高中数学第一章分类加法计数原理与分步乘法计数原理1.1.2分类加法计数原理与分步乘法计数原理的综合应用讲
- 格式:docx
- 大小:227.92 KB
- 文档页数:7
高中数学第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.1.2分类加法计数原理与分步乘法计数原理的综合应用讲义新人教A 版选修2301041.1.2 分类加法计数原理与分步乘法计数原理的综合应用知识点 分类加法计数原理与分步乘法计数原理的区别分类加法计数原理与分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题.其区别在于:分类加法计数原理针对的是□01分类问题,其中各种方法□02相互独立,用其中任何一种方法都可以做完这件事.分步乘法计数原理针对的是□03分步问题,各个步骤中的方法□04互相依存,只有各个步骤都完成之后才算做完这件事.对较复杂的计数问题,首先要明确是先“分类”后“分步”,还是先“分步”后“分类”;其次在“分类”和“分步”的过程中,均要确定明确的分类标准和分步程序.1.判一判(正确的打“√”,错误的打“×”)(1)分类就是能“一步到位”,分步只能“局部到位”.( )(2)由数字1,2,3组成的无重复数字的整数中,偶数有12个.( )(3)分类时,各类之间是互相独立且排斥的,分步时各步之间是互相依存,互相联系的.( )答案 (1)√ (2)× (3)√2.做一做(1)一个礼堂有4个门,若从任一个门进,从任一个门出,共有________种不同走法.(2)如图从A →C 有________种不同走法.(3)一位顾客去买书,发现4本好书,决定至少买其中的2本,则这位顾客购书的方案共有________种.答案(1)16 (2)6 (3)11解析(1)4×4=16种.(2)分为两类,不过B有2种方法,过B有2×2=4种方法,共有2+4=6种方法.(3)分三类:购买2本有6种,购买3本有4种,购买4本有1种,共有6+4+1=11种方案.探究1数字排列问题例1 用0,1,2,3,4五个数字,(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?[解](1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125个三位数字的电话号码.(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100个三位数.(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12种排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18种排法.因而有12+18=30种排法.即可以排成30个能被2整除的无重复数字的三位数.拓展提升数字问题的解题策略(1)对于组数问题,一般按特殊位置(末位或首位)由谁占领分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法求解.(2)解决组数问题,应特别注意其限制条件,有些条件是隐藏的,要善于挖掘,排数时要注意特殊位置、特殊元素优先的原则.[跟踪训练1]如果一个三位正整数如“a1a2a3”满足a1<a2,且a3<a2,则称这样的三位数为凸数(如120,343,275等),那么所有凸数个数是多少?解分8类,当中间数为2时,百位只能选1,个位可选1,0,由分步乘法计数原理,凸数的个数为1×2=2;当中间数为3时,百位可选1,2,个位可选0,1,2,由分步乘法计数原理,凸数的个数为2×3=6;同理可得:当中间数为4时,凸数的个数为3×4=12;当中间数为5时,凸数的个数为4×5=20;当中间数为6时,凸数的个数为5×6=30;当中间数为7时,凸数的个数为6×7=42;当中间数为8时,凸数的个数为7×8=56;当中间数为9时,凸数的个数为8×9=72.故所有凸数的个数为2+6+12+20+30+42+56+72=240.探究2选取问题例2 在7名学生中,有3名会下象棋但不会下围棋,有2名会下围棋但不会下象棋,另2名既会下象棋又会下围棋,现从这7人中选2人同时参加象棋比赛和围棋比赛,共有多少种不同的选法?[解](1)从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛,有3×2=6种选法;(2)从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛,有3×2=6种选法;(3)从2名只会下围棋的学生中选1名参加围棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛,有2×2=4种选法;(4)从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛,剩下的一名参加围棋比赛,有2×1=2种选法.根据分类加法计数原理,一共有6+6+4+2=18种不同选法.拓展提升对于有限制条件的选取、抽取问题的计数,一般地,当数目不很大时,可用枚举法,但为保证不重不漏,可用树图法、框图法及表格法进行枚举;当数目较大符合条件的情况较多时,可用间接法计数;否则直接用分类或分步计数原理计数,但一般根据选(抽)顺序分步或根据选(抽)元素特点分类.[跟踪训练2]甲、乙、丙、丁4个人各写1张贺卡,放在一起,再各取1张不是自己所写的贺卡,共有多少种不同取法?解解法一:(枚举法)(1)甲取得乙卡,此时乙有甲、丙、丁3种取法.若乙取甲,则丙取丁、丁取丙;若乙取丙,则丙取丁,丁取甲;若乙取丁,则丙取甲,丁取丙,故有3种分配方案.(2)甲取得丙卡,分配方案按甲、乙、丙、丁4人依序可取贺卡如下:丙甲丁乙,丙丁甲乙,丙丁乙甲.(3)甲取得丁卡,分配方案按甲、乙、丙、丁4人依序可取贺卡如下:丁甲乙丙、丁丙甲乙、丁丙乙甲.由分类加法计数原理,共有3+3+3=9种.