y x x =+,求()y f m =的解析式及值域。
19.(本小题满分12分)已知函数()[],5,3,21∈-+=x xx x f (1)用定义证明函数)(x f 在[3,5]上的单调性;(2)求函数()[]1,3,52x f x x x+=∈-的最大值和最小值。
20.(本小题满分12分) 设399)(+=x xx f ,(1)若10<<a ,求)1()(a f a f -+的值;(2)求)1000999()10003()10002()10001(f f f f +++的值。
21.(本小题满分12分)已知定义在R 上的函数()y f x =是偶函数,且0x ≥时, ()()2ln 22f x x x =-+,(1)求()f x 解析式;(2)写出()f x 的单调递增区间。
22. (本小题满分12分)已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立。
(1)证明函数()y f x =是R 上的单调性;(2)讨论函数()y f x =的奇偶性;(3)若0)()2(2<+-x f x f ,求x 的取值范围。
2013—2014学年度上学期期中考试高一数学答案一、选择题:1.解析:由韦恩图可知:}8,6,4,3,2{=B 故选D2.解析:只须⎪⎩⎪⎨⎧≠->-≥-020104x x x 解得41≤<x 且2≠x ,故选B3.解析:B4.解析:由2)()(-=x f x g 为奇函数,可得4)()(=-+x f x f ,又3)2(-=-f 可得7)2(=f ,故选C5.解析:由图象可知,二次函数开口向下,对称轴1=x ,所以13≤<-a ,选A6.解析:该函数为增函数,自变量最小时,函数值最小; 自变量最大时,函数值最大,故选C7.解析:134)23())21((=-=f f f ,选B 8.解析:由01)0(=-=a f 解得1=a ,故选C9.解析:由14log 3=x 得3log 4=x ,所以x x -+44=310313=+故选B 10.解析:∵}1,0{}1,0,1{=- A ,∴A A ∉-∈11,0且。
又∵}2,1,0,2{}2,0,2{-=- A , ∴A ∈1且至多A ∈-202,,。
故A ∈1,0且至多A ∈-22,,∴满足条件的A 只能为:}2210{}210{}210{}10{--,,,;,,;,,;, 共有4个。
故选B11.由题意得⎩⎨⎧<->021a a 解得21<<a ,故选C 12.D二.填空题:13.解析:c b a >=146)3()3(|3||3|-=-++-=--+x x x x 15.解析:4log ]18log 2log )3log 1[(66626÷⋅+-=4log ]18log 2log )2[(log 66626÷⋅+=14log 2log 266=÷16.解析∵函数f(x)是偶函数,∴b=0,此时f(x)=loga|x|.当a>1时,函数f(x)=loga|x|在(0,+∞)上是增函数,∴f(a+1)>f(2)=f(b -2); 可知f(b -2)<f(a +1).三、解答题:17.解:(1)若φ=B ,则121->+p p 解得2<p …………4分(2)由 B ∅≠又A B ⊆,借助数轴表示知⎪⎩⎪⎨⎧≤--≥+-≤+51221121p p p p ,故32≤≤p ………………8分 综上得3≤p 。
………………10分18.解:由0)1(4)1(42>+--=∆m m 解得:3>m 或0<m ,……………4分 由韦达定理可得)1(221-=+m x x ,121+=⋅m x x222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+(3>m 或0<m )………………9分417)45(42104)(22--=+-=m m m m f ,所以[)+∞∈,2)(m f ……………………12分19.解:(1)()f x 在[3,5]上是单调增函数证明:设12,x x 是区间[3,5]上的两个任意实数且12x x <………2分 12121211()()22x x f x f x x x ++-=---=12123()(2)(2)x x x x ---…………5分 ∵1235x x ≤<≤∴120x x -<,021<-x ,022<-x 12()()f x f x ∴<()f x ∴在[3,5]上是单调增函数 ………………8分(2)()f x 在[3,5]上是单调增函数,所以x=3时,f(x)取最小值-4 ……10分x=5时f(x)取最大值-2 …………12分20.解析:(1) )1()(a f a f -+=39939911+++--a a a a =39999399+++a a a a=a a a 9399399⋅+++=3939++a a =1………………6分 (2)1000999()10003()10002()10001(f f f f +++)21()]1000501()1000499([)]1000999()10001([f f f f f +++++ =499×1+299921=………12分21.解:(1)0x <时,-x>0 ∵0x ≥时 ()()2l n 22f x x x =-+∴2()ln(22)f x x x -=++ …………2分∵()y f x =是偶函数,(=()f x f x ∴-) ………………4分0x <时,2()ln(22)f x x x =++………………6分()()22ln 22,0ln(22),0x x x f x x x x ⎧++<⎪=⎨⎪-+≥⎩; ………………8分 (2)(1,0)-,()1,+∞ ………………12分22. (1)证明:设12x x >,则120x x ->,而()()()f a b f a f b +=+∴)()()()()())(()()(212221222121x x f x f x f x x f x f x x x f x f x f -=-+-=-+-=-又当0x >时,()0f x <恒成立,所以)()(21x f x f <∴函数()y f x =是R 上的减函数………………4分(2)解:由()()()f a b f a f b +=+得()()()f x x f x f x -=+-即()()(0)f x f x f +-=,而(0)0f =∴()()f x f x -=-,即函数()y f x =是奇函数。