解法二:(间接法)4个人各取1张贺卡.甲先取1张贺卡有4种方法,乙再取1张贺卡有3种方法,然后丙取1张贺卡有2种方法,最后丁仅有1种方法.由分步乘法计数原理,4个人各取1张贺卡共有4×3×2×1=24种.4个人都取自己写的贺卡有1种方法;2个人取自己写的贺卡,另2个人不取自己所写贺卡方法有6种(即从4个人中选出取自己所写的贺卡的2人有甲乙、甲丙、甲丁、乙丙、乙丁、丙丁);1个人取自己写的贺卡,另3个人不取自己所写贺卡方法有8种(从4个人中选出自己写贺卡的1个人有4种方法,而3个人都不取自己所写贺卡的方法有2种方法).因此,4个人都不取自己所写贺卡的取法有24-(1+6+8)=9种.解法三:(分步法)第一步,甲取1张不是自己所写的那张贺卡,有3种取法;第二步,由甲取的那张贺卡的供卡人取,也有3种取法;第三步,由剩余两个中任1个人取,此时只有1种取法;第四步,最后1个人取,只有1种取法.由分步乘法计数原理,共有3×3×1×1=9种.探究3涂色问题例3 如图,要给地图A,B,C,D四个区域分别涂上4种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?[解]解法一:按A→B→C→D的顺序分步涂色.第一步,涂A区域,有4种不同的涂法;第二步,涂B区域,从剩下的三种颜色中任选一种颜色,有3种不同的涂法;第三步,涂C区域,再从剩下的2种不同颜色中任选一种颜色,有2种不同的涂法;第四步,涂D区域,可分两类,一类D区域与A区域同色;另一类D区域与A区域不同色,共有1+1=2种涂法.根据分步乘法计数原理共有4×3×2×2=48种不同的涂法.解法二:按所用颜色的多少分类涂色.第一类,用三种颜色,有4×(3×2×1×1)=24种不同涂法;第二类,用四种颜色,有4×3×2×1=24种不同涂法;根据分类加法计数原理,共有24+24=48种不同涂法.拓展提升求解涂色(种植)问题一般是直接利用两个计数原理求解,常用方法有:(1)按区域的不同以区域为主分步计数,用分步乘法计数原理分析;(2)以颜色(种植作物)为主分类讨论,适用于“区域、点、线段”问题,用分类加法计数原理分析;(3)对于涂色问题将空间问题平面化,转化为平面区域涂色问题.[跟踪训练3]如图所示,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则栽种方案最多有( )A.180种B.240种C.360种D.420种答案 D解析区域2,3,4,5地位相同(都与其他4个区域中的3个区域相邻),故应先种区域1,有5种种法,再种区域2,有4种种法,接着种区域3,有3种种法,种区域4时应注意:区域2与区域4同色时区域4有1种种法,此时区域5有3种种法,区域2与区域4不同色时区域4有2种种法,此时区域5有2种种法,故共有5×4×3×(1×3+2×2)=420种栽种方案,故选D.[跟踪训练4]将3种作物全部种植在如图所示的5块试验田中,每块种植一种作物,且相邻的试验田不能种同一种作物,不同的种植方法共有________种.答案42解析从左往右5块试验田分别有3,2,2,2,2种种植方法,共有3×2×2×2×2=48种方法,其中5块试验田只种植2种作物共有3×2×1×1×1=6种方法,所以有48-6=42种不同的种植方法.1.在由0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的有( )A.512个 B.192个 C.240个 D.108个答案 D解析能被5整除的四位数,可分为两类一类是末位为0,由分步乘法计数原理,共有5×4×3=60(个).二类是末位为5,由分步乘法计数原理共有4×4×3=48(个).由分类加法计数原理得60+48=108(个).2.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则最多形成不同的直线的条数为( )A.18 B.20 C.25 D.10答案 A解析第一步,给A赋值有5种选择,第二步,给B赋有4种选择,由分步乘法计数原理可得:5×4=20(种).又因为A=1,B=2,与A=2,B=4表示同一直线.A=2,B=1与A=4,B=2,也表示同一直线.∴形成不同的直线最多的条数为20-2=18.3.某运动会上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.答案2880解析分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排,所以共有4×3×2=24种方法;第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,共有5×4×3×2×1=120(种).所以安排这8人的方式共有24×120=2880(种).4.将三个1、三个2、三个3填入3×3的方格中,要求每行、每列都没有重复数字,则不同的填写方法共有________种.答案12解析先填第一行,有3×2×1=6种填法,再填第二行第一列,有2种填法,该位置确定后,其余位置也就唯一确定了,故共有6×2=12种填法.5.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有多少种?解解法一:(直接法)若黄瓜种在第一块土地上,则有3×2=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2=6种不同的种植方法.故不同的种植方法共有6×3=18(种).解法二:(间接法)从4种蔬菜中选出3种种在三块地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18(种).。
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
1.1分类加法计数原理与分步乘法计数原理一、选择题1.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,甲到丙地再无其他路可走,则从甲地去丙地可选择的旅行方式有()A.5 种B.6种C.7种D.8种【答案】B【解析】由分步计数原理可知,可选方式有2×3=6种.故选B.2.将三封信投入三个信箱,可能的投放方法共有种( )A. 3B.6 C.9 D.27【答案】D【解析】将三封信投入三个信箱,由于信投入的信箱不指定,则每封信都有3种选择,所以总的投放方法33 种.故选D.有273.将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法为()A.6种B.12种C.18种D.24种【答案】A【解析】∵每一行从左到右,每一列从上到下分别依次增大,1、2、9只有一种填法,5只能填在右上角或左下角,5填后与之相邻的空格可填6、7、8任一个;余下两个数字按从小到大只有一种方法.共有2×3=6种结果,故选A.4.下表为第29届奥运会奖牌榜前10名:F C表示从“金牌、银牌、铜牌、总数”4项中任取不同两项构成的一个排列,按下面的方式对10个设(,)国家进行排名:首先按F由大至小排序(表格中从上至下),若F值相同,则按C值由大至小排序,若C值也相同,则顺序任意,那么在所有的排序中,中国的排名之和是()A .15B .20C .24D .27【答案】D【解析】分类讨论:若F 为金牌,3种排序中,中国均第1;若F 为银牌,在银牌-金牌,银牌-总数两种排序中,中国均第2,在银牌-铜牌的排序中,中国排第2或第3;若F 为铜牌,在铜牌-金牌,铜牌-总数的排序中,中国均第2,在铜牌-银牌的排序中,中国排第2或第3;若F 为总数,则3种排列中国均第2.故在所有的排序中,中国的排名之和为3×1+(2×2+2+3)+(2×2+2+3)+3×2=27,故选D5.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.28条B.32条C.36条D.48条【答案】B【解析】方程22ay b x c =+变形得222b c y b a x -=,若表示抛物线,则0,0≠≠b a ,所以分2,1,2,3b =-四种情况:(1)当2b =-时,1,0,2,3,2,0,1,3,3,0,1,2;a c a c a c ==⎧⎪==⎨⎪==⎩或或或或或或(2)当2b =时,2,0,1,3,1,2,0,3,3,2,0,1,a c a c a c =-=⎧⎪==-⎨⎪==-⎩或或或或或或以上两种情况下有4条重复,故共有9+5=14条;同理,若b=1,共有9条;若b=3时,共有9条.综上,共有14+9+9=32条.7.某团支部进行换届选举,从甲、乙、丙、丁四人中选出三人分别担任书记、副书记、组织委员,规定上届任职的甲、乙、丙三人不能连任原职,则不同的任职方案有()A .10B .11C .12D .13【答案】B【解析】当丁不入选时,由甲乙丙三个人担任,甲有2种选择,余下的乙和丙只有一种选择;当丁入选时,有3种结果,丁担任三个人中没有入选的人的职务时,只有一种结果,丁担任入选的两个人的职务时,有2种结果,共有()3219⨯+=种,综上可知,共有9+2=11种结果,故选B.二、填空题7.若a ,b ∈N *,且a +b ≤5,则复数a +b i 的个数为______.【答案】10【解析】按a 分类,当a 取1,2,3,4时,b 的值分别有4个、3个、2个、1个,由分类计数原理,得复数a +b i 共有4+3+2+1=10(个).8.n 个人参加某项资格考试,能否通过,有种可能的结果?【答案】2n【解析】每个人都有通过或不通过2种可能,共计有22...2(2)2n n ⨯⨯⨯=个三、解答题9.某班新年联欢晚会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这2个节目插入原节目单中,那么有多少种不同的插法?【解析】5个节目排好后,有6个空可插入第一个节目,共6种不同的插法,再插第二个节目时有7个空,所以共有6×7=42种不同的插法.10.现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?【解析】(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以共有不同的选法有7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法有7×8×9×10=5 040(种). (3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法,所以共有不同的选法有7×8+7×9+7×10+8×9+8×10+9×10=431(种).。
2018-2019学年高中数学第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理的应用高效演练新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理的应用高效演练新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理的应用高效演练新人教A版选修2-3的全部内容。
第2课时分类加法计数原理与分步乘法计数原理的应用A级基础巩固一、选择题1.植树节那天,四位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树方法种数有( )A.1×2×3 B.2×3×4C.34D.43解析:完成这件事分三步.第一步,植第一棵树,有4种不同的方法;第二步,植第二棵树,有4种不同的方法;第三步,植第三棵树,也有4种不同的方法.由分步乘法计数原理得:N=4×4×4=43,故选D。
答案:D2.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为( )A.2 B.4C.6 D.8解析:分两类:第一类,公差大于0,有以下4个等差数列:①1,2,3,②2,3,4,③3,4,5,④1,3,5;第二类,公差小于0,也有4个.根据分类加法计数原理可知,可组成的不同的等差数列共有4+4=8(个).答案:D3.从集合{1,2,3}和{1,4,5,6}中各取1个元素作为点的坐标,则在直角坐标系中能确定不同点的个数为( )A.12 B.11C.24 D.23解析:先在{1,2,3}中取出1个元素,共有3种取法,再在{1,4,5,6}中取出1个元素,共有4种取法,取出的2个数作为点的坐标有2种方法,由分步乘法计数原理知不同的点的个数有N=3×4×2=24(个).又点(1,1)被算了两次,所以共有24-1=23(个).答案:D4.已知x∈{2,3,7},y∈{-31,-24,4},则xy可表示不同的值的个数是( )A.1+1=2 B.1+1+1=3C.2×3=6 D.3×3=9解析:x,y在各自的取值集合中各选一个值相乘求积,这件事可分两步完成.第一步,x 在集合{2,3,7}中任取一个值有3种方法;第二步,y在集合{-31,-24,4}中任取一个值有3种方法.根据分步乘法计数原理知,不同值有3×3=9(个).答案:D5.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.60条 B.62条 C.71条 D.80条解析:方程ay=b2x2+c变形得x2=ab2y-错误!,若表示抛物线,则a≠0,b≠0,所以,分b=-3,-2,1,2,3五种情况:(1)若b=-3,错误!(2)若b=3,错误!以上两种情况下有9条重复,故共有16+7=23条;同理当b=-2,或2时,共有23条;当b=1时,共有16条,综上,共有23+23+16=62种.答案:B二、填空题6.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.(用数字作答)解析:甲、乙、丙均有7中不同的站法,故不考虑限制的不同站法有7×7×7=343种,其中三个人站在同一级台阶上有7种站法,故符合本题要求的不同站法有343-7=336。
分类加法原理和分步乘法原理分类加法原理和分步乘法原理是概率论中常用的计数原理,它们在解决组合计数问题时非常有用。
本文将详细介绍这两个原理的概念、应用场景以及实际计算方法,希望能对读者有指导意义。
一、分类加法原理分类加法原理是指将一个计数问题分成若干个互不相交的子问题,然后将各个子问题的计数结果累加起来得到总的计数结果。
换句话说,分类加法原理认为,如果一个事件可以被划分为若干个不相交的情况,那么它所有情况的计数结果之和就是总的计数结果。
举个例子来说明分类加法原理的应用。
假设有一家商店,它的商品有3种颜色(红色、蓝色、绿色),每种颜色都有2种尺寸(大号、小号)。
现在要计算这家商店的商品总数。
根据分类加法原理,我们可以将这个问题划分为两个子问题:计算每种颜色的商品总数,然后将这些结果相加。
假设红色、蓝色、绿色商品的数量分别为3、4、2,那么总的商品数量就是3+4+2=9。
分类加法原理除了可以用于计算组合问题的数量,还可以用于计算各种可能性的总数,比如排列问题和概率问题。
二、分步乘法原理分步乘法原理是指将一个多步骤的计数问题分解成若干个独立步骤,然后将各个步骤的计数结果相乘得到总的计数结果。
简而言之,分步乘法原理认为,如果一个多步骤的事件的计数问题可以被分解成若干个独立的子问题,那么它的总的计数结果就是各个子问题计数结果的乘积。
举个例子来说明分步乘法原理的应用。
假设有一家餐厅,它的菜单上有3种汤品选择(番茄汤、鸡肉汤、蘑菇汤),每种汤品有2种配料选择(鸡肉块、海鲜)。
现在要计算在这家餐厅用餐的菜单组合总数。
根据分步乘法原理,我们可以将这个问题分解成两个子问题:计算汤品选择的数量,然后计算配料选择的数量,最后将这两个数量相乘。
假设汤品选择的数量为3,配料选择的数量为2,那么菜单组合总数就是3 * 2 = 6。
分步乘法原理类似于分类加法原理,但是不同的是,分步乘法原理适用于计算多步骤问题的总数,而分类加法原理适用于计算一个事件的不同情况之和的总数。
分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.分类加法计数原理的理解分类加法计数原理中的“完成一件事有两个不同方案”,是指完成这件事的所有方法可以分为两类,即任何一类中的任何一种方法都可以完成任务,两类中没有相同的方法,且完成这件事的任何一种方法都在某一类中.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.分步乘法计数原理的理解分步乘法计数原理中的“完成一件事需要两个步骤”,是指完成这件事的任何一种方法,都需要分成两个步骤.在每一个步骤中任取一种方法,然后相继完成这两个步骤就能完成这件事,即各个步骤是相互依存的,每个步骤都要做完才能完成这件事.判断正误(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)在分步乘法计数原理中,事情若是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.( )答案:(1)×(2)√(3)√(4)√某校开设A类选修课3门,B类选修课4门,若要求从两类课程中选一门,则不同的选法共有( )A.3种B.4种C.7种D.12种答案:C已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( ) A.1 B.3C.6 D.9答案:D某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有________种.答案:3加工某个零件分三道工序,第一道工序有5人可以选择,第二道工序有6人可以选择,第三道工序有4人可以选择,每两道工序中可供选择的人各不相同,如果从中选3人每人做一道工序,则选法有________种.答案:120探究点1 分类加法计数原理[学生用书P2]在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【解】法一:按十位上的数字分别是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别有8个、7个、6个、5个、4个、3个、2个、1个.由分类加法计数原理知,满足条件的两位数共有8+7+6+5+4+3+2+1=36(个).法二:按个位上的数字分别是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个.由分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).[变问法]在本例条件下,个位数字小于十位数字且为偶数的两位数有多少个?解:当个位数字是8时,十位数字取9,只有1个.当个位数字是6时,十位数字可取7,8,9,共3个.当个位数字是4时,十位数字可取5,6,7,8,9,共5个.同理可知,当个位数字是2时,共7个,当个位数字是0时,共9个.由分类加法计数原理知,符合条件的两位数共有1+3+5+7+9=25(个).利用分类加法计数原理计数时的解题流程某校高三共有三个班,各班人数如下表:男生人数女生人数总人数高三(1)班30 20 50 高三(2)班30 30 60 高三(3)班 35 20 55(1)(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?解:(1)从每个班选1名学生任学生会主席,共有3类不同的方案:第1类,从高三(1)班中选出1名学生,有50种不同的选法;第2类,从高三(2)班中选出1名学生,有60种不同的选法;第3类,从高三(3)班中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165(种)不同的选法.(2)从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:第1类,从高三(1)班男生中选出1名学生,有30种不同的选法;第2类,从高三(2)班男生中选出1名学生,有30种不同的选法;第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80(种)不同的选法.探究点2 分步乘法计数原理[学生用书P2]从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a ,b ,c ,则可以组成抛物线的条数为多少?【解】 由题意知a 不能为0,故a 的值有5种选法; b 的值也有5种选法;c 的值有4种选法.由分步乘法计数原理得:5×5×4=100(条).1.[变问法]若本例中的二次函数图象开口向下,则可以组成多少条抛物线?解:需分三步完成,第一步确定a 有2种方法,第二步确定b 有5种方法,第三步确定c 有4种方法,故可组成2×5×4=40条抛物线.2.[变条件、变问法]若从本例的六个数字中选2个作为椭圆x 2m +y 2n=1的参数m ,n ,则可以组成椭圆的个数是多少?解:据条件知m >0,n >0,且m ≠n ,故需分两步完成,第一步确定m ,有3种方法,第二步确定n ,有2种方法,故确定椭圆的个数为3×2=6(个).利用分步乘法计数原理计数时的解题流程从1,2,3,4中选三个数字,组成无重复数字的整数,则满足下列条件的数有多少个?(1)三位数;(2)三位偶数.解:(1)分三步:第1步,排个位,有4种方法;第2步,排十位,从剩下的3个数字中选1个,有3种方法;第3步,排百位,从剩下的2个数字中选1个,有2种方法.故共有4×3×2=24个满足要求的三位数.(2)第1步,排个位,只能从2,4中选1个,有2种方法;第2步,排十位,从剩下的3个数中选1个,有3种方法;第3步,排百位,只能从剩下的2个数字中选1个,有2种方法.故共有2×3×2=12个满足要求的三位偶数.探究点3 两个计数原理的综合应用[学生用书P3]甲同学有5本不同的数学书、4本不同的物理书、3本不同的化学书,现在乙同学向甲同学借书,(1)若借1本书,则有多少种借法?(2)若每科各借1本书,则有多少种借法?(3)若任借2本不同学科的书,则有多少种借法?【解】(1)需完成的事情是“借1本书”,所以借给乙数学、物理、化学书中的任何1本,都可以完成这件事情.根据分类加法计数原理,共有5+4+3=12种借法.(2)需完成的事情是“每科各借1本书”,意味着要借给乙3本书,只有从数学、物理、化学三科中各借1本,才能完成这件事情.根据分步乘法计数原理,共有5×4×3=60种借法.(3)需完成的事情是“从三种学科的书中借2本不同学科的书”,可分三类:第1类,借1本数学书和1本物理书,只有2本书都借,事情才能完成,根据分步乘法计数原理,有5×4=20种借法;第2类,借1本数学书和1本化学书,有5×3=15种借法;第3类,借1本物理书和1本化学书,有4×3=12种借法.根据分类加法计数原理,共有20+15+12=47种借法.利用两个计数原理的解题策略用两个计数原理解决具体问题时,首先,要分清是“分类”还是“分步”,区分分类还是分步的关键是看这种方法能否完成这件事情.其次,要清楚“分类”或“分步”的具体标准,在“分类”时要遵循“不重不漏”的原则,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性;有些题目中“分类”与“分步”同时进行,即“先分类后分步”或“先分步后分类”.现有3名医生、5名护士、2名麻醉师.(1)从中选派1名去参加外出学习,有多少种不同的选法?(2)从这些人中选出1名医生、1名护士和1名麻醉师组成1个医疗小组,有多少种不同的选法?解:(1)分三类:第一类,选出的是医生,有3种选法;第二类,选出的是护士,有5种选法;第三类,选出的是麻醉师,有2种选法.根据分类加法计数原理,共有3+5+2=10(种)选法.(2)分三步:第一步,选1名医生,有3种选法;第二步,选1名护士,有5种选法;第三步,选1名麻醉师,有2种选法.根据分步乘法计数原理知,共有3×5×2=30(种)选法.1.某一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为( )A.8 B.15C.18 D.30解析:选A.共有5+3=8种不同的选法.2.已知集合A={1,2},B={3,4,5},从集合A、B中先后各取一个元素构成平面直角坐标系中的点的横、纵坐标,则可确定的不同点的个数为( )A.5 B.6C.10 D.12解析:选B.完成这件事可分两步:第一步,从集合A中任选一个元素,有2种不同的方法;第二步,从集合B中任选一个元素,有3种不同的方法.由分步乘法计数原理得,一共有2×3=6种不同的方法.3.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出门的方案有( )A.12种B.7种C.14种D.49种解析:选D.要完成进、出门这件事,需要分两步,第一步进体育场,第二步出体育场,第一步进门有4+3=7种方法;第二步出门也有4+3=7种方法,由分步乘法计数原理知进、出门的方案有7×7=49种.4.现有高一学生50人,高二学生42人,高三学生30人,组成冬令营.(1)若从中选1人作总负责人,共有多少种不同的选法?(2)若每年级各选1名负责人,共有多少种不同的选法?(3)若从中推选两人作为中心发言人,要求这两人要来自不同的年级,则有多少种选法?解:(1)从高一选1人作总负责人有50种选法;从高二选1人作总负责人有42种选法;从高三选1人作总负责人有30种选法.由分类加法计数原理,可知共有50+42+30=122种选法.(2)从高一选1名负责人有50种选法;从高二选1名负责人有42种选法;从高三选1名负责人有30种选法.由分步乘法计数原理,可知共有50×42×30=63 000种选法.(3)①高一和高二各选1人作中心发言人,有50×42=2 100 种选法;②高二和高三各选1人作中心发言人,有42×30=1 260种选法;③高一和高三各选1人作中心发言人,有50×30=1 500种选法.故共有2 100+1 260+1 500=4 860种选法.[A 基础达标]1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,不同的选法种数是( )A.5 B.4C.9 D.20解析:选C.由分类加法计数原理求解,5+4=9(种).故选C.2.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系中第一、二象限不同点的个数是( )A.18 B.16C.14 D.10解析:选C.分两类:第一类M中取横坐标,N中取纵坐标,共有3×2=6(个)第一、二象限的点;第二类M中取纵坐标,N中取横坐标,共有2×4=8(个)第一、二象限的点.综上可知,共有6+8=14(个)不同的点.3.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.81 B.64C.48 D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.4.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是( )A.15 B.12C.5 D.4解析:选A.分情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15.5.十字路口来往的车辆,如果不允许回头,则不同的行车路线有( )A.24种B.16种C.12种D.10种解析:选C.完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.6.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:77.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有________种.解析:小张的报名方法有2种,其他3位同学各有3种,所以由分步乘法计数原理知共有2×3×3×3=54种不同的报名方法.答案:548.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22(条),即所求的不同的直线共有22条.答案:229.(2018·云南丽江测试)现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).10.(1)如图,在由电键组A与B所组成的并联电路中,要接通电源且仅闭合其中一个电键,使电灯C发光的方法有多少种?(2)如图,由电键组A,B组成的电路中,要闭合两个电键接通电源,使电灯C发光的方法有几种?解:(1)只要闭合图中的任一电键,电灯即发光.由于在电键组A中有2个电键,电键组B 中有3个电键,且分别并联,应用分类加法计数原理,所以共有2+3=5(种)接通电源使电灯发光的方法.(2)只有在闭合A组中2个电键中的一个之后,再闭合B组中3个电键中的一个,才能使电灯的电源接通,电灯才能发光.根据分步乘法计数原理,共有2×3=6(种)不同的接通方法使电灯发光.[B 能力提升]11.(2018·郑州高二检测)从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).12.(2018·长沙高二检测)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10解析:选B.对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13.故选B.13.已知集合M={-3,-2,-1,0,1,2},点P(a,b)表示平面上的点(a,b∈M).(1)点P可以表示平面上的多少个不同点?(2)点P可以表示平面上的多少个第二象限的点?(3)点P可以表示多少个不在直线y=x上的点?解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,点P可以表示平面上6×6=36(个)不同点.(2)根据条件,需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,点P 可以表示平面上3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,点P可以表示6×5=30(个)不在直线y=x上的点.14.(选做题)某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400种结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400种结果.因此共有不同结果17 400+11 400=28 800种.。
1.1.2 分类加法计数原理与分步乘法计数原理的综合应用知识点 分类加法计数原理与分步乘法计数原理的区别分类加法计数原理与分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题.其区别在于:分类加法计数原理针对的是□01分类问题,其中各种方法□02相互独立,用其中任何一种方法都可以做完这件事.分步乘法计数原理针对的是□03分步问题,各个步骤中的方法□04互相依存,只有各个步骤都完成之后才算做完这件事.对较复杂的计数问题,首先要明确是先“分类”后“分步”,还是先“分步”后“分类”;其次在“分类”和“分步”的过程中,均要确定明确的分类标准和分步程序.1.判一判(正确的打“√”,错误的打“×”)(1)分类就是能“一步到位”,分步只能“局部到位”.( )(2)由数字1,2,3组成的无重复数字的整数中,偶数有12个.( )(3)分类时,各类之间是互相独立且排斥的,分步时各步之间是互相依存,互相联系的.( )答案 (1)√ (2)× (3)√2.做一做(1)一个礼堂有4个门,若从任一个门进,从任一个门出,共有________种不同走法.(2)如图从A →C 有________种不同走法.(3)一位顾客去买书,发现4本好书,决定至少买其中的2本,则这位顾客购书的方案共有________种.答案 (1)16 (2)6 (3)11解析 (1)4×4=16种.(2)分为两类,不过B 有2种方法,过B 有2×2=4种方法,共有2+4=6种方法.(3)分三类:购买2本有6种,购买3本有4种,购买4本有1种,共有6+4+1=11种方案.探究1数字排列问题例1 用0,1,2,3,4五个数字,(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?[解](1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125个三位数字的电话号码.(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100个三位数.(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12种排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18种排法.因而有12+18=30种排法.即可以排成30个能被2整除的无重复数字的三位数.拓展提升数字问题的解题策略(1)对于组数问题,一般按特殊位置(末位或首位)由谁占领分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法求解.(2)解决组数问题,应特别注意其限制条件,有些条件是隐藏的,要善于挖掘,排数时要注意特殊位置、特殊元素优先的原则.[跟踪训练1]如果一个三位正整数如“a1a2a3”满足a1<a2,且a3<a2,则称这样的三位数为凸数(如120,343,275等),那么所有凸数个数是多少?解分8类,当中间数为2时,百位只能选1,个位可选1,0,由分步乘法计数原理,凸数的个数为1×2=2;当中间数为3时,百位可选1,2,个位可选0,1,2,由分步乘法计数原理,凸数的个数为2×3=6;同理可得:当中间数为4时,凸数的个数为3×4=12;当中间数为5时,凸数的个数为4×5=20;当中间数为6时,凸数的个数为5×6=30;当中间数为7时,凸数的个数为6×7=42;当中间数为8时,凸数的个数为7×8=56;当中间数为9时,凸数的个数为8×9=72.故所有凸数的个数为2+6+12+20+30+42+56+72=240.探究2选取问题例2 在7名学生中,有3名会下象棋但不会下围棋,有2名会下围棋但不会下象棋,另2名既会下象棋又会下围棋,现从这7人中选2人同时参加象棋比赛和围棋比赛,共有多少种不同的选法?[解](1)从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛,有3×2=6种选法;(2)从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛,有3×2=6种选法;(3)从2名只会下围棋的学生中选1名参加围棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛,有2×2=4种选法;(4)从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛,剩下的一名参加围棋比赛,有2×1=2种选法.根据分类加法计数原理,一共有6+6+4+2=18种不同选法.拓展提升对于有限制条件的选取、抽取问题的计数,一般地,当数目不很大时,可用枚举法,但为保证不重不漏,可用树图法、框图法及表格法进行枚举;当数目较大符合条件的情况较多时,可用间接法计数;否则直接用分类或分步计数原理计数,但一般根据选(抽)顺序分步或根据选(抽)元素特点分类.[跟踪训练2]甲、乙、丙、丁4个人各写1张贺卡,放在一起,再各取1张不是自己所写的贺卡,共有多少种不同取法?解解法一:(枚举法)(1)甲取得乙卡,此时乙有甲、丙、丁3种取法.若乙取甲,则丙取丁、丁取丙;若乙取丙,则丙取丁,丁取甲;若乙取丁,则丙取甲,丁取丙,故有3种分配方案.(2)甲取得丙卡,分配方案按甲、乙、丙、丁4人依序可取贺卡如下:丙甲丁乙,丙丁甲乙,丙丁乙甲.(3)甲取得丁卡,分配方案按甲、乙、丙、丁4人依序可取贺卡如下:丁甲乙丙、丁丙甲乙、丁丙乙甲.由分类加法计数原理,共有3+3+3=9种.解法二:(间接法)4个人各取1张贺卡.甲先取1张贺卡有4种方法,乙再取1张贺卡有3种方法,然后丙取1张贺卡有2种方法,最后丁仅有1种方法.由分步乘法计数原理,4个人各取1张贺卡共有4×3×2×1=24种.4个人都取自己写的贺卡有1种方法;2个人取自己写的贺卡,另2个人不取自己所写贺卡方法有6种(即从4个人中选出取自己所写的贺卡的2人有甲乙、甲丙、甲丁、乙丙、乙丁、丙丁);1个人取自己写的贺卡,另3个人不取自己所写贺卡方法有8种(从4个人中选出自己写贺卡的1个人有4种方法,而3个人都不取自己所写贺卡的方法有2种方法).因此,4个人都不取自己所写贺卡的取法有24-(1+6+8)=9种.解法三:(分步法)第一步,甲取1张不是自己所写的那张贺卡,有3种取法;第二步,由甲取的那张贺卡的供卡人取,也有3种取法;第三步,由剩余两个中任1个人取,此时只有1种取法;第四步,最后1个人取,只有1种取法.由分步乘法计数原理,共有3×3×1×1=9种.探究3涂色问题例3 如图,要给地图A,B,C,D四个区域分别涂上4种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?[解]解法一:按A→B→C→D的顺序分步涂色.第一步,涂A区域,有4种不同的涂法;第二步,涂B区域,从剩下的三种颜色中任选一种颜色,有3种不同的涂法;第三步,涂C区域,再从剩下的2种不同颜色中任选一种颜色,有2种不同的涂法;第四步,涂D区域,可分两类,一类D区域与A区域同色;另一类D区域与A区域不同色,共有1+1=2种涂法.根据分步乘法计数原理共有4×3×2×2=48种不同的涂法.解法二:按所用颜色的多少分类涂色.第一类,用三种颜色,有4×(3×2×1×1)=24种不同涂法;第二类,用四种颜色,有4×3×2×1=24种不同涂法;根据分类加法计数原理,共有24+24=48种不同涂法.拓展提升求解涂色(种植)问题一般是直接利用两个计数原理求解,常用方法有:(1)按区域的不同以区域为主分步计数,用分步乘法计数原理分析;(2)以颜色(种植作物)为主分类讨论,适用于“区域、点、线段”问题,用分类加法计数原理分析;(3)对于涂色问题将空间问题平面化,转化为平面区域涂色问题.[跟踪训练3]如图所示,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则栽种方案最多有( )A.180种B.240种C.360种D.420种答案 D解析区域2,3,4,5地位相同(都与其他4个区域中的3个区域相邻),故应先种区域1,有5种种法,再种区域2,有4种种法,接着种区域3,有3种种法,种区域4时应注意:区域2与区域4同色时区域4有1种种法,此时区域5有3种种法,区域2与区域4不同色时区域4有2种种法,此时区域5有2种种法,故共有5×4×3×(1×3+2×2)=420种栽种方案,故选D.[跟踪训练4]将3种作物全部种植在如图所示的5块试验田中,每块种植一种作物,且相邻的试验田不能种同一种作物,不同的种植方法共有________种.答案42解析从左往右5块试验田分别有3,2,2,2,2种种植方法,共有3×2×2×2×2=48种方法,其中5块试验田只种植2种作物共有3×2×1×1×1=6种方法,所以有48-6=42种不同的种植方法.1.在由0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的有( )A.512个 B.192个 C.240个 D.108个答案 D解析能被5整除的四位数,可分为两类一类是末位为0,由分步乘法计数原理,共有5×4×3=60(个).二类是末位为5,由分步乘法计数原理共有4×4×3=48(个).由分类加法计数原理得60+48=108(个).2.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则最多形成不同的直线的条数为( )A.18 B.20 C.25 D.10答案 A解析第一步,给A赋值有5种选择,第二步,给B赋有4种选择,由分步乘法计数原理可得:5×4=20(种).又因为A=1,B=2,与A=2,B=4表示同一直线.A=2,B=1与A=4,B=2,也表示同一直线.∴形成不同的直线最多的条数为20-2=18.3.某运动会上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.答案2880解析分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排,所以共有4×3×2=24种方法;第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,共有5×4×3×2×1=120(种).所以安排这8人的方式共有24×120=2880(种).4.将三个1、三个2、三个3填入3×3的方格中,要求每行、每列都没有重复数字,则不同的填写方法共有________种.答案12解析先填第一行,有3×2×1=6种填法,再填第二行第一列,有2种填法,该位置确定后,其余位置也就唯一确定了,故共有6×2=12种填法.5.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有多少种?解解法一:(直接法)若黄瓜种在第一块土地上,则有3×2=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2=6种不同的种植方法.故不同的种植方法共有6×3=18(种).解法二:(间接法)从4种蔬菜中选出3种种在三块地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18(种).。